Search results for: impact load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13430

Search results for: impact load

13160 Thermal Fatigue Behavior of Austenitic Stainless Steels

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.

Keywords: austenitic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation

Procedia PDF Downloads 375
13159 Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part

Authors: Hee Yong Kang, Hyeon Ho Shin, Jung Cheol Yoo, Il Taek Lee, Sung Mo Yang

Abstract:

Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207.

Keywords: seat back frame, bending and torsional strength, BMC (Bulk Molding Compound), FMVSS 207 seating systems

Procedia PDF Downloads 209
13158 Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive

Authors: Umair Ashraf, Kjetil Uhlen, Sverre Eriksen, Nadeem Jelani

Abstract:

Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed.

Keywords: non-linear load, power electronics, parallel operating generators, pulse width modulation, variable frequency drives, voltage source converters, weak grid

Procedia PDF Downloads 568
13157 Load-Enabled Deployment and Sensing Range Optimization for Lifetime Enhancement of WSNs

Authors: Krishan P. Sharma, T. P. Sharma

Abstract:

Wireless sensor nodes are resource constrained battery powered devices usually deployed in hostile and ill-disposed areas to cooperatively monitor physical or environmental conditions. Due to their limited power supply, the major challenge for researchers is to utilize their battery power for enhancing the lifetime of whole network. Communication and sensing are two major sources of energy consumption in sensor networks. In this paper, we propose a deployment strategy for enhancing the average lifetime of a sensor network by effectively utilizing communication and sensing energy to provide full coverage. The proposed scheme is based on the fact that due to heavy relaying load, sensor nodes near to the sink drain energy at much faster rate than other nodes in the network and consequently die much earlier. To cover this imbalance, proposed scheme finds optimal communication and sensing ranges according to effective load at each node and uses a non-uniform deployment strategy where there is a comparatively high density of nodes near to the sink. Probable relaying load factor at particular node is calculated and accordingly optimal communication distance and sensing range for each sensor node is adjusted. Thus, sensor nodes are placed at locations that optimize energy during network operation. Formal mathematical analysis for calculating optimized locations is reported in present work.

Keywords: load factor, network lifetime, non-uniform deployment, sensing range

Procedia PDF Downloads 382
13156 Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre

Authors: Mohammed Mashrei

Abstract:

Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results.

Keywords: ferrocement, fibre, silica fume, slab, strength

Procedia PDF Downloads 235
13155 Experimental Investigations on Group Interaction Effects of Laterally Loaded Piles in Submerged Sand

Authors: Jasaswini Mishra, Ashim K. Dey

Abstract:

This paper aims to investigate the group interaction effects of laterally loaded pile groups driven into a medium dense sand layer in submerged state. Static lateral load tests were carried out on pile groups consisting of varying number of piles and at different spacings. The test setup consists of a load cell (500 kg capacity) and an LVDT (50 mm) to measure the load and pile head deflection respectively. The piles were extensively instrumented with strain gauges so as to study the variation of soil resistance within the group. The bending moments at various depths were calculated from strain gauge data and these curves were fitted using a higher order polynomial in order to get 'p-y' curves. A comparative study between a single pile and a pile under a group has also been done for a better understanding of the group effect. It is observed that average load per pile is significantly reduced relative to single pile and it decreases with increase in the number of piles in a pile group. The loss of efficiency of the piles in the group, commonly referred to as "shadowing" effect, has been expressed by the use of a 'p-multiplier'. Leading rows carries greater amount of load when compared with the trailing rows. The variations of bending moment with depth for different rows of pile within a group and different spacing have been analyzed and compared with that of a single pile. p multipliers within different rows in a pile group were evaluated from the experimental study.

Keywords: group action, laterally loaded piles, p-multiplier, strain gauge

Procedia PDF Downloads 242
13154 Dynamic Amplification Factors of Some City Bridges

Authors: I. Paeglite, A. Paeglitis

Abstract:

The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values.

