Search results for: absolute recoil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 583

Search results for: absolute recoil

313 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan

Authors: Adil Balla Elkrail

Abstract:

Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.

Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction

Procedia PDF Downloads 240
312 The Fuzzy Logic Modeling of Performance Driver Seat’s Localised Cooling and Heating in Standard Car Air Conditioning System

Authors: Ali Ates, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of the driver seat‘s localized cooling and heating in a standard car air conditioning system was experimentally investigated and modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Climate function at automobile is an important variable for thermal comfort. In the experimental study localized heating and cooling performances have been examined with the aid of a mechanism established to a vehicle. The equipment’s used in the experimental setup/mechanism have been provided and assembled. During the measurement, the status of the performance level has been determined. Input parameters revolutions per minute and time; output parameters car seat cooling temperature, car back cooling temperature, car seat heating temperature, car back heating temperature were described by RBMTF if-the rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF could be successfully used in standard car air conditioning system.

Keywords: air conditioning system, cooling-heating, RMBTF modelling, car seat

Procedia PDF Downloads 351
311 Meat Yield and Proximate Composition Relations of Seabream (Sparus aurata) and Seabass (Dicentrarchus labrax) in Different Sizes

Authors: Mehmet Celik, Celal Erbas, Mehtap Baykal, Aygül Kucukgulmez, Mahmut Ali Gokce, Bilge Kaan Tekelioglu

Abstract:

In this study, determination of differences in fresh meat yield and proximate compositions of different weight groups of sea bream and sea bass grown in cages in Izmir region of the Aegean Sea were aimed. For this purpose, the length and weight of five different weight groups of sea bass (I: 175.8±5.2, II: 227.3±10.2, III: 293.3±21.3, IV: 404±9.9, V: 508.7±46 g) and sea bream (I: 146.6±13.6, II: 239.8±21.7, III: 279.2±20.8, IV: 400.9±10.5, V: 546.8±0.8 g) were measured and the amount of edible and non-edible parts were determined. Besides this, protein, lipid, dry matter, ash, condition factor, HSI and VSI values were compared according to different weight groups for each species. According to the results of analysis, while the absolute meat yields of sea bream was between 69-294 g, it was between 71-252 g for the sea bass and the highest meat yields were found in fifth (V) weight groups of fish for both species. The relative meat yield (%) was determined in weight group II for sea bass and in the IV. group in sea bream with 51.9%. However, the amount of muscle tissue lipids in I. and V. weight groups of sea bream ranged between 3.6 to 11.9 % and ranged between 6.2 to 9.0 % for sea bass respectively. Protein, fillet and ash content increased in direct proportion to the weight. As a result, it can be speculated that when the meat yield and lipid rates were considered, IV. group in sea bream and II. group in sea bass are the most advantageous groups for the consumers. Acknowledgement: This work was supported by the Scientific Research Project Unit of the University of Cukurova, Turkey under grant no FBA-2015-3830.

Keywords: sea bream, sea bass, meat yield, proximate composition, different weight

Procedia PDF Downloads 357
310 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 49
309 The Effect of Accounting Quality on Contribution-In-Kind Valuation

Authors: Catherine Heyjung Sonu

Abstract:

This paper examines the effect of accounting quality on the process in which stock price is determined by focusing on contribution-in-kind valuations using Korean setting. In Korea, a number of chaebol firms have transformed into holding company system starting in 2003. With an attempt to gain as much voting right, management sold shares of subsidiaries to purchase shares of the holding company. In so doing, management of these firms received share issues for the contribution in kind that has been made to obtain additional shares of the holding company. The price of these share issues against contribution in kind is allowed to be discounted up to 30%. Using this interesting setting in Korea, this paper examines whether accounting quality affects the extent of the discount applied to the share issues. If the accounting quality of the firm for which the management is receiving share issues is poor, the extent of discount is likely to be high. The extent of discount is likely lower for firms with superior accounting quality. Using 24 cases, we find that, on average, the extent of discount is larger for share issues in which the accounting quality, proxied by the absolute value of discretionary accruals, is poor. This paper provides insight by examining the effect of accounting quality on the stock market. It sheds light on the intersection between finance and accounting research and should be of interest to researchers and practitioners.

