Search results for: basic properties of a fundamental particle
13992 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region
Authors: Pratibha, Jyoti Kori
Abstract:
Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor
Procedia PDF Downloads 18513991 Electro-Mechanical Response and Engineering Properties of Piezocomposite with Imperfect Interface
Authors: Rattanan Tippayaphalapholgul, Yasothorn Sapsathiarn
Abstract:
Composites of piezoelectric materials are widely use in practical applications such as nondestructive testing devices, smart adaptive structures and medical devices. A thorough understanding of coupled electro-elastic response and properties of piezocomposite are crucial for the development and design of piezoelectric composite materials used in advanced applications. The micromechanics analysis is employed in this paper to determine the response and engineering properties of the piezocomposite. A mechanical imperfect interface bonding between piezoelectric inclusion and polymer matrix is taken into consideration in the analysis. The micromechanics analysis is based on the Boundary Element Method (BEM) together with the periodic micro-field micromechanics theory. A selected set of numerical results is presented to investigate the influence of volume ratio and interface bonding condition on effective piezocomposite material coefficients and portray basic features of coupled electroelastic response within the domain of piezocomposite unit cell.Keywords: effective engineering properties, electroelastic response, imperfect interface, piezocomposite
Procedia PDF Downloads 23113990 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation
Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo
Abstract:
Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.Keywords: particle size, RESS, solid oil particle, supercritical carbon dioxide,
Procedia PDF Downloads 33513989 A Middle Way Approach for the Conflicts between Death, Impermanence and Non-Self in Buddhist Philosophy
Authors: Ruotian Wang
Abstract:
Since the birth of the Buddha himself more than 2000 years ago, Buddhism has continued to lead many people’s lives. Scholars and Buddhists have contributed to give detailed explanations to all kinds of issues within the structure of Buddhist philosophy to make Buddhism more complete. Different schools have developed, therefore leading to a lot of different branches within Buddhism. Although they all follow what the Buddha himself taught, they still have various explanations to even fundamental issues. As one of the fundamental problems regarding our lives, death is widely discussed in Buddhism. The controversy regarding death is its seemly incompatibility with the idea of non-self and impermanence, which is what I will discuss in this essay. The idea of rebirth is the basic structure of birth and death, which suggests a connection between this life and the next. Therefore, according to common logic, we should tell that there is something that connects each life, an agent that receives the process of rebirth, which is normally known as a soul. In Buddhism, non-self is also an important concept which speaks to the illusion of a self or soul. The idea of rebirth and non-self seems contradicted. Many different schools of Buddhism attempt to resolve such conflicts, but there are logical flaws within the arguments they made. Thus, I raise a better solution: Different from the annihilationist view, non-self in Buddhism speaks only to the illusion of a self in each moment. There is a self that exists as a sum of all our karmas which we can achieve after Nirvana. However, the nature of such a self is still emptiness. There are no agents needed as one rebirth since the whole cycle of rebirth is the self. Then, the contradiction between rebirth and non-self can be resolved.Keywords: Buddhism, impermanence, non-self, reincarnation
Procedia PDF Downloads 12313988 Relational Effect of Parent Interest, Basic School Attended, Gender, and Scare of Basic School Mathematics Teacher on Student Interest in Mathematics
Authors: Yarhands Dissou Arthur, Samuel Asiedu Addo, Jonathan Annan
Abstract:
Interest in subject specific is very essential in the quest to ensure effective teaching and learning. In building interest in subject specific areas requires certain factors and strategies well-spelled out.The factors such as the gender of the student, the type of basic school attended, the parent interest as well as the scare of the basic school mathematics teacher is very important to consider. The relational effect and the contribution these above mentioned variables on student have not been fully investigated and this paper address the effect of these factors on the student interest. In the attainment of this goal, the current paper addresses the effect of parent interest, the type of basic school attended, the scare by basic school mathematics teacher and its effect on student’s interest in mathematics. A cross sectional data collected from two hundred and sixty post-secondary school student were analyzed using descriptive and inferential statistical methods by aid of SPSS version 16. The study found that parent interest and value for mathematics significantly influenced students interest and joy in solving mathematical problems. Moreover, we also observed that the fear imposed by basic school mathematics teachers was found to significantly influence students’ interest. The study further found that the type of basic school attended and gender are factors that do not influence students’ interest in mathematics. In addition to concluding that a student’s interest is influenced by both parent interest and the fear of basic school mathematics teacher, the study also showed that the type of basic school attended and gender does not affect the students’ interest in mathematics.Keywords: gender, mathematics interest, teacher interest, teacher interest, student interest
Procedia PDF Downloads 36713987 Berry Phase and Quantum Skyrmions: A Loop Tour in Physics
Authors: Sinuhé Perea Puente
Abstract:
In several physics systems the whole can be obtained as an exact copy of each of its parts, which facilitates the study of a complex system by looking carefully at its elements, separately. Reducionism offers simplified models which makes the problems easier, but “there’s plenty of room...at the mesoscopic scale”. Here we present a tour for two of its representants: Berry phase and skyrmions, studying some of its basic definitions and properties, and two cases in which both arise together, to finish constraining the scale for our mesoscopic system in the quest of quantum skyrmions, discovering which properties are conserved and which others may be destroyed.Keywords: condensed mattter, quantum physics, skyrmions, topological defects
Procedia PDF Downloads 14513986 Synthesis of Flower-Like Silver Nanoarchitectures in Special Shapes and Their Applications in Surface-Enhanced Raman Scattering
Authors: Radka Králová, Libor Kvítek, Václav Ranc, Aleš Panáček, Radek Zbořil
Abstract:
Surface–Enhanced Raman Scattering (SERS) is an optical spectroscopic technique with very good potential for sensitive detection of substances. In this research, active substrates with high enhancement were provided. Novel silver particles (nanostructures) with high roughened, flower–like morphology were prepared by reduction of cation complex [Ag(NH3)2]+ in presence of sodium borohydride as reducing agent and stabilized polyacrylic acid. The products were characterized by UV/VIS absorption spectrophotometry. Special shapes of silver particles were determined by scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM). Dispersions of this particle were put on fixed substrate to producing suitable layer for SERS. Adenine was applied as basic substance whose effect of enhancement on the layer of silver nanostructures was studied. By comparison with our work, the important influence of stabilizers, polyacrylic acid with various molecular weight and concentration, on the transfer of particles and formation of new structure was confirmed.Keywords: metals, nanostructures, chemical reduction, Raman spectroscopy, optical properties
Procedia PDF Downloads 37113985 CFD-DEM Modelling of Liquid Fluidizations of Ellipsoidal Particles
Authors: Esmaeil Abbaszadeh Molaei, Zongyan Zhou, Aibing Yu
Abstract:
The applications of liquid fluidizations have been increased in many parts of industries such as particle classification, backwashing of granular filters, crystal growth, leaching and washing, and bioreactors due to high-efficient liquid–solid contact, favorable mass and heat transfer, high operation flexibilities, and reduced back mixing of phases. In most of these multiphase operations the particles properties, i.e. size, density, and shape, may change during the process because of attrition, coalescence or chemical reactions. Previous studies, either experimentally or numerically, mainly have focused on studies of liquid-solid fluidized beds containing spherical particles; however, the role of particle shape on the hydrodynamics of liquid fluidized beds is still not well-known. A three-dimensional Discrete Element Model (DEM) and Computational Fluid Dynamics (CFD) are coupled to study the influence of particles shape on particles and liquid flow patterns in liquid-solid fluidized beds. In the simulations, ellipsoid particles are used to study the shape factor since they can represent a wide range of particles shape from oblate and sphere to prolate shape particles. Different particle shapes from oblate (disk shape) to elongated particles (rod shape) are selected to investigate the