Keywords: bridge, dynamic effects, load testing, dynamic amplification factor

Procedia PDF Downloads 381
13153 Performance of Reinforced Concrete Wall with Opening Using Analytical Model

Authors: Alaa Morsy, Youssef Ibrahim

Abstract:

Earthquake is one of the most catastrophic events, which makes enormous harm to properties and human lives. As a piece of a safe building configuration, reinforced concrete walls are given in structures to decrease horizontal displacements under seismic load. Shear walls are additionally used to oppose the horizontal loads that might be incited by the impact of wind. Reinforced concrete walls in residential buildings might have openings that are required for windows in outside walls or for doors in inside walls or different states of openings due to architectural purposes. The size, position, and area of openings may fluctuate from an engineering perspective. Shear walls can encounter harm around corners of entryways and windows because of advancement of stress concentration under the impact of vertical or horizontal loads. The openings cause a diminishing in shear wall capacity. It might have an unfavorable impact on the stiffness of reinforced concrete wall and on the seismic reaction of structures. Finite Element Method using software package ‘ANSYS ver. 12’ becomes an essential approach in analyzing civil engineering problems numerically. Now we can make various models with different parameters in short time by using ANSYS instead of doing it experimentally, which consumes a lot of time and money. Finite element modeling approach has been conducted to study the effect of opening shape, size and position in RC wall with different thicknesses under axial and lateral static loads. The proposed finite element approach has been verified with experimental programme conducted by the researchers and validated by their variables. A very good correlation has been observed between the model and experimental results including load capacity, failure mode, and lateral displacement. A parametric study is applied to investigate the effect of opening size, shape, position on different reinforced concrete wall thicknesses. The results may be useful for improving existing design models and to be applied in practice, as it satisfies both the architectural and the structural requirements.

Keywords: Ansys, concrete walls, openings, out of plane behavior, seismic, shear wall

Procedia PDF Downloads 165
13152 Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys

Authors: Surjit Angra, Pooja Rani, Vinod Kumar

Abstract:

In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum.

Keywords: hydro-turbine, spiral casing, stay ring, structural analysis

Procedia PDF Downloads 515
13151 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 454
13150 Cost Effectiveness Analysis of a Community Intervention for Anti-Retroviral Therapy Delivery in Cambodia

Authors: Esabelle Lo Yan Yam, Pheak Chhoun, Sovannary Tuot, Emily Lancsar, Siyan Yi

Abstract:

Persons living with HIV (PLHIV) need lifelong antiretroviral treatment (ART) to keep their viral load suppressed to an undetectable level, maintain a healthy immune system, and reduce the risk of transmitting HIV to others. However, many factors affect PLHIV's adherence to ART, including access to antiretrovirals (ARV), stigma, lack of social support, and the burden of seeking lifelong care. Community-based care has been shown to be instrumental in the experience of PLHIV in many countries, including Cambodia. In this study based in Cambodia, a community-based ART delivery (CAD) intervention involving community action workers (CAWs) who are PLHIVs was introduced. These workers collect pre-packaged ARVs from the ART clinics and dispense them to PLHIVs in the communities. The quasi-experimental study involved approximately 2000 stable PLHIV in the intervention arm and another 2000 PLHIV in the control arm (receiving usual care). A cost-effectiveness analysis is currently conducted to complement the clinical effectiveness of the CAD intervention on the care continuum and treatment outcomes for stable PLHIV, as well as the operational effectiveness in increasing the efficiency of the ART clinics and the health system. The analysis will consider health system and societal perspectives based on primary outcomes, including retention in care, viral load suppression, and adherence to ART. Additionally, a consultation with the National Centre for HIV/AIDS, Dermatology, and STD under the Cambodia Ministry of Health will be done to discuss the conduct of a budget impact analysis that can quantify the financial impact on the government's budget when adopting the CAD intervention at the provincial and national levels. The budget impact analysis will take into consideration various scaling-up scenarios for the interventions in the country. The research will assess the cost-effectiveness of the CAD intervention to support national stakeholders in Cambodia to make an informed decision on the adoption and scaling up of the intervention in Cambodia. The results are currently being analyzed and will be available at the time of the conference.

