Search results for: crop disease detection
7641 Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China
Authors: Enze Zhang
Abstract:
One of the most challenging steps in implementing virtual water content (VWC) analysis of crops is to get properly the total volume of consumptive water use (CWU) and, therefore, the choice of a reliable crop CWU estimation method. In practice, lots of previous researches obtaining CWU of crops follow a classical procedure for calculating crop evapotranspiration which is determined by multiplying reference evapotranspiration by appropriate coefficient, such as crop coefficient and water stress coefficients. However, this manner of calculation requires lots of field experimental data at point scale and more seriously, when current growing conditions differ from the standard conditions, may easily produce deviation between the calculated CWU and the actual CWU. Since evapotranspiration caused by crop planting always plays a vital role in surface water-energy balance in an agricultural region, this study decided to alternatively estimates crop evapotranspiration by Budyko framework. After brief introduce the development process of Budyko framework. We choose a modified Budyko framework under unsteady-state to better evaluated the actual CWU and apply it in an agricultural irrigation area in North China Plain which rely on underground water for irrigation. With the agricultural statistic data, this calculated CWU was further converted into VWC and its subdivision of crops at the annual scale. Results show that all the average values of VWC, VWC_blue and VWC_green show a downward trend with increased agricultural production and improved acreage. By comparison with the previous research, VWC calculated by Budyko framework agree well with part of the previous research and for some other research the value is greater. Our research also suggests that this methodology and findings may be reliable and convenient for investigation of virtual water throughout various agriculture regions of the world.Keywords: virtual water content, Budyko framework, consumptive water use, crop evapotranspiration
Procedia PDF Downloads 3337640 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 1427639 Use of Sentiel-2 Data to Monitor Plant Density and Establishment Rate of Winter Wheat Fields
Authors: Bing-Bing E. Goh
Abstract:
Plant counting is a labour intensive and time-consuming task for the farmers. However, it is an important indicator for farmers to make decisions on subsequent field management. This study is to evaluate the potential of Sentinel-2 images using statistical analysis to retrieve information on plant density for monitoring, especially during critical period at the beginning of March. The model was calibrated with in-situ data from 19 winter wheat fields in Republic of Ireland during the crop growing season in 2019-2020. The model for plant density resulted in R2 = 0.77, RMSECV = 103 and NRMSE = 14%. This study has shown the potential of using Sentinel-2 to estimate plant density and quantify plant establishment to effectively monitor crop progress and to ensure proper field management.Keywords: winter wheat, remote sensing, crop monitoring, multivariate analysis
Procedia PDF Downloads 1617638 Comparative Efficacy of Benomyl and Three Plant Extracts in the Control of Cowpea Anthracnose Caused by Colletotrichum lindemuthianum Sensu Lato
Authors: M. J. Falade
Abstract:
Field experiment was conducted to compare the efficacy of hot water extracts of three plants (Ricinus communis, Jatropha gossypifolia and Datura stramonium) with benomyl in the control of cowpea anthracnose disease. Three concentrations of the extracts (65, 50 and 30%) were used in the study. Result from the experiment shows that all the extracts at the tested concentration reduced the incidence and severity of the disease. D. stramonium at 65% concentration compares favourably with that of benomyl fungicide in reducing incidence and severity of infection. At 65% concentration of D. stramonium, incidence of the disease was 22% on pooled mean basis, and this was not significantly different from that of benomyl (21%). Similarly, the percentage of normal seeds recorded at this same concentration of the extract was 85% and was not significantly different from that of benomyl (86%). In terms of disease severity trace infections were observed on the cowpea plants at this concentration of the extract and that of benomyl. However, at lower concentrations of all the extracts, significant variations were observed on incidence of disease and percentage of normal seeds such that values obtained from use of benomyl were higher than those obtained from the use of the extracts. The study, therefore, shows that extracts of these indigenous plants can be used as a substitute for the benomyl fungicide in the management of anthracnose disease.Keywords: benomyl, C. lindemuthianum, disease incidence, disease severity
