Search results for: Square wave anodic stripping voltammetry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3301

Search results for: Square wave anodic stripping voltammetry

3031 Mathematical Analysis of Variation in Inlet Shock Wave Angle on Specific Impulse of Scramjet Engine

Authors: Shrikant Ghadage

Abstract:

Study of shock waves generated in the Scramjet engine is typically restricted to pressure, temperature, density, entropy and Mach number variation across the shock wave. The present work discusses the impact of inlet shock wave angles on the specific impulse of the Scramjet engine. A mathematical analysis has done for the isentropic hypersonic flow of air flowing through a Scramjet with hydrogen fuel at an altitude of 30 km. Analysis has been done in order to get optimum shock wave angle to achieve maximum impulse. Since external drag has excluded from the analysis, the losses due to friction are not considered for the present analysis. When Mach number of the airflow at the entry of the nozzle reaches unity, then that flow is choked. This condition puts limitations on increasing the inlet shock wave angle. As inlet shock wave angle increases, speed of the flow entering into the nozzle decreases, which results in an increase in the specific impulse of the engine. When the speed of the flow at the entry of the nozzle reduces below sonic speed, then there is no further increase in the specific impulse of the engine. Here the Conclusion is the thrust and specific impulse of a scramjet engine, which increases gradually with an increase in inlet shock wave angle up to the condition when airflow speed reaches sonic velocity at the exit of the combustor. In addition to that, variation in drag force at the inlet of the scramjet and variation in hypersonic flow conditions at every stage of the scramjet also studied in order to understand variation on flow characteristics with respect to flow deflection angle. Essentially, it helps in designing inlet profile for the Scramjet engine to achieve optimum specific impulse.

Keywords: hypersonic flow, scramjet, shock waves, specific impulse, mathematical analysis

Procedia PDF Downloads 170
3030 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads

Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian

Abstract:

Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.

Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction

Procedia PDF Downloads 50
3029 Application of Carbon Nanotubes as Cathodic Corrosion Protection of Steel Reinforcement

Authors: M. F. Perez, Ysmael Verde, B. Escobar, R. Barbosa, J. C. Cruz

Abstract:

Reinforced concrete is one of the most important materials in the construction industry. However, in recent years the durability of concrete structures has been a worrying problem, mainly due to corrosion of reinforcing steel; the consequences of corrosion in all cases lead to shortening of the life of the structure and decrease in quality of service. Since the emergence of this problem, they have implemented different methods or techniques to reduce damage by corrosion of reinforcing steel in concrete structures; as the use of polymeric materials as coatings for the steel rod, spiked inhibitors of concrete during mixing, among others, presenting different limitations in the application of these methods. Because of this, it has been used a method that has proved effective, cathodic protection. That is why due to the properties attributed to carbon nanotubes (CNT), these could act as cathodic corrosion protection. Mounting a three-electrode electrochemical cell, carbon steel as working electrode, saturated calomel electrode (SCE) as the reference electrode, and a graphite rod as a counter electrode to close the system is performed. Samples made were subjected to a cycling process in order to compare the results in the corrosion performance of a coating composed of CNT and the others based on an anticorrosive commercial painting. The samples were tested at room temperature using an electrolyte consisting NaCl and NaOH simulating the typical pH of concrete, ranging from 12.6 to 13.9. Three test samples were made of steel rod, white, with commercial anticorrosive paint and CNT based coating; delimiting the work area to a section of 0.71 cm2. Tests cyclic voltammetry and linear voltammetry electrochemical spectroscopy each impedance of the three samples were made with a window of potential vs SCE 0.7 -1.7 a scan rate of 50 mV / s and 100 mV / s. The impedance values were obtained by applying a sine wave of amplitude 50 mV in a frequency range of 100 kHz to 100 MHz. The results obtained in this study show that the CNT based coating applied to the steel rod considerably decreased the corrosion rate compared to the commercial coating of anticorrosive paint, because the Ecorr was passed increase as the cycling process. The samples tested in all three cases were observed by light microscopy throughout the cycling process and micrographic analysis was performed using scanning electron microscopy (SEM). Results from electrochemical measurements show that the application of the coating containing carbon nanotubes on the surface of the steel rod greatly increases the corrosion resistance, compared to commercial anticorrosive coating.