Keywords: Cambodia, community intervention, economic evaluation, global health, HIV/AIDs, implementation research

Procedia PDF Downloads 47
13149 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability

Procedia PDF Downloads 515
13148 Numerical Analysis of Geosynthetic-Encased Stone Columns under Laterally Loads

Authors: R. Ziaie Moayed, M. Hossein Zade

Abstract:

Out of all methods for ground improvement, stone column became more popular these days due to its simple construction and economic consideration. Installation of stone column especially in loose fine graded soil causes increasing in load bearing capacity and settlement reduction. Encased granular stone columns (EGCs) are commonly subjected to vertical load. However, they may also be subjected to significant amount of shear loading. In this study, three-dimensional finite element (FE) analyses were conducted to estimate the shear load capacity of EGCs in sandy soil. Two types of different cases, stone column and geosynthetic encased stone column were studied at different normal pressures varying from 15 kPa to 75 kPa. Also, the effect of diameter in two cases was considered. A close agreement between the experimental and numerical curves of shear stress - horizontal displacement trend line is observed. The obtained result showed that, by increasing the normal pressure and diameter of stone column, higher shear strength is mobilized by soil; however, in the case of encased stone column, increasing the diameter had more dominated effect in mobilized shear strength.

Keywords: encased stone column, laterally load, ordinary stone column, validation

Procedia PDF Downloads 368
13147 Lateral-Torsional Buckling of Steel Girder Systems Braced by Solid Web Crossbeams

Authors: Ruoyang Tang, Jianguo Nie

Abstract:

Lateral-torsional bracing members are critical to the stability of girder systems during the construction phase of steel-concrete composite bridges, and the interaction effect of multiple girders plays an essential role in the determination of buckling load. In this paper, an investigation is conducted on the lateral-torsional buckling behavior of the steel girder system which is composed of three or four I-shaped girders and braced by solid web crossbeams. The buckling load for such girder system is comprehensively analyzed and an analytical solution is developed for uniform pressure loading conditions. Furthermore, post-buckling analysis including initial geometric imperfections is performed and parametric studies in terms of bracing density, stiffness ratio as well as the number and spacing of girders are presented in order to find the optimal bracing plans for an arbitrary girder layout. The theoretical solution of critical load on account of local buckling mode shows good agreement with the numerical results in eigenvalue analysis. In addition, parametric analysis results show that both bracing density and stiffness ratio have a significant impact on the initial stiffness, global stability and failure mode of such girder system. Taking into consideration the effect of initial geometric imperfections, an increase in bracing density between adjacent girders can effectively improve the bearing capacity of the structure, and higher beam-girder stiffness ratio can result in a more ductile failure mode.

Keywords: bracing member, construction stage, lateral-torsional buckling, steel girder system

Procedia PDF Downloads 123
13146 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers

Authors: H. Ozbasaran

Abstract:

IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.

Keywords: cantilever, IPN, IPE, lateral torsional buckling

Procedia PDF Downloads 539
13145 Economic Load Dispatch with Valve-Point Loading Effect by Using Differential Evolution Immunized Ant Colony Optimization Technique

Authors: Nur Azzammudin Rahmat, Ismail Musirin, Ahmad Farid Abidin

Abstract:

Economic load dispatch is performed by the utilities in order to determine the best generation level at the most feasible operating cost. In order to guarantee satisfying energy delivery to the consumer, a precise calculation of generation level is required. In order to achieve accurate and practical solution, several considerations such as prohibited operating zones, valve-point effect and ramp-rate limit need to be taken into account. However, these considerations cause the optimization to become complex and difficult to solve. This research focuses on the valve-point effect that causes ripple in the fuel-cost curve. This paper also proposes Differential Evolution Immunized Ant Colony Optimization (DEIANT) in solving economic load dispatch problem with valve-point effect. Comparative studies involving DEIANT, EP and ACO are conducted on IEEE 30-Bus RTS for performance assessments. Results indicate that DEIANT is superior to the other compared methods in terms of calculating lower operating cost and power loss.