Procedia PDF Downloads 2837637 Expression of Gro-El under Phloem-Specific Promoter Protects Transgenic Plants against Diverse Begomovirus-Beta Satellite Complex
Authors: Muhammad Yousaf Ali, Shahid Mansoor, Javeria Qazi, Imran Amin, Musarrat Shaheen
Abstract:
Cotton leaf curl disease (CLCuD) is the major threat to the cotton crop and is transmitted by whitefly (Bemisia tabaci). Since multiple begomoviruses and associated satellites are involved in CLCuD, approaches based on the concept of broad-spectrum resistance are essential for effective disease control. Gro-El and G5 are two proteins from whitefly endosymbiont and M13 bacteriophage origin, respectively. Gro-El encapsulates the virus particle when it enters the whitefly and protects the virus from the immune system of the whitefly as well as prevents viral expression in it. This characteristic of Gro-El can be exploited to get resistance against viruses if expressed in plants. G5 is a single-stranded DNA binding protein, expression of which in transgenic plants will stop viral expression on its binding with ssDNA. The use of tissue-specific promoters is more efficient than constitutive promoters. Transgenics of Nicotiana benthamiana for Gro-El under constitutive promoter and Gro-El under phloem specific promoter were made. In comparison to non-transgenic plants, transgenic plants with Gro-El under NSP promoter showed promising results when challenged against cotton leaf curl Multan virus (CLCuMuV) along with cotton leaf curl Multan beta satellite (CLCuMB), cotton leaf curl Khokhran virus (CLCuKoV) along with cotton leaf curl Multan beta satellite (CLCuMB) and Pedilenthus leaf curl virus (PedLCV) along with Tobacco leaf curl beta satellite (TbLCB).Keywords: cotton leaf curl disease, whitefly, endosymbionts, transgenic, resistance
Procedia PDF Downloads 977636 Identification of Disease Causing DNA Motifs in Human DNA Using Clustering Approach
Authors: G. Tamilpavai, C. Vishnuppriya
Abstract:
Studying DNA (deoxyribonucleic acid) sequence is useful in biological processes and it is applied in the fields such as diagnostic and forensic research. DNA is the hereditary information in human and almost all other organisms. It is passed to their generations. Earlier stage detection of defective DNA sequence may lead to many developments in the field of Bioinformatics. Nowadays various tedious techniques are used to identify defective DNA. The proposed work is to analyze and identify the cancer-causing DNA motif in a given sequence. Initially the human DNA sequence is separated as k-mers using k-mer separation rule. The separated k-mers are clustered using Self Organizing Map (SOM). Using Levenshtein distance measure, cancer associated DNA motif is identified from the k-mer clusters. Experimental results of this work indicate the presence or absence of cancer causing DNA motif. If the cancer associated DNA motif is found in DNA, it is declared as the cancer disease causing DNA sequence. Otherwise the input human DNA is declared as normal sequence. Finally, elapsed time is calculated for finding the presence of cancer causing DNA motif using clustering formation. It is compared with normal process of finding cancer causing DNA motif. Locating cancer associated motif is easier in cluster formation process than the other one. The proposed work will be an initiative aid for finding genetic disease related research.Keywords: bioinformatics, cancer motif, DNA, k-mers, Levenshtein distance, SOM
Procedia PDF Downloads 1887635 Comparison of Vessel Detection in Standard vs Ultra-WideField Retinal Images
Authors: Maher un Nisa, Ahsan Khawaja
Abstract:
Retinal imaging with Ultra-WideField (UWF) view technology has opened up new avenues in the field of retinal pathology detection. Recent developments in retinal imaging such as Optos California Imaging Device helps in acquiring high resolution images of the retina to help the Ophthalmologists in diagnosing and analyzing eye related pathologies more accurately. This paper investigates the acquired retinal details by comparing vessel detection in standard 450 color fundus images with the state of the art 2000 UWF retinal images.Keywords: color fundus, retinal images, ultra-widefield, vessel detection