Keywords: Accounting quality, Contribution-in-kind, discount, holding company

Procedia PDF Downloads 198
308 Relationship Between Collegiality and the EQ of Leaders

Authors: Prakash Singh

Abstract:

Being a collegial leader would require such a person to promote an organizational passion that identifies and acknowledges the contribution of every employee. Collegiality is about sharing responsibilities and being accountable for one’s actions. Leaders must therefore be equipped with the knowledge, skills, abilities, beliefs, and dispositions that will allow them to succeed in their organizations. These abilities should not only dwell on cognition alone, but also, equally, on the development of their emotional intelligence (EQ). It is therefore a myth that leaders are entrusted with absolute power to manage all the resources of their organizations. Workers feel confident with leaders who are adaptable, flexible and supportive when it comes to shared decision-making and the devolution of power within the organization. Research strongly supports the notion that a leader requires a high level of EQ in addition to IQ (cognitive intelligence) to achieve the goals of the organization. On the other hand, traditional managers require cognitive abilities and technical skills to get the work done by their employees. This does not imply that management is not important in organizations. However, the approach of managers becomes highly critical when the focus is purely task orientated. Enabling or empowering employees, therefore, is an important aspect in establishing emotionally intelligent collaboration, as the willing and satisfied participation of the employees can be the result of leaders’ commitment to establishing a collegial working environment as demonstrated by their behaviours. This paper therefore analyses why it matters for ideal leaders to be imbued with the traits of EQ and collegiality.

Keywords: collegiality, emotional intelligence, empowering employees, traditional managers

Procedia PDF Downloads 351
307 The Relationship Between The Two-spatial World And The Decrease In The Area Of Commercial Properties

Authors: Syedhossein Vakili

Abstract:

According to the opinion of some experts, the world's two-spatialization means the establishment of a new virtual space and placing this new space next to the physical space. This dualization of space has left various effects, one of which is reducing the need for buildings and making the area of business premises economical through the use of virtual space instead of a part of physical space. In such a way that before the virtual space was known, a commercial or educational institution had to block a large part of its capital to acquire physical spaces and buildings in order to provide physical space and places needed for daily activities, but today, Thanks to the addition of the virtual space to the physical space, it has been possible to carry out its activities more widely in a limited environment with a minimum of physical space and drastically reduce costs. In order to understand the impact of virtual space on the reduction of physical space, the researcher used the official reports of the countries regarding the average area mentioned in the permits for the construction of commercial and educational units in the period from 2014 to 2023 and compared the average capital required for the absolute physical period with The period of two-spatialization of the world in the mentioned ten-year period, while using the analytical and comparative method, has proven that virtual space has greatly reduced the amount of investment of business owners to provide the required place for their activities by reducing the need for physical space. And economically, it has made commercial activities more profitable.

Keywords: two spatialization, building area, cyberspace, physical space, virtual place

Procedia PDF Downloads 58
306 Ab Initio Study of Co2ZrGe and Co2NbB Full Heusler Compounds

Authors: A. Abada, S. Hiadsi, T. Ouahrani, B. Amrani, K. Amara

Abstract:

Using the first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT), we have investigated the electronic structure and magnetism of some Co2- based full Heusler alloys, namely Co2ZrGe and Co2NbB. The calculations show that these compounds are to be half-metallic ferromagnets (HMFs) with a total magnetic moment of 2.000 µB per formula unit, well consistent with the Slater-Pauling rule. Our calculations show indirect band gaps of 0.58 eV and 0.47 eV in the minority spin channel of density of states (DOS) for Co2ZrGe and Co2NbB, respectively. Analysis of the DOS and magnetic moments indicates that their magnetism is mainly related to the d-d hybridization between the Co and Zr (or Nb) atoms. The half metallicity is found to be robust against volume changes and the two alloys kept a 100% of spin polarization at the Fermi level. In addition, an atom inside molecule AIM formalism and an electron localization function ELF were also adopted to study the bonding properties of these compounds, building a bridge between their electronic and bonding behavior. As they have a good crystallographic compatibility with the lattice of semiconductors used industrially and negative calculated cohesive energies with considerable absolute values these two alloys could be promising magnetic materials in the spintronics field.