Keywords: anticorrosive, carbon nanotubes, corrosion, steel

Procedia PDF Downloads 479
3028 Rapid Detection of Melamine in Milk Products Based on Modified Gold Electrode

Authors: Rovina Kobun, Shafiquzzaman Siddiquee

Abstract:

A novel and simple electrochemical sensor for the determination of melamine was developed based on modified gold electrode (AuE) with chitosan (CHIT) nanocomposite membrane, zinc oxide nanoparticles (ZnONPs) and ionic liquids ([EMIM][Otf]) to enhance the potential current response of melamine. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviour between melamine and modified AuE in the presence of methylene blue as a redox indicator. The experimental results indicated that the interaction of melamine with CHIT/ZnONPs/([EMIM][Otf])/AuE were based on the strong interaction of hydrogen bonds. The morphological characterization of modified AuE was observed under scanning electron microscope. Under optimal conditions, the current signal was directly proportional to the melamine concentration ranging from 9.6 x 10-5 to 9.6 x 10-11 M, with a correlation coefficient of 0.9656. The detection limit was 9.6 x 10-12 M. Finally, the proposed method was successfully applied and displayed an excellent sensitivity in the determination of melamine in milk samples.

Keywords: melamine, gold electrode, zinc oxide nanoparticles, cyclic voltammetries, differential pulse voltammetries

Procedia PDF Downloads 419
3027 A Study of Standing-Wave Thermoacoustic Refrigerator

Authors: Patcharin Saechan, Isares Dhuchakallaya

Abstract:

Thermoacoustic refrigerator is a cooling device which uses the acoustic waves to produce the cooling effect. The aim of this paper is to explore the experimental and numerical feasibility of a standing-wave thermoacoustic refrigerator. The effects of the stack length, position of stack and operating frequency on the cooling performance are carried out. The circular pore stacks are tested under the atmospheric pressure. A low-cost loudspeaker is used as an acoustic driver. The results show that the location of stack installed in resonator tube has a greater effect on the cooling performance than the stack length and operating frequency, respectively. The temperature difference across the ends of the stack can be generated up to 13.7°C, and the temperature of cold-end is dropped down by 5.3°C from the ambient temperature.

Keywords: cooling performance, refrigerator, standing-wave, thermoacoustics

Procedia PDF Downloads 197
3026 Classification Earthquake Distribution in the Banda Sea Collision Zone with Point Process Approach

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Banda Sea collision zone (BSCZ) of is the result of the interaction and convergence of Indo-Australian plate, Eurasian plate and Pacific plate. This location in the eastern part of Indonesia. This zone has a very high seismic activity. In this research, we will be calculated rate (λ) and Mean Square Eror (MSE). By this result, we will identification of Poisson distribution of earthquakes in the BSCZ with the point process approach. Chi-square test approach and test Anscombe made in the process of identifying a Poisson distribution in the partition area. The data used are earthquakes with Magnitude ≥ 6 SR and its period 1964-2013 and sourced from BMKG Jakarta. This research is expected to contribute to the Moluccas Province and surrounding local governments in performing spatial plan document related to disaster management.

Keywords: molluca banda sea collision zone, earthquakes, mean square error, poisson distribution, chi-square test, anscombe test

Procedia PDF Downloads 301
3025 The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey

Authors: Mahmud Gungor, Ali Aydin, Erdal Akyol, Suat Tasdelen

Abstract:

The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate one-dimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities.

Keywords: seismic data, Gokpinar Damp, urban planning, Denizli

Procedia PDF Downloads 288
3024 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan

Authors: Yu-Wen Huang, Yi-Cheng Chiang

Abstract:

With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.

Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)

Procedia PDF Downloads 311
3023 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System

Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya

Abstract:

The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.

Keywords: earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector

Procedia PDF Downloads 177
3022 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems

Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo

Abstract:

Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.

Keywords: electrodeposition, kinetics diagrams, modeling, voltammetry

Procedia PDF Downloads 143
3021 Characterization of Self-Assembly Behavior of 1-Dodecylamine Molecules on Au (111) Surface

Authors: Wan-Tzu Yen, Yu-Chen Luo, I-Ping Liu, Po-Hsuan Yeh, Sheng-Hsun Fu, Yuh-Lang Lee

Abstract:

Self-assembled characteristics and adsorption performance of 1-dodecylamine molecules on gold (Au) (111) surfaces were characterized via cyclic voltammetry (CV), surface-enhanced infrared absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM). The present study focused on the formation of 1-dodecylamine (DDA) on a gold surface with respect to the ex-situ arrangement of an adlayer on the Au(111) surface, and phase transition at potential dynamics carried out by EC-STM. This study reveals that alkyl amine molecules were formed an adsorption pattern with highly regular “lie down shape” on Au(111) surface, even in an extreme acid system (pH = 1). Acidic electrolyte (HClO₄) could protonate the surface of alkyl amine of a monolayer of the gold surface when potential shifts to negative. The quite stability of 1-dodecylamine on the gold surface maintained the monolayer across the potential window (0.1-0.8V). This transform model was confirmed by EC-STM. In addition, amine-modified Au(111) electrode adlayer used to examine how to affect an electron transfer across an interface using [Fe(CN)₆]³⁻/[Fe(CN)₆]⁴⁻ redox pair containing 0.1 M HClO₄ solution.

Keywords: cyclic voltammetry, dodecylamine, gold (Au)(111), scanning tunneling microscopy, self-assembled monolayer, surface-enhanced infrared absorption spectroscopy

Procedia PDF Downloads 198
3020 Wave Propagation In Functionally Graded Lattice Structures Under Impact Loads

Authors: Mahmood Heshmati, Farhang Daneshmand

Abstract:

Material scientists and engineers have introduced novel materials with complex geometries due to the recent technological advances and promotion of manufacturing methods. Among them, lattice structures with graded architectures denoted by functionally graded porous materials (FGPMs) have been developed to optimize the structural response. FGPMs are achieved by tailoring the size and density of the internal pores in one or more directions that lead to the desired mechanical properties and structural responses. Also, FGPMs provide more flexible transition and the possibility of designing and fabricating structural elements with complex and variable properties. In this paper, wave propagation in lattice structures with functionally graded (FG) porosity is investigated in order to examine the ability of shock absorbing effect. The behavior of FG porous beams with different porosity distributions under impact load and the effects of porosity distribution and porosity content on the wave speed are studied. Important conclusions are made, along with a discussion of the future scope of studies on FGPMs structures.

Keywords: functionally graded, porous materials, wave propagation, impact load, finite element

Procedia PDF Downloads 93
3019 Time-Domain Simulations of the Coupled Dynamics of Surface Riding Wave Energy Converter

Authors: Chungkuk Jin, Moo-Hyun Kim, HeonYong Kang

Abstract:

A surface riding (SR) wave energy converter (WEC) is designed and its feasibility and performance are numerically simulated by the author-developed floater-mooring-magnet-electromagnetics fully-coupled dynamic analysis computer program. The biggest advantage of the SR-WEC is that the performance is equally effective even in low sea states and its structural robustness is greatly improved by simply riding along the wave surface compared to other existing WECs. By the numerical simulations and actuator testing, it is clearly demonstrated that the concept works and through the optimization process, its efficiency can be improved.

Keywords: computer simulation, electromagnetics fully-coupled dynamics, floater-mooring-magnet, optimization, performance evaluation, surface riding, WEC

Procedia PDF Downloads 145
3018 Impairments Correction of Six-Port Based Millimeter-Wave Radar

Authors: Dan Ohev Zion, Alon Cohen

Abstract:

In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.

Keywords: radar, FMCW Radar, IQ mismatch, six port

Procedia PDF Downloads 152
3017 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring

Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist

Abstract:

Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.

Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect

Procedia PDF Downloads 205
3016 Influence of Corrugation and Loosely Bonded Interface on the Propagation of Torsional Wave Propagation in a Viscoelastic Layer

Authors: Amrita Das, Abhishek Kumar Singh

Abstract:

The present paper calibrates the efficacy of corrugated and loosely bonded common interface of a viscoelastic layer and a dry sandy Gibson half-space on the propagation of torsional surface wave. Using suitable boundary conditions, the dispersion relation for the concerned problem is deduced in complex form. Numerical computation of the real part of the obtained dispersion relation gives the dispersion curve whereas the imaginary part bestows the damping curves. The use of Whittaker’s function and Bessel’s functions are among the major concerns of the paper. The investigation of the influence of the affecting parameters viz. heterogeneities, sandiness, Biot’s gravity parameter, initial stresses, loosely bonded interface, corrugation and internal friction on the phase velocity as well as damped velocity of torsional wave, through numerical discussion and graphical illustration, is among the major highlights of the current study.

Keywords: corrugation, dry sandy Gibson half-space, loosely bonded interface, torsional wave, viscoelastic layer

Procedia PDF Downloads 326
3015 Roll Forming Process and Die Design for a Large Size Square Tube

Authors: Jinn-Jong Sheu, Cang-Fu Liang, Cheng-Hsien Yu

Abstract:

This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making.