Procedia PDF Downloads 4487634 Comparison of Central Light Reflex Width-to-Retinal Vessel Diameter Ratio between Glaucoma and Normal Eyes by Using Edge Detection Technique
Authors: P. Siriarchawatana, K. Leungchavaphongse, N. Covavisaruch, K. Rojananuangnit, P. Boondaeng, N. Panyayingyong
Abstract:
Glaucoma is a disease that causes visual loss in adults. Glaucoma causes damage to the optic nerve and its overall pathophysiology is still not fully understood. Vasculopathy may be one of the possible causes of nerve damage. Photographic imaging of retinal vessels by fundus camera during eye examination may complement clinical management. This paper presents an innovation for measuring central light reflex width-to-retinal vessel diameter ratio (CRR) from digital retinal photographs. Using our edge detection technique, CRRs from glaucoma and normal eyes were compared to examine differences and associations. CRRs were evaluated on fundus photographs of participants from Mettapracharak (Wat Raikhing) Hospital in Nakhon Pathom, Thailand. Fifty-five photographs from normal eyes and twenty-one photographs from glaucoma eyes were included. Participants with hypertension were excluded. In each photograph, CRRs from four retinal vessels, including arteries and veins in the inferotemporal and superotemporal regions, were quantified using edge detection technique. From our finding, mean CRRs of all four retinal arteries and veins were significantly higher in persons with glaucoma than in those without glaucoma (0.34 vs. 0.32, p < 0.05 for inferotemporal vein, 0.33 vs. 0.30, p < 0.01 for inferotemporal artery, 0.34 vs. 0.31, p < 0.01 for superotemporal vein, and 0.33 vs. 0.30, p < 0.05 for superotemporal artery). From these results, an increase in CRRs of retinal vessels, as quantitatively measured from fundus photographs, could be associated with glaucoma.Keywords: glaucoma, retinal vessel, central light reflex, image processing, fundus photograph, edge detection
Procedia PDF Downloads 3257633 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)
Procedia PDF Downloads 4457632 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression
Procedia PDF Downloads 1377631 Detection of Clipped Fragments in Speech Signals
Authors: Sergei Aleinik, Yuri Matveev
Abstract:
In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented.Keywords: clipping, clipped signal, speech signal processing, digital signal processing
Procedia PDF Downloads 3937630 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module
Procedia PDF Downloads 3437629 Automatic Change Detection for High-Resolution Satellite Images of Urban and Suburban Areas
Authors: Antigoni Panagiotopoulou, Lemonia Ragia
Abstract:
High-resolution satellite images can provide detailed information about change detection on the earth. In the present work, QuickBird images of spatial resolution 60 cm/pixel and WorldView images of resolution 30 cm/pixel are utilized to perform automatic change detection in urban and suburban areas of Crete, Greece. There is a relative time difference of 13 years among the satellite images. Multiindex scene representation is applied on the images to classify the scene into buildings, vegetation, water and ground. Then, automatic change detection is made possible by pixel-per-pixel comparison of the classified multi-temporal images. The vegetation index and the water index which have been developed in this study prove effective. Furthermore, the proposed change detection approach not only indicates whether changes have taken place or not but also provides specific information relative to the types of changes. Experimentations with other different scenes in the future could help optimize the proposed spectral indices as well as the entire change detection methodology.Keywords: change detection, multiindex scene representation, spectral index, QuickBird, WorldView
Procedia PDF Downloads 1367628 Socioeconomic Factors Associated with the Knowledge, Attitude, and Practices of Oil Palm Smallholders toward Ganoderma Disease
Authors: K. Assis, B. Bonaventure, A. Abdul Rahim, H. Affendy, A. Mohammad Amizi
Abstract:
Oil palm smallholders are considered as a very important producer of oil palm in Malaysia. They are categorized into two, which are organized smallholder and independent smallholder. In this study, there were 1000 oil palms smallholders have been interviewed by using a structured questionnaire. The main objective of the survey is to identify the relationship between socioeconomic characteristics of smallholders with their knowledge, attitude, and practices toward Ganoderma disease. The locations of study include Peninsular Malaysia and Sabah. There were three important aspects studied, namely knowledge of Ganoderma disease, attitude towards the disease as well as the practices in managing the disease. Cluster analysis, factor analysis, and binary logistic regression were used to analyze the data collected. The findings of the study should provide a baseline data which can be used by the relevant agencies to conduct programs or to formulate a suitable development plan to improve the knowledge, attitude and practices of oil palm smallholders in managing Ganoderma disease.Keywords: attitude, Ganoderma, knowledge, oil palm, practices, smallholders