Keywords: ant colony optimization (ACO), differential evolution (DE), differential evolution immunized ant colony optimization (DEIANT), economic load dispatch (ELD)

Procedia PDF Downloads 444
13144 Reconfigurable Ubiquitous Computing Infrastructure for Load Balancing

Authors: Khaled Sellami, Lynda Sellami, Pierre F. Tiako

Abstract:

Ubiquitous computing helps make data and services available to users anytime and anywhere. This makes the cooperation of devices a crucial need. In return, such cooperation causes an overload of the devices and/or networks, resulting in network malfunction and suspension of its activities. Our goal in this paper is to propose an approach of devices reconfiguration in order to help to reduce the energy consumption in ubiquitous environments. The idea is that when high-energy consumption is detected, we proceed to a change in component distribution on the devices to reduce and/or balance the energy consumption. We also investigate the possibility to detect high-energy consumption of devices/network based on devices abilities. As a result, our idea realizes a reconfiguration of devices aimed at reducing the consumption of energy and/or load balancing in ubiquitous environments.

Keywords: ubiquitous computing, load balancing, device energy consumption, reconfiguration

Procedia PDF Downloads 274
13143 Enhancing Power System Resilience: An Adaptive Under-Frequency Load Shedding Scheme Incorporating PV Generation and Fast Charging Stations

Authors: Sami M. Alshareef

Abstract:

In the rapidly evolving energy landscape, the integration of renewable energy sources and the electrification of transportation are essential steps toward achieving sustainability goals. However, these advancements introduce new challenges, particularly in maintaining frequency stability due to variable photovoltaic (PV) generation and the growing demand for fast charging stations. The variability of photovoltaic (PV) generation due to weather conditions can disrupt the balance between generation and load, resulting in frequency deviations. To ensure the stability of power systems, it is imperative to develop effective under frequency load-shedding schemes. This research proposal presents an adaptive under-frequency load shedding scheme based on the power swing equation, designed explicitly for the IEEE-9 Bus Test System, that includes PV generation and fast charging stations. This research aims to address these challenges by developing an advanced scheme that dynamically disconnects fast charging stations based on power imbalances. The scheme prioritizes the disconnection of stations near affected areas to expedite system frequency stabilization. To achieve these goals, the research project will leverage the power swing equation, a widely recognized model for analyzing system dynamics during under-frequency events. By utilizing this equation, the proposed scheme will adaptively adjust the load-shedding process in real-time to maintain frequency stability and prevent power blackouts. The research findings will support the transition towards sustainable energy systems by ensuring a reliable and uninterrupted electricity supply while enhancing the resilience and stability of power systems during under-frequency events.

Keywords: load shedding, fast charging stations, pv generation, power system resilience

Procedia PDF Downloads 79
13142 Organizational Performance and Impact of Social Innovation

Authors: Alfonso Unceta, Javier Castro-Spila

Abstract:

This paper offers a conceptual and empirical exploration between the organizational performance and the impact of social innovation. The paper contributes on the social innovation field in three domains: a) It provides analytical and empirical evidence linking organizational performance to the impact of social innovation; b) it provides a first outline of impact assessment of social innovation when it is developed by a diversity of heterogeneous actors (systemic social innovation); c) it provides a first outline for the development of innovation policies to support social innovations according to a typology of organizations and a typology of impact.

Keywords: absorptive capacity, social innovation impact, organizational performance, RESINDEX, Basque Country

Procedia PDF Downloads 485
13141 Pragmatic Analysis of the Effectiveness of a Power Conditioning Device (DC-DC Converters) in a Simple Photovoltaics System

Authors: Asowata Osamede

Abstract:

Solar radiation provides the largest renewable energy potential on earth and photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduce dependence on fossil fuels. The aim of this paper is to evaluate the efficiency of power conditioning devices with a focus on the Buck and Boost DC-DC converters (12 V, 24 V and 48 V) in a basic off grid PV system with a varying load profile. This would assist in harnessing more of the available solar energy. The practical setup consists of a PV panel that is set to an orientation angle of 0º N, with corresponding tilt angles. Preliminary results, which include data analysis showing the power loss in the system and efficiency, indicate that the 12V DC-DC converter coupled with the load profile had the highest efficiency for a latitude of 26º S throughout the year.