effect of aspect ratio on different flow characteristics such as general particles and liquid flow pattern, pressure drop, and particles orientation. First, the model is verified based on experimental observations, then further detail analyses are made. It was found that spherical particles showed a uniform particle distribution in the bed, which resulted in uniform pressure drop along the bed height. However for particles with aspect ratios less than one (disk-shape), some particles were carried into the freeboard region, and the interface between the bed and freeboard was not easy to be determined. A few particle also intended to leave the bed. On the other hand, prolate particles showed different behaviour in the bed. They caused unstable interface and some flow channeling was observed for low liquid velocities. Because of the non-uniform particles flow pattern for particles with aspect ratios lower (oblate) and more (prolate) than one, the pressure drop distribution in the bed was not observed as uniform as what was found for spherical particles.Keywords: CFD, DEM, ellipsoid, fluidization, multiphase flow, non-spherical, simulation
Procedia PDF Downloads 31013984 Particle Size Analysis of Itagunmodi Southwestern Nigeria Alluvial Gold Ore Sample by Gaudin Schumann Method
Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke
Abstract:
Mining of alluvial gold ore by artisanal miners has been going on for decades at Itagunmodi, Southwestern Nigeria. In order to optimize the traditional panning gravity separation method commonly used in the area, a mineral particle size analysis study is critical. This study analyzed alluvial gold ore samples collected at identified five different locations in the area with a view to determine the ore particle size distributions. 500g measured of as-received alluvial gold ore sample was introduced into the uppermost sieve of an electrical sieve shaker consisting of sieves arranged in the order of decreasing nominal apertures of 5600μm, 3350μm, 2800μm, 355μm, 250μm, 125μm and 90μm, and operated for 20 minutes. The amount of material retained on each sieve was measured and tabulated for analysis. A screen analysis graph using the Gaudin Schuman method was drawn for each of the screen tests on the alluvial samples. The study showed that the percentages of fine particle size -125+90 μm fraction were 45.00%, 36.00%, 39.60%, 43.00% and 36.80% for the selected samples. These primary ore characteristic results provide reference data for the alluvial gold ore processing method selection, process performance measurement and optimization.Keywords: alluvial gold ore, sieve shaker, particle size, Gaudin Schumann
Procedia PDF Downloads 6313983 Removal of Basic Dyes from Aqueous Solutions with a Treated Spent Bleaching Earth
Authors: M. Mana, M. S. Ouali, L. C. de Menorval
Abstract:
A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100°C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET, and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the comparative sorption of safranine and methylene blue on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second order kinetic model and the Weber & Morris, intra-particle diffusion model. The pH had no effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A linear relationship was found between the calculated maximum removal capacity and the solid/solution ratio. A comparison between the results obtained with this material and those of the literature highlighted the low cost and the good removal capacity of the treated spent bleaching earth.Keywords: basic dyes, isotherms, sorption, spent bleaching earth
Procedia PDF Downloads 24913982 The Effects of Nanoemulsions Based on Commercial Oils: Sunflower, Canola, Corn, Olive, Soybean, and Hazelnut Oils for the Quality of Farmed Sea Bass at 2±2°C
Authors: Yesim Ozogul, Mustafa Durmuş, Fatih Ozogul, Esmeray Kuley Boğa, Yılmaz Uçar, Hatice Yazgan
Abstract:
The effects of oil-in-water nanoemulsions on the sensory, chemical (total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), peroxide value (PV) and free fatty acids (FFA), and microbiological qualities (total viable count (TVC), total psychrophilic bacteria, and total Enterbactericaea bacteria) of sea bream fillets stored at 2 ± 2°C were investigated. Physical properties of emulsions (viscosity, the particle size of droplet, thermodynamic stability, refractive index and surface tension) were determined. The results showed that the use of nanoemulsion extended the shelf life of fish 2 days when compared with the control. Treatment with nanoemulsions significantly (p<0.05) decreased the values of biochemical parameters during storage period. Bacterial growth was inhibited by the use of nanoemulsions. Based on the results, it can be concluded that nanoemulsions based on commercial oils extended the shelf life and improved the quality of sea bass fillets during storage period.Keywords: lipid oxidation, nanoemulsion, sea bass, quality parameters