Procedia PDF Downloads 3987627 The Laser Line Detection for Autonomous Mapping Based on Color Segmentation
Authors: Pavel Chmelar, Martin Dobrovolny
Abstract:
Laser projection or laser footprint detection is today widely used in many fields of robotics, measurement, or electronics. The system accuracy strictly depends on precise laser footprint detection on target objects. This article deals with the laser line detection based on the RGB segmentation and the component labeling. As a measurement device was used the developed optical rangefinder. The optical rangefinder is equipped with vertical sweeping of the laser beam and high quality camera. This system was developed mainly for automatic exploration and mapping of unknown spaces. In the first section is presented a new detection algorithm. In the second section are presented measurements results. The measurements were performed in variable light conditions in interiors. The last part of the article present achieved results and their differences between day and night measurements.Keywords: color segmentation, component labelling, laser line detection, automatic mapping, distance measurement, vector map
Procedia PDF Downloads 4327626 A Background Subtraction Based Moving Object Detection Around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added.We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: gaussian mixture model, background subtraction, moving object detection, color space, morphological filtering
Procedia PDF Downloads 6177625 Count of Trees in East Africa with Deep Learning
Authors: Nubwimana Rachel, Mugabowindekwe Maurice
Abstract:
Trees play a crucial role in maintaining biodiversity and providing various ecological services. Traditional methods of counting trees are time-consuming, and there is a need for more efficient techniques. However, deep learning makes it feasible to identify the multi-scale elements hidden in aerial imagery. This research focuses on the application of deep learning techniques for tree detection and counting in both forest and non-forest areas through the exploration of the deep learning application for automated tree detection and counting using satellite imagery. The objective is to identify the most effective model for automated tree counting. We used different deep learning models such as YOLOV7, SSD, and UNET, along with Generative Adversarial Networks to generate synthetic samples for training and other augmentation techniques, including Random Resized Crop, AutoAugment, and Linear Contrast Enhancement. These models were trained and fine-tuned using satellite imagery to identify and count trees. The performance of the models was assessed through multiple trials; after training and fine-tuning the models, UNET demonstrated the best performance with a validation loss of 0.1211, validation accuracy of 0.9509, and validation precision of 0.9799. This research showcases the success of deep learning in accurate tree counting through remote sensing, particularly with the UNET model. It represents a significant contribution to the field by offering an efficient and precise alternative to conventional tree-counting methods.Keywords: remote sensing, deep learning, tree counting, image segmentation, object detection, visualization
Procedia PDF Downloads 727624 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins
Authors: Xinyi Zhao, Furong Tian
Abstract:
Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. Forty-six papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow immunochromatographic strips on different types of mycotoxins. The papers were dated 2001-2021. Twenty five papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone:5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structure are usually used in large scale detection. In conclusion, the mycotoxin receives that most researches is aflatoxin B1 and its limit of detection is the lowest. Gold-nanopaticle based immunochromatographic test strips has the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles. In these papers, quantitative concentration results can be obtained when the user uploads the photograph of test lines using the smartphone application.Keywords: aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins
Procedia PDF Downloads 1957623 Paper-Based Detection Using Synthetic Gene Circuits
Authors: Vanessa Funk, Steven Blum, Stephanie Cole, Jorge Maciel, Matthew Lux
Abstract:
Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals.Keywords: cell-free lysates, detection, gene circuits, in vitro
Procedia PDF Downloads 3957622 Prevalence and Associated Factors of Periodontal Disease among Diabetes Patients in Addis Ababa, Ethiopia, 2018
Authors: Addisu Tadesse Sahile, Tennyson Mgutshini
Abstract:
Background: Periodontal disease is a common, complex, inflammatory disease characterized by the destruction of tooth-supporting soft and hard tissues of the periodontium and a major public health problem across developed and developing countries. Objectives: The study was aimed at assessing the prevalence of periodontal disease and associated factors among diabetes patients in Addis Ababa, Ethiopia, 2018. Methods: Institutional based cross-sectional study was conducted on 388 diabetes patients selected by systematic random sampling method from March to May 2018. The study was conducted at two conveniently selected public hospitals in Addis Ababa. Data were collected with pre-tested, structured and translated questionnaire then entered to SPSS version 23 software for analysis. Descriptive statistics as a summary, in line with chi-square and binary logistics regression to identify factors associated with periodontal disease, were applied. A 95% CI with a p-value less than 5% was used as a level of significance. Results: Ninety-one percent (n=353) of participants had periodontal disease while oral examination was done in six regions. While only 9% (n=35) of participants were free of periodontal disease. The number of tooth brushings per day, correct techniques of brushing, malocclusion, and fillings that are defective were associated with periodontal disease at p < 0.05. Conclusion and recommendation: A higher prevalence of periodontal disease among diabetes patient was observed. The frequency of tooth brushing, correct techniques of brushing, malocclusion and defective fillings were associated with periodontal disease. Emphasis has to be given to oral health of diabetes patients by every concerned body so as to control the current higher burden of periodontal disease in diabetes.Keywords: periodontal disease, risk factors, diabetes mellitus, Addis Ababa
Procedia PDF Downloads 1287621 Estimation of Chronic Kidney Disease Using Artificial Neural Network
Authors: Ilker Ali Ozkan
Abstract:
In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis
Procedia PDF Downloads 4477620 A Highly Sensitive Dip Strip for Detection of Phosphate in Water
Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri
Abstract:
Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.Keywords: phosphate detection, paper-based device, molybdenum blue method, colorimetric assay
Procedia PDF Downloads 1707619 Thymoquinone Prevented the Development of Symptoms in Animal Model of Parkinson’s Disease
Authors: Kambiz Hassanzadeh, Seyedeh Shohreh Ebrahimi, Shahrbanoo Oryan, Arman Rahimmi, Esmael Izadpanah
Abstract:
Parkinson’s disease is one of the most prevalent neurodegenerative diseases which occurs in elderly. There are convincing evidences that oxidative stress has an important role in both the initiation and progression of Parkinson’s disease. Thymoquinone (TQ) is shown to have antioxidant and anti-inflammatory properties in invitro and invivo studies. It is well documented that TQ acts as a free radical scavenger and prevents the cell damage. Therefore this study aimed to evaluate the effect of TQ on motor and non-motor symptoms in animal model of Parkinson’s disease. Male Wistar rats (10-12 months) received rotenone (1mg/kg/day, sc) to induce Parkinson’s disease model. Pretreatment with TQ (7.5 and 15 mg/kg/day, po) was administered one hour before the rotenone injection. Three motor tests (rotarod, rearing and bar tests) and two non-motor tests (forced swimming and elevated plus maze) were performed for behavioral assessment. Our results indicated that TQ significantly ameliorated the rotenone-induced motor dysfunction in rotarod and rearing tests also it could prevent the non-motor dysfunctions in forced swimming and elevated plus maze tests. In conclusion we found that TQ delayed the Parkinson's disease induction by rotenone and this effect might be related to its proved antioxidant effect.Keywords: Parkinson's disease, thymoquinone, motor and non-motor symptoms, neurodegenerative disease