Keywords: cold roll forming, FEM analysis, roll forming die design, tube roll forming

Procedia PDF Downloads 312
3014 Kinetic Alfvén Wave Localization and Turbulent Spectrum

Authors: Anju Kumari, R. P. Sharma

Abstract:

The localization of Kinetic Alfvén Wave (KAW) caused by finite amplitude background density fluctuations has been studied in intermediate beta plasma. KAW breaks up into localized large amplitude structures when perturbed by MHD fluctuations of the medium which are in the form of magnetosonic waves. Numerical simulation has been performed to analyse the localized structures and resulting turbulent spectrum of KAW applicable to magnetopause. Simulation results reveal that power spectrum deviates from Kolmogorov scaling at the transverse size of KAW, equal to ion gyroradius. Steepening of power spectrum at shorter wavelengths may be accountable for heating and acceleration of the plasma particles. The obtained results are compared with observations collected from the THEMIS spacecraft in magnetopause.

Keywords: Kinetic Alfvén Wave (KAW), localization, turbulence, turbulent spectrum

Procedia PDF Downloads 494
3013 Simultaneous Measurement of Wave Pressure and Wind Speed with the Specific Instrument and the Unit of Measurement Description

Authors: Branimir Jurun, Elza Jurun

Abstract:

The focus of this paper is the description of an instrument called 'Quattuor 45' and defining of wave pressure measurement. Special attention is given to measurement of wave pressure created by the wind speed increasing obtained with the instrument 'Quattuor 45' in the investigated area. The study begins with respect to theoretical attitudes and numerous up to date investigations related to the waves approaching the coast. The detailed schematic view of the instrument is enriched with pictures from ground plan and side view. Horizontal stability of the instrument is achieved by mooring which relies on two concrete blocks. Vertical wave peak monitoring is ensured by one float above the instrument. The synthesis of horizontal stability and vertical wave peak monitoring allows to create a representative database for wave pressure measuring. Instrument ‘Quattuor 45' is named according to the way the database is received. Namely, the electronic part of the instrument consists of the main chip ‘Arduino', its memory, four load cells with the appropriate modules and the wind speed sensor 'Anemometers'. The 'Arduino' chip is programmed to store two data from each load cell and two data from the anemometer on SD card each second. The next part of the research is dedicated to data processing. All measured results are stored automatically in the database and after that detailed processing is carried out in the MS Excel. The result of the wave pressure measurement is synthesized by the unit of measurement kN/m². This paper also suggests a graphical presentation of the results by multi-line graph. The wave pressure is presented on the left vertical axis, while the wind speed is shown on the right vertical axis. The time of measurement is displayed on the horizontal axis. The paper proposes an algorithm for wind speed measurements showing the results for two characteristic winds in the Adriatic Sea, called 'Bura' and 'Jugo'. The first of them is the northern wind that reaches high speeds, causing low and extremely steep waves, where the pressure of the wave is relatively weak. On the other hand, the southern wind 'Jugo' has a lower speed than the northern wind, but due to its constant duration and constant speed maintenance, it causes extremely long and high waves that cause extremely high wave pressure.

Keywords: instrument, measuring unit, waves pressure metering, wind seed measurement

Procedia PDF Downloads 198
3012 Plastic Pipe Defect Detection Using Nonlinear Acoustic Modulation

Authors: Gigih Priyandoko, Mohd Fairusham Ghazali, Tan Siew Fun

Abstract:

This paper discusses about the defect detection of plastic pipe by using nonlinear acoustic wave modulation method. It is a sensitive method for damage detection and it is based on the propagation of high frequency acoustic waves in plastic pipe with low frequency excitation. The plastic pipe is excited simultaneously with a slow amplitude modulated vibration pumping wave and a constant amplitude probing wave. The frequency of both the excitation signals coincides with the resonances of the plastic pipe. A PVP pipe is used as the specimen as it is commonly used for the conveyance of liquid in many fields. The results obtained are being observed and the difference between uncracked specimen and cracked specimen can be distinguished clearly.