Keywords: half-metallic ferromagnets, full Heusler alloys, magnetic properties, electronic properties

Procedia PDF Downloads 412
305 Maximizing Bidirectional Green Waves for Major Road Axes

Authors: Christian Liebchen

Abstract:

Both from an environmental perspective and with respect to road traffic flow quality, planning so-called green waves along major road axes is a well-established target for traffic engineers. For one-way road axes (e.g. the Avenues in Manhattan), this is a trivial downstream task. For bidirectional arterials, the well-known necessary condition for establishing a green wave in both directions is that the driving times between two subsequent crossings must be an integer multiple of half of the cycle time of the signal programs at the nodes. In this paper, we propose an integer linear optimization model to establish fixed-time green waves in both directions that are as long and as wide as possible, even in the situation where the driving time condition is not fulfilled. In particular, we are considering an arterial along whose nodes separate left-turn signal groups are realized. In our computational results, we show that scheduling left-turn phases before or after the straight phases can reduce waiting times along the arterial. Moreover, we show that there is always a solution with green waves in both directions that are as long and as wide as possible, where absolute priority is put on just one direction. Compared to optimizing both directions together, establishing an ideal green wave into one direction can only provide suboptimal quality when considering prioritized parts of a green band (e.g., first few seconds).

Keywords: traffic light coordination, synchronization, phase sequencing, green waves, integer programming

Procedia PDF Downloads 114
304 Synthesis and Characterization of Hydroxyapatite from Biowaste for Potential Medical Application

Authors: M. D. H. Beg, John O. Akindoyo, Suriati Ghazali, Nitthiyah Jeyaratnam

Abstract:

Over the period of time, several approaches have been undertaken to mitigate the challenges associated with bone regeneration. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. The former three techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Synthetic routes remain the only feasible alternative option for treatment of bone defects. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are either expensive, complicated or environmentally unfriendly. Interestingly, extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment friendly. In this research, HA was synthesized from bio-waste: namely bovine bones through three different methods which are hydrothermal chemical processes, ultrasound assisted synthesis and ordinary calcination techniques. Structure and property analysis of the HA was carried out through different characterization techniques such as TGA, FTIR, and XRD. All the methods applied were able to produce HA with similar compositional properties to biomaterials found in human calcified tissues. Calcination process was however observed to be more efficient as it eliminated all the organic components from the produced HA. The HA synthesized is unique for its minimal cost and environmental friendliness. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: hydroxyapatite, bone, calcination, biowaste

Procedia PDF Downloads 247
303 Developing an ANN Model to Predict Anthropometric Dimensions Based on Real Anthropometric Database

Authors: Waleed A. Basuliman, Khalid S. AlSaleh, Mohamed Z. Ramadan

Abstract:

Applying the anthropometric dimensions is considered one of the important factors when designing any human-machine system. In this study, the estimation of anthropometric dimensions has been improved by developing artificial neural network that aims to predict the anthropometric measurements of the male in Saudi Arabia. A total of 1427 Saudi males from age 6 to 60 participated in measuring twenty anthropometric dimensions. These anthropometric measurements are important for designing the majority of work and life applications in Saudi Arabia. The data were collected during 8 months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining fifteen dimensions were set to be the measured variables (outcomes). The hidden layers have been varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was significantly able to predict the body dimensions for the population of Saudi Arabia. The network mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found 0.0348 and 3.225 respectively. The accuracy of the developed neural network was evaluated by compare the predicted outcomes with a multiple regression model. The ANN model performed better and resulted excellent correlation coefficients between the predicted and actual dimensions.

Keywords: artificial neural network, anthropometric measurements, backpropagation, real anthropometric database

Procedia PDF Downloads 574
302 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 70
301 Teaching Basic Life Support in More Than 1000 Young School Children in 5th Grade

Authors: H. Booke, R. Nordmeier

Abstract:

Sudden cardiac arrest is sometimes eye-witnessed by kids. Mostly, their (grand-)parents are affected by sudden cardiac arrest, putting these kids under enormous psychological pressure: Although they are more than desperate to help, they feel insecure and helpless and are afraid of causing harm rather than realizing their chance to help. Even years later, they may blame themselves for not having helped their beloved ones. However, the absolute majority of school children - at least in Germany - is not educated to provide first aid. Teaching young kids (5th grade) in basic life support thus may help to save lives while washing away the kids' fear from causing harm during cardio-pulmonary resuscitation. A teaching of circulatory and respiratory (patho-)physiology, followed by hands-on training of basic life support for every single child, was offered to each school in our district. The teaching was performed by anesthesiologists, and the program was called 'kids can save lives'. However, before enrollment in this program, the entire class must have had lessons in biology with a special focus on heart and circulation as well as lung and gas exchange. More than 1.000 kids were taught and trained in basic life support, giving them the knowledge and skills to provide basic life support. This may help to reduce the rate of failure to provide first aid. Therefore, educating young kids in basic life support may not only help to save lives, but it also may help to prevent any feelings of guilt because of not having helped in cases of eye-witnessed sudden cardiac arrest.

Keywords: teaching, children, basic life support, cardiac arrest, CPR

Procedia PDF Downloads 133
300 An Approach for Detection Efficiency Determination of High Purity Germanium Detector Using Cesium-137

Authors: Abdulsalam M. Alhawsawi

Abstract:

Estimation of a radiation detector's efficiency plays a significant role in calculating the activity of radioactive samples. Detector efficiency is measured using sources that emit a variety of energies from low to high-energy photons along the energy spectrum. Some photon energies are hard to find in lab settings either because check sources are hard to obtain or the sources have short half-lives. This work aims to develop a method to determine the efficiency of a High Purity Germanium Detector (HPGe) based on the 662 keV gamma ray photon emitted from Cs-137. Cesium-137 is readily available in most labs with radiation detection and health physics applications and has a long half-life of ~30 years. Several photon efficiencies were calculated using the MCNP5 simulation code. The simulated efficiency of the 662 keV photon was used as a base to calculate other photon efficiencies in a point source and a Marinelli Beaker form. In the Marinelli Beaker filled with water case, the efficiency of the 59 keV low energy photons from Am-241 was estimated with a 9% error compared to the MCNP5 simulated efficiency. The 1.17 and 1.33 MeV high energy photons emitted by Co-60 had errors of 4% and 5%, respectively. The estimated errors are considered acceptable in calculating the activity of unknown samples as they fall within the 95% confidence level.

Keywords: MCNP5, MonteCarlo simulations, efficiency calculation, absolute efficiency, activity estimation, Cs-137

Procedia PDF Downloads 115
299 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 487
298 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed

Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy

Abstract:

Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.

Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control

Procedia PDF Downloads 266
297 Introduction of Integrated Image Deep Learning Solution and How It Brought Laboratorial Level Heart Rate and Blood Oxygen Results to Everyone

Authors: Zhuang Hou, Xiaolei Cao

Abstract:

The general public and medical professionals recognized the importance of accurately measuring and storing blood oxygen levels and heart rate during the COVID-19 pandemic. The demand for accurate contactless devices was motivated by the need for cross-infection reduction and the shortage of conventional oximeters, partially due to the global supply chain issue. This paper evaluated a contactless mini program HealthyPai’s heart rate (HR) and oxygen saturation (SpO2) measurements compared with other wearable devices. In the HR study of 185 samples (81 in the laboratory environment, 104 in the real-life environment), the mean absolute error (MAE) ± standard deviation was 1.4827 ± 1.7452 in the lab, 6.9231 ± 5.6426 in the real-life setting. In the SpO2 study of 24 samples, the MAE ± standard deviation of the measurement was 1.0375 ± 0.7745. Our results validated that HealthyPai utilizing the Integrated Image Deep Learning Solution (IIDLS) framework, can accurately measure HR and SpO2, providing the test quality at least comparable to other FDA-approved wearable devices in the market and surpassing the consumer-grade and research-grade wearable standards.