Procedia PDF Downloads 5477618 Remote Patient Monitoring for Covid-19
Authors: Launcelot McGrath
Abstract:
The Coronavirus disease 2019 (COVID-19) has spread rapidly around the world, resulting in high mortality rates and very large numbers of people requiring medical treatment in ICU. Management of patient hospitalisation is a critical aspect to control this disease and reduce chaos in the healthcare systems. Remote monitoring provides a solution to protect vulnerable and elderly high-risk patients. Continuous remote monitoring of oxygen saturation, respiratory rate, heart rate, and temperature, etc., provides medical systems with up-to-the-minute information about their patients' statuses. Remote monitoring also limits the spread of infection by reducing hospital overcrowding. This paper examines the potential of remote monitoring for Covid-19 to assist in the rapid identification of patients at risk, facilitate the detection of patient deterioration, and enable early interventions.Keywords: remote monitoring, patient care, oxygen saturation, Covid-19, hospital management
Procedia PDF Downloads 1087617 Disease Control of Rice Blast Caused by Pyricularia Oryzae Cavara Using Novel Chitosan-based Agronanofungicides
Authors: Abdulaziz Bashir Kutawa, Khairulmazmi Ahmad, Mohd Zobir Hussein, Asgar Ali, Mohd Aswad Abdul Wahab, Amara Rafi, Mahesh Tiran Gunasena, Muhammad Ziaur Rahman, Md. Imam Hossain, Syazwan Afif Mohd Zobir
Abstract:
Rice is a cereal crop and belongs to the family Poaceae, it was domesticated in southern China and North-Eastern India around 8000 years ago, and it’s the staple nourishment for over half of the total world’s population. Rice production worldwide is affected by different abiotic and biotic stresses. Diseases are important challenges for the production of rice, among all the diseases in rice plants, the most severe and common disease is the rice blast. Worldwide, it is one of the most damaging diseases affecting rice cultivation, the disease is caused by the non-obligate filamentous ascomycete fungus called Magnaporthe grisae or Pyricularia oryzae Cav. Nanotechnology is a new idea to improve agriculture by combating the diseases of plants, as nanoparticles were found to possess an inhibitory effect on different species of fungi. This work aimed to develop and determine the efficacy of agronanofungicides, and commercial fungicides (in-vitro and in-vivo). The agronanofungicides were developed using ionic gelation methods. In-vitro antifungal activity of the synthesized agronanofungicides was evaluated against P. oryzae using the poisoned medium technique. The potato dextrose agar (PDA) was amended in several concentrations; 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 ppm for the agronanofungicides. Medium with the only solvent served as a control. Mycelial growth was recorded every day, and the percentage inhibition of radial growth (PIRG) was also calculated. Based on the results of the zone of inhibition, the chitosan-hexaconazole agronanofungicide (2g/mL) was the most effective fungicide to inhibit the growth of the fungus with 100% inhibition at 0.2, 0.25, 0.30, and 0.35 ppm, respectively. The least were found to be propiconazole and basamid fungicides with 100% inhibition only at 100 ppm. In terms of the glasshouse results, the chitosan-hexaconazole-dazomet agronanofungicide (CHDEN) treatment (2.5g/L) was found to be the most effective fungicide to reduce the intensity of the disease with a disease severity index (DSI) of 19.80%, protection index (PI) of 82.26%, lesion length of 1.63cm, disease reduction (DR) of 80.20%, and AUDPC (390.60 Unit2). The least effective fungicide was found to be ANV with a disease severity index (45.60%), protection index (45.24%), lesion length (3.83 cm), disease reduction (54.40%), and AUDPC (1205.75 Unit2). The negative control did not show any symptoms during the glasshouse assay, while the untreated control treatment exhibited severe symptoms of the disease with a DSI value of 64.38%, lesion length of 5.20 cm, and AUDPC value of 2201.85 Unit2, respectively. The treatments of agronanofungicides have enhanced the yield significantly with CHDEN having 239.00 while the healthy control had 113.67 for the number of grains per panicle. The use of CHEN and CHDEN will help immensely in reducing the severity of rice blast in the fields, and this will increase the yield and profit of the farmers that produced rice.Keywords: chitosan, dazomet, disease severity, efficacy, and blast disease
Procedia PDF Downloads 877616 The First Transcriptome Assembly of Marama Bean: An African Orphan Crop