Keywords: plastic pipe, defect detection, nonlinear acoustic modulation, excitation

Procedia PDF Downloads 451
3011 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: bifurcation theory, phase portrait, magnetized electron-positron plasma, the Zakharov-Kuznetsov equation

Procedia PDF Downloads 245
3010 Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder with an Angle of Incidence

Authors: Rafik Bouakkaz

Abstract:

A finite-volume method simulation is used to investigate two dimensional unsteady flow of nanofluids and heat transfer characteristics past a square cylinder inclined with respect to the main flow in the laminar regime. The computations are carried out of nanoparticle volume fractions varying from 0 ≤ ∅ ≤ 5% for an inclination angle in the range 0° ≤ δ ≤ 45° at a Reynolds number of 100. The variation of stream line and isotherm patterns are presented for the above range of conditions. Also, it is noticed that the addition of nanoparticles enhances the heat transfer. Hence, the local Nusselt number is found to increase with increasing value of the concentration of nanoparticles for the fixed value of the inclination angle.

Keywords: copper nanoparticles, heat transfer, square cylinder, inclination angle

Procedia PDF Downloads 191
3009 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries

Authors: Rupan Das Chakraborty, Surendra K. Martha

Abstract:

Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).

Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance

Procedia PDF Downloads 118
3008 Storms Dynamics in the Black Sea in the Context of the Climate Changes

Authors: Eugen Rusu

Abstract:

The objective of the work proposed is to perform an analysis of the wave conditions in the Black Sea basin. This is especially focused on the spatial and temporal occurrences and on the dynamics of the most extreme storms in the context of the climate changes. A numerical modelling system, based on the spectral phase averaged wave model SWAN, has been implemented and validated against both in situ measurements and remotely sensed data, all along the sea. Moreover, a successive correction method for the assimilation of the satellite data has been associated with the wave modelling system. This is based on the optimal interpolation of the satellite data. Previous studies show that the process of data assimilation improves considerably the reliability of the results provided by the modelling system. This especially concerns the most sensitive cases from the point of view of the accuracy of the wave predictions, as the extreme storm situations are. Following this numerical approach, it has to be highlighted that the results provided by the wave modelling system above described are in general in line with those provided by some similar wave prediction systems implemented in enclosed or semi-enclosed sea basins. Simulations of this wave modelling system with data assimilation have been performed for the 30-year period 1987-2016. Considering this database, the next step was to analyze the intensity and the dynamics of the higher storms encountered in this period. According to the data resulted from the model simulations, the western side of the sea is considerably more energetic than the rest of the basin. In this western region, regular strong storms provide usually significant wave heights greater than 8m. This may lead to maximum wave heights even greater than 15m. Such regular strong storms may occur several times in one year, usually in the wintertime, or in late autumn, and it can be noticed that their frequency becomes higher in the last decade. As regards the case of the most extreme storms, significant wave heights greater than 10m and maximum wave heights close to 20m (and even greater) may occur. Such extreme storms, which in the past were noticed only once in four or five years, are more recent to be faced almost every year in the Black Sea, and this seems to be a consequence of the climate changes. The analysis performed included also the dynamics of the monthly and annual significant wave height maxima as well as the identification of the most probable spatial and temporal occurrences of the extreme storm events. Finally, it can be concluded that the present work provides valuable information related to the characteristics of the storm conditions and on their dynamics in the Black Sea. This environment is currently subjected to high navigation traffic and intense offshore and nearshore activities and the strong storms that systematically occur may produce accidents with very serious consequences.

Keywords: Black Sea, extreme storms, SWAN simulations, waves

Procedia PDF Downloads 250
3007 Ankh Key Broadband Array Antenna for 5G Applications

Authors: Noha M. Rashad, W. Swelam, M. H. Abd ElAzeem

Abstract:

A simple design of array antenna is presented in this paper, supporting millimeter wave applications which can be used in short range wireless communications such as 5G applications. This design enhances the use of V-band, according to IEEE standards, as the antenna works in the 70 GHz band with bandwidth more than 11 GHz and peak gain more than 13 dBi. The design is simulated using different numerical techniques achieving a very good agreement.

Keywords: 5G technology, array antenna, microstrip, millimeter wave

Procedia PDF Downloads 306
3006 Smart Brain Wave Sensor for Paralyzed- a Real Time Implementation

Authors: U.B Mahadevswamy UBM, Siraj Ahmed Siraj

Abstract:

As the title of the paper indicates about brainwaves and its uses for various applications based on their frequencies and different parameters which can be implemented as real time application with the title a smart brain wave sensor system for paralyzed patients. Brain wave sensing is to detect a person's mental status. The purpose of brain wave sensing is to give exact treatment to paralyzed patients. The data or signal is obtained from the brainwaves sensing band. This data are converted as object files using Visual Basics. The processed data is further sent to Arduino which has the human's behavioral aspects like emotions, sensations, feelings, and desires. The proposed device can sense human brainwaves and detect the percentage of paralysis that the person is suffering. The advantage of this paper is to give a real-time smart sensor device for paralyzed patients with paralysis percentage for their exact treatment. Keywords:-Brainwave sensor, BMI, Brain scan, EEG, MCH.