Keywords: remote photoplethysmography, heart rate, oxygen saturation, contactless measurement, mini program

Procedia PDF Downloads 133
296 The Effect of Critical Audit Matters on Financial Information Quality: The Role of Audit Committee Expertise

Authors: Khawla Hlel

Abstract:

Purpose: This study aims to examine whether critical audit matters (CAM) affect financial information quality. We also investigate the moderating role of the audit committee on the association between CAM and financial information quality. Design/Methodology/Approach: The analysis is based on GLS and GMM regressions explaining the absolute value of discretionary accruals by using 52 Tunisian listed firms on the Tunisia Stock Exchange (TSE) for the period 2017-2020. Findings: We find evidence that managers react to the CAM by increasing the quality of financial disclosures. This study provides insights into how a change in the auditor’s report model might impact the quality of financial information. It suggests that external auditors and audit committees serve as a beneficial mechanism for enhancing financial information quality by reducing information asymmetry. In addition, our results indicate that CAM is an efficient monitoring mechanism that increases financial reporting quality and supervises managers. Originality: This study is important for potential investors who should assess CAM when evaluating firms. Furthermore, the authors expect the findings to be interesting to firms, as this study highlights the effectiveness of the auditor in reducing managerial opportunistic behavior and improving information quality. The results could encourage audit regulators to ameliorate the standards, as this research reinforces the role of the auditor in increasing the quality of financial disclosure by offering the required information for shareholders.

Keywords: critical audit matters, audit committee, information quality, Tunisian firms

Procedia PDF Downloads 83
295 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate

Authors: A. Majeed, P. Ali

Abstract:

Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.

Keywords: artificial neural network, load estimation, regional survey, rural electrification

Procedia PDF Downloads 123
294 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals

Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady

Abstract:

Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.

Keywords: core stability, isokinetic, trunk proprioception, biomechanics

Procedia PDF Downloads 474
293 Fuzzy Logic Modeling of Evaluation the Urban Skylines by the Entropy Approach

Authors: Murat Oral, Seda Bostancı, Sadık Ata, Kevser Dincer

Abstract:

When evaluating the aesthetics of cities, an analysis of the urban form development depending on design properties with a variety of factors is performed together with a study of the effects of this appearance on human beings. Different methods are used while making an aesthetical evaluation related to a city. Entropy, in its preliminary meaning, is the mathematical representation of thermodynamic results. Measuring the entropy is related to the distribution of positional figures of a message or information from the probabilities standpoint. In this study, analysis of evaluation the urban skylines by the entropy approach was modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between application data and RBMTF is done by using absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of evaluation the urban skylines by the entropy approach. As a result, RBMTF model has shown satisfying relation with experimental results, which suggests an alternative method to evaluation of the urban skylines by the entropy approach.

Keywords: urban skylines, entropy, rule-based Mamdani type, fuzzy logic

Procedia PDF Downloads 289
292 NOx Prediction by Quasi-Dimensional Combustion Model of Hydrogen Enriched Compressed Natural Gas Engine

Authors: Anas Rao, Hao Duan, Fanhua Ma

Abstract:

The dependency on the fossil fuels can be minimized by using the hydrogen enriched compressed natural gas (HCNG) in the transportation vehicles. However, the NOx emissions of HCNG engines are significantly higher, and this turned to be its major drawback. Therefore, the study of NOx emission of HCNG engines is a very important area of research. In this context, the experiments have been performed at the different hydrogen percentage, ignition timing, air-fuel ratio, manifold-absolute pressure, load and engine speed. Afterwards, the simulation has been accomplished by the quasi-dimensional combustion model of HCNG engine. In order to investigate the NOx emission, the NO mechanism has been coupled to the quasi-dimensional combustion model of HCNG engine. The three NOx mechanism: the thermal NOx, prompt NOx and N2O mechanism have been used to predict NOx emission. For the validation purpose, NO curve has been transformed into NO packets based on the temperature difference of 100 K for the lean-burn and 60 K for stoichiometric condition. While, the width of the packet has been taken as the ratio of crank duration of the packet to the total burnt duration. The combustion chamber of the engine has been divided into three zones, with the zone equal to the product of summation of NO packets and space. In order to check the accuracy of the model, the percentage error of NOx emission has been evaluated, and it lies in the range of ±6% and ±10% for the lean-burn and stoichiometric conditions respectively. Finally, the percentage contribution of each NO formation has been evaluated.