Authors: Ethel E. Phiri, Lionel Hartzenberg, Percy Chimwamuromba, Emmanuel Nepolo, Jens Kossmann, James R. Lloyd
Abstract:
Orphan crops are underresearched and underutilized food plant species that have not been categorized as major food crops, but have the potential to be economically and agronomically significant. They have been documented to have the ability to tolerate extreme environmental conditions. However, limited research has been conducted to uncover their potential as food crop species. The New Partnership for Africa’s Development (NEPAD) has classified Marama bean, Tylosema esculentum, as an orphan crop. The plant is one of the 101 African orphan crops that must have their genomes sequenced, assembled, and annotated in the foreseeable future. Marama bean is a perennial leguminous plant that primarily grows in poor, arid soils in southern Africa. The plants produce large tubers that can weigh as much as 200kg. While the foliage provides fodder, the tuber is carbohydrate rich and is a staple food source for rural communities in Namibia. Also, the edible seeds are protein- and oil-rich. Marama Bean plants respond rapidly to increased temperatures and severe water scarcity without extreme consequences. Advances in molecular biology and biotechnology have made it possible to effectively transfer technologies between model- and major crops to orphan crops. In this research, the aim was to assemble the first transcriptomic analysis of Marama Bean RNA-sequence data. Many model plant species have had their genomes sequenced and their transcriptomes assembled. Therefore the availability of transcriptome data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this research will eventually evaluate the potential use of Marama Bean as a crop species to improve its value in agronomy. data for a non-model crop plant species will allow for gene identification and comparisons between various species. The data has been sequenced using the Ilumina Hiseq 2500 sequencing platform. Data analysis is underway. In essence, this researc will eventually evaluate the potential use of Marama bean as a crop species to improve its value in agronomy.Keywords: 101 African orphan crops, RNA-Seq, Tylosema esculentum, underutilised crop plants
Procedia PDF Downloads 3607615 Adaptive Nonparametric Approach for Guaranteed Real-Time Detection of Targeted Signals in Multichannel Monitoring Systems
Authors: Andrey V. Timofeev
Abstract:
An adaptive nonparametric method is proposed for stable real-time detection of seismoacoustic sources in multichannel C-OTDR systems with a significant number of channels. This method guarantees given upper boundaries for probabilities of Type I and Type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this report.Keywords: guaranteed detection, multichannel monitoring systems, change point, interval estimation, adaptive detection
Procedia PDF Downloads 4487614 Stability Analysis of Modelling the Effect of Vaccination and Novel Quarantine-Adjusted Incidence on the Spread of Newcastle Disease
Authors: Nurudeen O. Lasisi, Sirajo Abdulrahman, Abdulkareem A. Ibrahim
Abstract:
Newcastle disease is an infection of domestic poultry and other bird species with the virulent Newcastle disease virus (NDV). In this paper, we study the dynamics of the modeling of the Newcastle disease virus (NDV) using a novel quarantine-adjusted incidence. The comparison of Vaccination, linear incident rate and novel quarantine-adjusted incident rate in the models are discussed. The dynamics of the models yield disease-free and endemic equilibrium states.The effective reproduction numbers of the models are computed in order to measure the relative impact of an individual bird or combined intervention for effective disease control. We showed the local and global stability of endemic equilibrium states of the models and we found that the stability of endemic equilibrium states of models are globally asymptotically stable if the effective reproduction numbers of the models equations are greater than a unit.Keywords: effective reproduction number, Endemic state, Mathematical model, Newcastle disease virus, novel quarantine-adjusted incidence, stability analysis
Procedia PDF Downloads 1227613 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor
Authors: Yash Jain
Abstract:
The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier
Procedia PDF Downloads 1637612 Intrusion Detection Using Dual Artificial Techniques
Authors: Rana I. Abdulghani, Amera I. Melhum
Abstract:
With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.Keywords: IDS, SI, BP, NSL_KDD, PSO
Procedia PDF Downloads 382