Keywords: Keywords:-Brainwave sensor , BMI, Brain scan, EEG, MCH

Procedia PDF Downloads 156
3005 Hydrodynamic Performance of a Moored Barge in Irregular Wave

Authors: Srinivasan Chandrasekaran, Shihas A. Khader

Abstract:

Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discuss the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in future studies. For the current study, 5000 seconds simulation is taken. The results represent wave-induced motion responses, mooring line tensions and identifies critical mooring lines.

Keywords: irregular wave, moored barge, time domain analysis, numerical simulation

Procedia PDF Downloads 254
3004 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 195
3003 Effect of Electropolymerization Method in the Charge Transfer Properties and Photoactivity of Polyaniline Photoelectrodes

Authors: Alberto Enrique Molina Lozano, María Teresa Cortés Montañez

Abstract:

Polyaniline (PANI) photoelectrodes were electrochemically synthesized through electrodeposition employing three techniques: chronoamperometry (CA), cyclic voltammetry (CV), and potential pulse (PP) methods. The substrate used for electrodeposition was a fluorine-doped tin oxide (FTO) glass with dimensions of 2.5 cm x 1.3 cm. Subsequently, structural and optical characterization was conducted utilizing Fourier-transform infrared (FTIR) spectroscopy and UV-visible (UV-vis) spectroscopy, respectively. The FTIR analysis revealed variations in the molar ratio of benzenoid to quinonoid rings within the PANI polymer matrix, indicative of differing oxidation states arising from the distinct electropolymerization methodologies employed. In the optical characterization, differences in the energy band gap (Eg) values and positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were observed, attributable to variations in doping levels and structural irregularities introduced during the electropolymerization procedures. To assess the charge transfer properties of the PANI photoelectrodes, electrochemical impedance spectroscopy (EIS) experiments were carried out within a 0.1 M sodium sulfate (Na₂SO₄) electrolyte. The results displayed a substantial decrease in charge transfer resistance with the PANI coatings compared to uncoated substrates, with PANI obtained through cyclic voltammetry (CV) presenting the lowest charge transfer resistance, contrasting PANI obtained via chronoamperometry (CA) and potential pulses (PP). Subsequently, the photoactive response of the PANI photoelectrodes was measured through linear sweep voltammetry (LSV) and chronoamperometry. The photoelectrochemical measurements revealed a discernible photoactivity in all PANI-coated electrodes. However, PANI electropolymerized through CV displayed the highest photocurrent. Interestingly, PANI derived from chronoamperometry (CA) exhibited the highest degree of stable photocurrent over an extended temporal interval.

Keywords: PANI, photocurrent, photoresponse, charge separation, recombination

Procedia PDF Downloads 65
3002 Prophet and Philosopher Mohammed: A Precursor of Feminism

Authors: Mohammad Mozammel Haque

Abstract:

That feminism is nothing but the name of a belief that women should have the same rights as men needs no telling. The history of modern western feminism is divided into three waves and each is described as dealing with different aspects of the same feminist issues. The first wave refers to the movement of the 19th through early 20th centuries, which dealt mainly with suffrage, working conditions and educational rights for women. The second wave (1960s-1980s) dealt with the inequality of laws and the role of women in society. The third wave (late 1980s-early 2000s) is seen as both a continuation of the second wave and a response to the perceived failures. Mary Wollstonecraft struggled for the emancipation and freedom of the women of Europe, Begum Rokeya brought about revolution for the women of the East and West Bengal, Jeremy Bentham wrote for the independence of women in England. But if feminism refers to the movement of giving women what they deserve, then it won’t be an overstatement to state that Mohammad is the precursor of what we call feminism. This paper investigates the background of official starting of feminism, and also the backdrop of the women of Muhammad’s time. The article, besides showing that this great prophet and philosopher firstly brought about a movement for the education and rights of women and took them out of grave where they were buried alive, also delineates Mohammedan endeavours he attempted to give the women what they ought to have.

Keywords: education, equality, feminism, precursor

Procedia PDF Downloads 499