Procedia PDF Downloads 47913981 Analysis of Basic Science Curriculum as Correlates of Secondary School Students' Achievement in Science Test in Oyo State
Authors: Olubiyi Johnson Ezekiel
Abstract:
Basic science curriculum is an on-going effort towards developing the potential of manner to produce individuals in a holistic and integrated person, who are intellectually, spiritually, emotionally and physically balanced and harmonious. The main focus of this study is to determine the relationship between students’ achievement in junior school certificate examination (JSCE) and senior school basic science achievement test (SSBSAT) on the basis of all the components of basic science. The study employed the descriptive research of the survey type and utilized junior school certificate examination and senior school basic science achievement test(r = .87) scores as instruments. The data collected were subjected to Pearson product moment correlation, Spearman rank correlation, regression analysis and analysis of variance. The result of the finding revealed that the mean effects of the achievement in all the components of basic science on SSBSAT are significantly different from zero. Based on the results of the findings, it was concluded that the relationship between students’ achievement in JSCE and SSBSAT was weak and to achieve a unit increase in the students’ achievement in the SSBSAT when other subjects are held constant, we have to increase the learning of: -physics by 0.081 units; -chemistry by 0.072 units; -biology by 0.025 units and general knowledge by 0.097 units. It was recommended among others, that general knowledge aspect of basic science should be included in either physics or chemistry aspect of basic science.Keywords: basic science curriculum, students’ achievement, science test, secondary school students
Procedia PDF Downloads 45013980 The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag
Authors: Jiaxu Huang
Abstract:
The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%.Keywords: crushing atmosphere, cooling methods, sieving particle size, TiC
Procedia PDF Downloads 13513979 There Is Nothing "BASIC" about Numeracy in Higher Education-a Case Study from an Accounting Programme
Authors: Shoba Rathilal
Abstract:
Numeracy, like Literacy is considered to be a core value of modern societies. Most higher education institutions in South Africa include being numerate as an important graduate attribute. It is argued that a suitability numerate society contributes to social justice, empowerment, financial and environmental sustainability and a lack of numeracy practices can contribute to disempowerment. Numeracy is commonly misconstrued as a basic and simple practice, similar in nature to basic arithmetic. This study highlights the complexities of higher education numeracy practices by analyzing a programme in a higher education institution in South Africa using the New Literacies Studies perspective.Keywords: higher education, new literacy studies, numeracy practices, BASIC
Procedia PDF Downloads 45213978 Synthesis and Characterization of Novel Hollow Silica Particle through DODAB Vesicle Templating
Authors: Eun Ju Park, Wendy Rusli, He Tao, Alexander M. Van Herk, Sanggu Kim
Abstract:
Hollow micro-/nano- structured materials have proven to be promising in wide range of applications, such as catalysis, drug delivery and controlled release, biotechnology, and personal and consumer care. Hollow sphere structures can be obtained through various templating approaches; colloid templates, emulsion templates, multi-surfactant templates, and single crystal templates. Vesicles are generally the self-directed assemblies of amphiphilic molecules including cationic, anionic, and cationic surfactants in aqueous solutions. The directed silica capsule formations were performed at the surface of dioctadecyldimethylammoniumbromide(DODAB) bilayer vesicles as soft template. The size of DODAB bilayer vesicles could be tuned by extrusion of a preheated dispersion of DODAB. The synthesized hollow silica particles were characterized by conventional TEM, cryo-TEM and SEM to determine the morphology and structure of particles and dynamic light scattering (DLS) method to measure the particle size and particle size distribution.Keywords: characterization, DODAB, hollow silica particle, synthesis, vesicle
Procedia PDF Downloads 30713977 A Biophysical Study of the Dynamic Properties of Glucagon Granules in α Cells by Imaging-Derived Mean Square Displacement and Single Particle Tracking Approaches
Authors: Samuele Ghignoli, Valentina de Lorenzi, Gianmarco Ferri, Stefano Luin, Francesco Cardarelli
Abstract:
Insulin and glucagon are the two essential hormones for maintaining proper blood glucose homeostasis, which is disrupted in Diabetes. A constantly growing research interest has been focused on the study of the subcellular structures involved in hormone secretion, namely insulin- and glucagon-containing granules, and on the mechanisms regulating their behaviour. Yet, while several successful attempts were reported describing the dynamic properties of insulin granules, little is known about their counterparts in α cells, the glucagon-containing granules. To fill this gap, we used αTC1 clone 9 cells as a model of α cells and ZIGIR as a fluorescent Zinc chelator for granule labelling. We started by using spatiotemporal fluorescence correlation spectroscopy in the form of imaging-derived mean square displacement (iMSD) analysis. This afforded quantitative information on the average dynamical and structural properties of glucagon granules having insulin granules as a benchmark. Interestingly, the iMSD sensitivity to average granule size allowed us to confirm that glucagon granules are smaller than insulin ones (~1.4 folds, further validated by STORM imaging). To investigate possible heterogeneities in granule dynamic properties, we moved from correlation spectroscopy to single particle tracking (SPT). We developed a MATLAB script to localize and track single granules with high spatial resolution. This enabled us to classify the glucagon granules, based on their dynamic properties, as ‘blocked’ (i.e., trajectories corresponding to immobile granules), ‘confined/diffusive’ (i.e., trajectories corresponding to slowly moving granules in a defined region of the cell), or ‘drifted’ (i.e., trajectories corresponding to fast-moving granules). In cell-culturing control conditions, results show this average distribution: 32.9 ± 9.3% blocked, 59.6 ± 9.3% conf/diff, and 7.4 ± 3.2% drifted. This benchmarking provided us with a foundation for investigating selected experimental conditions of interest, such as the glucagon-granule relationship with the cytoskeleton. For instance, if Nocodazole (10 μM) is used for microtubule depolymerization, the percentage of drifted motion collapses to 3.5 ± 1.7% while immobile granules increase to 56.0 ± 10.7% (remaining 40.4 ± 10.2% of conf/diff). This result confirms the clear link between glucagon-granule motion and cytoskeleton structures, a first step towards understanding the intracellular behaviour of this subcellular compartment. The information collected might now serve to support future investigations on glucagon granules in physiology and disease. Acknowledgment: This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 866127, project CAPTUR3D).Keywords: glucagon granules, single particle tracking, correlation spectroscopy, ZIGIR
Procedia PDF Downloads 10913976 The Use of Waste Fibers as Reinforcement in Biopolymer Green Composites
Authors: Dalila Hammiche, Lisa Klaai, Amar Boukerrou
Abstract:
Following this trend, natural fiber reinforcements have been gaining importance in the composites sector. The effectiveness of natural fiber–reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. In this study, we investigated the physicochemical, particle size and distribution, and thermal behavior of prickly pear seed flour (PPSF). Then, composites were manufactured with 20% in PPSF. Thermal, morphological, and mechanical properties have been studied, and water absorption tests as well. The characterization of this fiber has shown that cellulose is the majority constituent (30%), followed by hemicellulose (27%). To improve the fiber-matrix adhesion, the PPS was chemically treated with alkali treatment. The addition of PPSF decreases the thermal properties, and the study of the mechanical properties showed that the increase in the fiber content from 0 to 20% increased Young’s modulus. According to the results, the mechanical and thermal behaviors of composites are improved after fiber treatment. However, there is an increase in water absorption of composites compared to the PLA matrix. The moisture sensitivity of natural fiber composites limits their use in structural applications. Degradation of the fiber-matrix interface is likely to occur when the material is subjected to variable moisture conditions.Keywords: biopolymer, composites, alcali treatment, mechanical properties
Procedia PDF Downloads 12713975 Nanoparticle Emission Characteristics during Methane Pyrolysis in a Laminar Premixed Flame
Authors: Mohammad Javad Afroughi, Farjad Falahati, Larry W. Kostiuk, Jason S. Olfert
Abstract:
This study investigates the physical characteristics of nanoparticles generated during pyrolysis of methane in hot products of a premixed propane-air flame. An inverted burner is designed to provide a laminar premixed propane-air flame (35 SLPM) then introduce methane co-flow to be pyrolyzed within a closed cylindrical chamber (20 cm in diameter and 68 cm in length). The formed products are discharged through an exhaust with a sampling branch to measure emission characteristics. Carbon particles are sampled with a preheated nitrogen dilution system, and the size distribution of particles formed by pyrolysis is measured by a scanning mobility particle sizer (SMPS). Dilution ratio is calculated using simultaneously measured CO2 concentrations in the exhaust products and diluted samples. Results show that particle size distribution (PSD) is strongly affected by dilution ratio and preheating temperature. PSD becomes unstable at high dilution ratios (typically above 700 times) and/or low preheating temperatures (below 40° C). At a suitable dilution ratio of 55 and preheating temperature up to 70° C, the median diameter of PSD increases from 20 to 220 nm following the introduction of 0.5 SLPM of methane to the propane-air premixed flame. Furthermore, with pyrolysis of methane, total particle number concentration and estimated total mass concentration of particles in the size range of 14 to 700 nm, increase from 1.12 to 3.90 *107 cm-3 and from 0.11 to 154 µg L-1, respectively.Keywords: laminar premixed flame, methane pyrolysis, nanoparticle physical characteristics, particle mass concentration, particle number concentration, particle size distribution (PSD)
Procedia PDF Downloads 23913974 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers
Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall
Abstract:
Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.Keywords: active matter, colloids, ferromagnetic, annealing
Procedia PDF Downloads 11013973 Producing Graphical User Interface from Activity Diagrams
Authors: Ebitisam K. Elberkawi, Mohamed M. Elammari
Abstract:
Graphical User Interface (GUI) is essential to programming, as is any other characteristic or feature, due to the fact that GUI components provide the fundamental interaction between the user and the program. Thus, we must give more interest to GUI during building and development of systems. Also, we must give a greater attention to the user who is the basic corner in the dealing with the GUI. This paper introduces an approach for designing GUI from one of the models of business workflows which describe the workflow behavior of a system, specifically through activity diagrams (AD).Keywords: activity diagram, graphical user interface, GUI components, program
Procedia PDF Downloads 46413972 Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects
Authors: Jiangwan Xu, Chunyu Ding
Abstract:
Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions.Keywords: ground-based radar, lunar exploration, radar imaging, lunar surface/subsurface detection
Procedia PDF Downloads 3013971 Preliminary Geotechnical Properties of Uncemented Sandstone Kati Formation
Authors: Nursyafiqah Abdul Kahar, Niraku Rosmawati Ahmad, Hisham Mohamad, Siti Nuruljannah Mohd Marzuki
Abstract:
Assessment of geotechnical properties of the subsoil is necessary for generating relevant input for the design and construction of a foundation. It is significant for the future development in the area. The focus of this research is to investigate the preliminary geotechnical properties of the uncemented sandstone from Kati formation at Puncak Iskandar, Seri Iskandar. A series of basic soil tests, oedometer and direct shear box tests were carried out to obtain the soil parameters. The uncemented sandstone of Kati Formation was found to have well-graded and poorly graded sand distribution, depending on the location where the samples were obtained. The sand grains distribution was in a range of 82%-100% while, the specific gravity of the uncemented sandstone is in the range 2.65-2.86. The preconsolidation pressure for USB3 was 990 kPa indicating that the sandstone at USB3 sample had undergone 990 kPa of overburden pressure. The angle of friction for uncemented sandstone was ranging between 23.34°-32.92°.Keywords: geotechnical properties, Kati formation, uncemented sandstone, oedometer test; shear box test
Procedia PDF Downloads 15513970 Microwave Dielectric Constant Measurements of Titanium Dioxide Using Five Mixture Equations
Authors: Jyh Sheen, Yong-Lin Wang
Abstract:
This research dedicates to find a different measurement procedure of microwave dielectric properties of ceramic materials with high dielectric constants. For the composite of ceramic dispersed in the polymer matrix, the dielectric constants of the composites with different concentrations can be obtained by various mixture equations. The other development of mixture rule is to calculate the permittivity of ceramic from measurements on composite. To do this, the analysis method and theoretical accuracy on six basic mixture laws derived from three basic particle shapes of ceramic fillers have been reported for dielectric constants of ceramic less than 40 at microwave frequency. Similar researches have been done for other well-known mixture rules. They have shown that both the physical curve matching with experimental results and low potential theory error are important to promote the calculation accuracy. Recently, a modified of mixture equation for high dielectric constant ceramics at microwave frequency has also been presented for strontium titanate (SrTiO3) which was selected from five more well known mixing rules and has shown a good accuracy for high dielectric constant measurements. However, it is still not clear the accuracy of this modified equation for other high dielectric constant materials. Therefore, the five more well known mixing rules are selected again to understand their application to other high dielectric constant ceramics. The other high dielectric constant ceramic, TiO2 with dielectric constant 100, was then chosen for this research. Their theoretical error equations are derived. In addition to the theoretical research, experimental measurements are always required. Titanium dioxide is an interesting ceramic for microwave applications. In this research, its powder is adopted as the filler material and polyethylene powder is like the matrix material. The dielectric constants of those ceramic-polyethylene composites with various compositions were measured at 10 GHz. The theoretical curves of the five published mixture equations are shown together with the measured results to understand the curve matching condition of each rule. Finally, based on the experimental observation and theoretical analysis, one of the five rules was selected and modified to a new powder mixture equation. This modified rule has show very good curve matching with the measurement data and low theoretical error. We can then calculate the dielectric constant of pure filler medium (titanium dioxide) by those mixing equations from the measured dielectric constants of composites. The accuracy on the estimating dielectric constant of pure ceramic by various mixture rules will be compared. This modified mixture rule has also shown good measurement accuracy on the dielectric constant of titanium dioxide ceramic. This study can be applied to the microwave dielectric properties measurements of other high dielectric constant ceramic materials in the future.Keywords: microwave measurement, dielectric constant, mixture rules, composites
Procedia PDF Downloads 36713969 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model
Authors: Tory Erickson
Abstract:
The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics
Procedia PDF Downloads 8713968 Estimation of Subgrade Resilient Modulus from Soil Index Properties
Authors: Magdi M. E. Zumrawi, Mohamed Awad
Abstract:
Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.Keywords: Consistency factor, resilient modulus, subgrade soil, properties
Procedia PDF Downloads 19313967 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion
Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao
Abstract:
Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.Keywords: erosion, prediction, elbow, computational fluid dynamics
Procedia PDF Downloads 15713966 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure
Authors: Anika Zafiah M. Rus, S. Shafizah
Abstract:
This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood
Procedia PDF Downloads 46513965 Structural, Optical, And Ferroelectric Properties Of BaTiO3 Sintered At Different Temperatures
Authors: Anurag Gaur, Neha Sharma
Abstract:
In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600-1000 0C) and studied their structural, optical and ferroelectric properties through X-Ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-Ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal structure of BaTiO3 along with some minor impurities of BaCO3. The optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 1000 0 C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 60 nm for the samples sintered at 600 to 1000 0C, respectively. Moreover, it has been observed that the ferroelectricity reduces as we increase the sintering temperature.Keywords: nanostructures, ferroelectricity, sol-gel method, diffractogram
Procedia PDF Downloads 42713964 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations
Authors: Meziane Belkacem
Abstract:
We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.Keywords: Physics, optics, nonlinear dynamics, chaos
Procedia PDF Downloads 15713963 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus
Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li
Abstract:
To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.Keywords: CDPF, diesel, natural gas, real-world emissions
Procedia PDF Downloads 297