Keywords: quasi-dimensional combustion , thermal NO, prompt NO, NO packet

Procedia PDF Downloads 251
291 Jejunostomy and Protective Ileostomy in a Patient with Massive Necrotizing Enterocolitis: A Case Report

Authors: Rafael Ricieri, Rogerio Barros

Abstract:

Objective: This study is to report a case of massive necrotizing enterocolitis in a six-month-old patient, requiring ileostomy and protective jejunostomy as a damage control measure in the first exploratory laparotomy surgery in massive enterocolitis without a previous diagnosis. Methods: This study is a case report of success in making and closing a protective jejunostomy. However, the low number of publications on this staged and risky measure of surgical resolution encouraged the team to study the indication and especially the correct time for closing the patient's protective jejunostomy. The main study instrument will be the six-month-old patient's medical record. Results: Based on the observation of the case described, it was observed that the time for the closure of the described procedure (protective jejunostomy) varies according to the level of compromise of the health status of your patient and of an individual of each person. Early closure, or failure to close, can lead to a favorable problem for the patient since several problems can result from this closure, such as new intestinal perforations, hydroelectrolyte disturbances. Despite the risk of new perforations, we suggest closing the protective jejunostomy around the 14th day of the procedure, thus keeping the patient on broad-spectrum antibiotic therapy and absolute fasting, thus reducing the chances of new intestinal perforations. Associated with the closure of the jejunostomy, a gastric tube for decompression is necessary, and care in an intensive care unit and electrolyte replacement is necessary to maintain the stability of the case.

Keywords: jejunostomy, ileostomy, enterocolitis, pediatric surgery, gastric surgery

Procedia PDF Downloads 84
290 Characterization on Molecular Weight of Polyamic Acids Using GPC Coupled with Multiple Detectors

Authors: Mei Hong, Wei Liu, Xuemin Dai, Yanxiong Pan, Xiangling Ji

Abstract:

Polyamic acid (PAA) is the precursor of polyimide (PI) prepared by a two-step method, its molecular weight and molecular weight distribution not only play an important role during the preparation and processing, but also influence the final performance of PI. However, precise characterization on molecular weight of PAA is still a challenge because of the existence of very complicated interactions in the solution system, including the electrostatic interaction, hydrogen bond interaction, dipole-dipole interaction, etc. Thus, it is necessary to establisha suitable strategy which can completely suppress these complex effects and get reasonable data on molecular weight. Herein, the gel permeation chromatography (GPC) coupled with differential refractive index (RI) and multi-angle laser light scattering (MALLS) detectors were applied to measure the molecular weight of (6FDA-DMB) PAA using different mobile phases, LiBr/DMF, LiBr/H3PO4/THF/DMF, LiBr/HAc/THF/DMF, and LiBr/HAc/DMF, respectively. It was found that combination of LiBr with HAc can shield the above-mentioned complex interactions and is more conducive to the separation of PAA than only addition of LiBr in DMF. LiBr/HAc/DMF was employed for the first time as a mild mobile phase to effectively separate PAA and determine its molecular weight. After a series of conditional experiments, 0.02M LiBr/0.2M HAc/DMF was fixed as an optimized mobile phase to measure the relative and absolute molecular weights of (6FDA-DMB) PAA prepared, and the obtained Mw from GPC-MALLS and GPC-RI were 35,300 g/mol and 125,000 g/mol, respectively. Particularly, such a mobile phase is also applicable to other PAA samples with different structures, and the final results on molecular weight are also reproducible.

Keywords: Polyamic acids, Polyelectrolyte effects, Gel permeation chromatography, Mobile phase, Molecular weight

Procedia PDF Downloads 53
289 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning

Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker

Abstract:

Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.

Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning

Procedia PDF Downloads 148
288 An Attempt to Explore Occupational Stressors among West Bengal Police Officials

Authors: Malini Nandi Majumdar, Avijan Dutta

Abstract:

The West Police (WBP) is restructured under provisions of the Police Act 1861 during the period of British domination. It is one of the two police forces of the Indian state of west Bengal and is headed by an officer designated as Director General of Police (DG) who directly reports to the State Government. It covers a jurisdiction with eighteen revenue districts of the state and a District Superintendent of Police (SP) controls each district. The purpose of this empirical study is to explore the causes and factors of occupational stress in West Bengal Police officers so that the incumbents can perform their assigned tasks more diligently and the society could be free from evils and devils at a large. Using a self-developed close ended questionnaire that covers 20 critical job-related stressors, the study captures 310 respondents across the organizational hierarchy ranging from Sub Inspectors to the Superintendant of police and covers 5 districts and one commision rate under the jurisdiction of West Bengal Police. The present research has successfully indicated four major occupational stressors such as Organizational Stressors, Hierarchical Stressors, Situational Stressors and Environmental Stressors with 64% of the variance. Further we have employed CFA to determine the goodness of fit indices in terms of i) Absolute Fit Measures like CMIN, FMIN, RMSEA, ECVI ii) Incremental Fit Measures like TLI, NFI, AGFI, CFI(Byne, 2010) demonstrate that value of the measure has passed the requirement criteria and thus fit the model. The major stressors of West Bengal Police have been explored and the ways to deal with these inevitable stressors have been suggested.

Keywords: organizational stressors, hierarchical stressors, situational stressors, environmental stressors

Procedia PDF Downloads 398
287 Deniplant Nutraceuticals for Endometriosis Pain

Authors: Gheorghe Giurgiu, Manole Cojocaru, Mihnea Andrei Nicodin

Abstract:

Background: Inflammation has the main role in the progression of endometriosis. The mechanisms by which endometriosis induces a chronic pain state remain poorly understood. Unfortunately, there is no known cure for endometriosis. But you can manage it with medication and at-home treatments. Some findings have highlighted the main role of inflammation in endometriosis by acting on proliferation, apoptosis, and angiogenesis. The introduction of new agents can be effective in improving the condition of patients; for example, plants are promising sources of bioactive natural components. Objectives: These natural compounds could be interesting strategies in therapy. While there is no absolute cure for this condition, some home remedies can relieve the pain and discomfort it brings. The purpose of this study is to summarize the potential action of Deniplant nutraceuticals in endometriosis by acting on inflammation. Materials and Methods: The primary symptoms of endometriosis are pelvic pain and infertility. The use of Deniplant nutraceuticals could be interesting in disease management for women. Results: Treating pain-related aspects of endometriosis would contribute to the improvement of mental health and daytime function. Because the microbiome can influence inflammation, new therapies can develop through its natural modulation. There are other options, including natural remedies, herbs like cinnamon twigs or licorice root, or supplements such as thiamine, magnesium, or omega-3 fatty acids. Conclusion: Deniplant nutraceuticals can downregulate inflammation in endometriosis. Nevertheless, the limited number of studies focusing on the different interactions of Deniplant nutraceuticals in endometriosis restricts its clear and immediate use in a therapeutic strategy.

Keywords: endometriosis, diet, Deniplant nutraceuticals, pain

Procedia PDF Downloads 75
286 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.

Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations

Procedia PDF Downloads 250
285 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project

Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende

Abstract:

Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.

Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport

Procedia PDF Downloads 20
284 Statistical Time-Series and Neural Architecture of Malaria Patients Records in Lagos, Nigeria

Authors: Akinbo Razak Yinka, Adesanya Kehinde Kazeem, Oladokun Oluwagbenga Peter

Abstract:

Time series data are sequences of observations collected over a period of time. Such data can be used to predict health outcomes, such as disease progression, mortality, hospitalization, etc. The Statistical approach is based on mathematical models that capture the patterns and trends of the data, such as autocorrelation, seasonality, and noise, while Neural methods are based on artificial neural networks, which are computational models that mimic the structure and function of biological neurons. This paper compared both parametric and non-parametric time series models of patients treated for malaria in Maternal and Child Health Centres in Lagos State, Nigeria. The forecast methods considered linear regression, Integrated Moving Average, ARIMA and SARIMA Modeling for the parametric approach, while Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) Network were used for the non-parametric model. The performance of each method is evaluated using the Mean Absolute Error (MAE), R-squared (R2) and Root Mean Square Error (RMSE) as criteria to determine the accuracy of each model. The study revealed that the best performance in terms of error was found in MLP, followed by the LSTM and ARIMA models. In addition, the Bootstrap Aggregating technique was used to make robust forecasts when there are uncertainties in the data.

Keywords: ARIMA, bootstrap aggregation, MLP, LSTM, SARIMA, time-series analysis

Procedia PDF Downloads 74