Keywords: poly-crystalline PV panels, DC-DC converters, tilt and orientation angles, direct solar radiation, load profile

Procedia PDF Downloads 160
13140 Comparison of the Performance of Diesel Engine, Run with Diesel and Safflower Oil Methyl Esters, Using a Piston Which Has Five Grooves on Its Crown

Authors: N. Hiranmai, M. L. S. Deva Kumar

Abstract:

In this project, it is planned to carry out an experimental investigation on 4- stroke Direct Injection Diesel Engine, which is a single-cylinder, four-stroke, water-cooled, and constant speed engine capable of developing a power output of 3.7 kW at 1500 rpm, run with diesel fuel and also with different proportions of Safflower oil methyl esters, with a piston having five number of grooves on its crown to create turbulence. Various performance parameters, such as brake power, specific fuel consumption, and thermal efficiency, are calculated. At all the load conditions, the performance of the engine is obtained better for blend B40 (40% Safflower oil + 60% of Diesel). At different load conditions, Brake thermal Efficiency (ηbth) is comparatively more for all blends than that for Diesel. At different load conditions, ηith is less for blend B40.

Keywords: four-stroke engine, diesel, safflower oil, engine performance, emissions.

Procedia PDF Downloads 97
13139 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial

Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler

Abstract:

Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.

Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training

Procedia PDF Downloads 112
13138 Characteristics of Cumulative Distribution Function of Grown Crack Size at Specified Fatigue Crack Propagation Life under Different Maximum Fatigue Loads in AZ31

Authors: Seon Soon Choi

Abstract:

Magnesium alloy has been widely used in structure such as an automobile. It is necessary to consider probabilistic characteristics of a structural material because a fatigue behavior of a structure has a randomness and uncertainty. The purpose of this study is to find the characteristics of the cumulative distribution function (CDF) of the grown crack size at a specified fatigue crack propagation life and to investigate a statistical crack propagation in magnesium alloys. The statistical fatigue data of the grown crack size are obtained through the fatigue crack propagation (FCP) tests under different maximum fatigue load conditions conducted on the replicated specimens of magnesium alloys. The 3-parameter Weibull distribution is used to find the CDF of grown crack size. The CDF of grown crack size in case of larger maximum fatigue load has longer tail in below 10 percent and above 90 percent. The fatigue failure occurs easily as the tail of CDF of grown crack size becomes long. The fatigue behavior under the larger maximum fatigue load condition shows more rapid propagation and failure mode.

Keywords: cumulative distribution function, fatigue crack propagation, grown crack size, magnesium alloys, maximum fatigue load

Procedia PDF Downloads 287
13137 Performances of Two-Segment Crash Box with Holes under Oblique Load

Authors: Moch Agus Choiron

Abstract:

Crash box design has been developed to obtain optimum energy absorption. In this study, two-segment crash box design with holes is investigated under oblique load. The deformation behavior and crash energy absorption are observed. The analysis was performed using finite element method. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. The models consist of 2 and 4 holes laid within ¼, ½ and ¾ from first segment length. 100 mm aluminum crash box and frontal crash velocity of 16 km/jam were selected. Based on simulation results, it can be concluded that 2 holes located at ¾ has the largest crash energy absorption. This behavior associated with deformation pattern, which produces higher number of folding than other models.

Keywords: crash Box, two-segments, holes configuration, oblique load, deformation pattern

Procedia PDF Downloads 360
13136 Experimental and Analytical Investigation of Seismic Behavior of Concrete Beam-Column Joints Strengthened by Fiber-Reinforced Polymers Jacketing

Authors: Ebrahim Zamani Beydokhti, Hashem Shariatmadar

Abstract:

This paper presents an experimental and analytical investigation on the behavior of retrofitted beam-column joints subjected to reversed cyclic loading. The experimental program comprises 8 external beam–column joint connection subassemblages tested in 2 phases; one was the damaging phase and second was the repairing phase. The beam-column joints were no seismically designed, i.e. the joint, beam and column critical zones had no special transverse stirrups. The joins were tested under cyclic loading in previous research. The experiment had two phases named damage phase and retrofit phase. Then the experimental results compared with analytical results achieved from modeling in OpenSees software. The presence of lateral slab and the axial load amount were analytically investigated. The results showed that increasing the axial load and presence of lateral slab increased the joint capacity. The presence of lateral slab increased the dissipated energy, while the axial load had no significant effect on it.

Keywords: concrete beam-column joints, CFRP sheets, lateral slab, axial load

Procedia PDF Downloads 143
13135 Finite Element Analysis of Reinforced Structural Walls

Authors: Mintesinot Teshome Mengsha

Abstract:

Reinforced concrete structural walls are provided in structures to decrease horizontal displacements under seismic loads. The cyclic lateral load resistance capacity of a structural wall is controlled by two parameters, the strength and the ductility; it is better to have the shear strength somewhat greater than the compression to prevent shear failure, which is brittle, sudden and of serious consequence. Due to architectural and functional reasons, small openings are provided in this important structural part. The main objective of this study is to investigate the finite element of RC structural walls with small openings subjected to cyclic load using the finite element approach. The experimental results in terms of load capacity, failure mode, crack pattern, flexural strength, shear strength, and deformation capacity.

Keywords: ABAQUS, finite element method, small openings, reinforced concrete structural walls

Procedia PDF Downloads 53
13134 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine

Authors: G. Barański, P. Kacejko, M. Wendeker

Abstract:

The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: algorithm, combustion process, radial engine, spark plug

Procedia PDF Downloads 291
13133 Soft Exoskeleton Elastomer Pre-Tension Drive Control System

Authors: Andrey Yatsun, Andrei Malchikov

Abstract:

Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system.

Keywords: soft exoskeleton, mathematical modeling, pre-tension elastomer, human-machine interaction

Procedia PDF Downloads 65
13132 Personalized Learning: An Analysis Using Item Response Theory

Authors: A. Yacob, N. Hj. Ali, M. H. Yusoff, M. Y. MohdSaman, W. M. A. F. W. Hamzah

Abstract:

Personalized learning becomes increasingly popular which not is restricted by time, place or any other barriers. This study proposes an analysis of Personalized Learning using Item Response Theory which considers course material difficulty and learner ability. The study investigates twenty undergraduate students at TATI University College, who are taking programming subject. By using the IRT, it was found that, finding the most appropriate problem levels to each student include high and low level test items together is not a problem. Thus, the student abilities can be asses more accurately and fairly. Learners who experience more anxiety will affect a heavier cognitive load and receive lower test scores. Instructors are encouraged to provide a supportive learning environment to enhance learning effectiveness because Cognitive Load Theory concerns the limited capacity of the brain to absorb new information.

Keywords: assessment, item response theory, cognitive load theory, learning, motivation, performance

Procedia PDF Downloads 316
13131 Numerical and Experimental Analysis of Stiffened Aluminum Panels under Compression

Authors: Ismail Cengiz, Faruk Elaldi

Abstract:

Within the scope of the study presented in this paper, load carrying capacity and buckling behavior of a stiffened aluminum panel designed by adopting current ‘buckle-resistant’ design application and ‘Post –Buckling’ design approach were investigated experimentally and numerically. The test specimen that is stabilized by Z-type stiffeners and manufactured from aluminum 2024 T3 Clad material was test under compression load. Buckling behavior was observed by means of 3 – dimensional digital image correlation (DIC) and strain gauge pairs. The experimental study was followed by developing an efficient and reliable finite element model whose ability to predict behavior of the stiffened panel used for compression test is verified by compering experimental and numerical results in terms of load – shortening curve, strain-load curves and buckling mode shapes. While finite element model was being constructed, non-linear behaviors associated with material and geometry was considered. Finally, applicability of aluminum stiffened panel in airframe design against to composite structures was evaluated thorough the concept of ‘Structural Efficiency’. This study reveals that considerable amount of weight saving could be gained if the concept of ‘post-buckling design’ is preferred to the already conventionally used ‘buckle resistant design’ concept in aircraft industry without scarifying any of structural integrity under load spectrum.

Keywords: post-buckling, stiffened panel, non-linear finite element method, aluminum, structural efficiency

Procedia PDF Downloads 147