Search results for: vibration transmission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2718

Search results for: vibration transmission

2718 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation

Authors: Hugo Sampaio Libero, Max de Castro Magalhaes

Abstract:

The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions are described. An experimental setup is performed to aid this investigation. The experimental tests have shown that the vibration generation in the walls and floors is directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms, respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.

Keywords: vibration transmission, vibration reduction index, impact excitation, experimental tests

Procedia PDF Downloads 93
2717 Study of Effect of Gear Tooth Accuracy on Transmission Mount Vibration

Authors: Kalyan Deepak Kolla, Ketan Paua, Rajkumar Bhagate

Abstract:

Transmission dynamics occupy major role in customer perception of the product in both senses of touch and quality of sound. The quantity and quality of sound perceived is more concerned with the whine noise of the gears engaged. Whine noise is tonal in nature and tonal noises cause fatigue and irritation to customers, which in turn affect the quality of the product. Transmission error is the usual suspect for whine noise, which can be caused due to misalignments, tolerances, manufacturing variabilities. In-cabin noise is also more sensitive to the gear design. As the details of the gear tooth design and manufacturing are in microns, anything out of the tolerance zone, either in design or manufacturing, will cause a whine noise. This will also cause high variation in stress and deformation due to change in the load and leads to the fatigue failure of the gears. Hence gear design and development take priority in the transmission development process. This paper aims to study such variability by considering five pairs of helical spur gears and their effect on the transmission error, contact pattern and vibration level on the transmission.

Keywords: gears, whine noise, manufacturing variability, mount vibration variability

Procedia PDF Downloads 150
2716 Investigation of Multiple Dynamic Vibration Absorbers' Performance in Overhead Transmission Lines

Authors: Pedro F. D. Oliveira, Rangel S. Maia, Aline S. Paula

Abstract:

As the electric energy consumption grows, the necessity of energy transmission lines increases. One of the problems caused by an oscillatory response to dynamical loads (such as wind effects) in transmission lines is the cable fatigue. Thus, the dynamical behavior of transmission cables understanding and its control is extremely important. The socioeconomic damage caused by a failure in these cables can be quite significant, from large economic losses to energy supply interruption in large regions. Dynamic Vibration Absorbers (DVA) are oscillatory elements used to mitigate the vibration of a primary system subjected to harmonic excitation. The positioning of Stockbridge (DVA for overhead transmission lines) plays an important role in mitigating oscillations of transmission lines caused by airflows. Nowadays, the positioning is defined by technical standards or commercial software. The aim of this paper is to conduct an analysis of multiple DVAs performances in cable conductors of overhead transmission lines. The cable is analyzed by a finite element method and the model is calibrated by experimental results. DVAs performance is analyzed by evaluating total cable energy, and a study of multiple DVAs positioning is conducted. The results are compared to the existing regulations showing situations where proper positioning, different from the standard, can lead to better performance of the DVA. Results also show situations where the use of multiple DVAs is appropriate.

Keywords: dynamical vibration absorber, finite element method, overhead transmission lines, structural dynamics

Procedia PDF Downloads 127
2715 Vibration Analysis of Power Lines with Moving Dampers

Authors: Mohammad Bukhari, Oumar Barry

Abstract:

In order to reduce the Aeolian vibration of overhead transmission lines, the Stockbridge damper is usually attached. The efficiency of Stockbridge damper depends on its location on the conductor and its resonant frequencies. When the Stockbridge damper is located on a vibration node, it becomes inefficient. Hence, the static damper should be subrogated by a dynamic one. In the present study, a proposed dynamic absorber for transmission lines is studied. Hamilton’s principle is used to derive the governing equations, then the system of ordinary differential equations is solved numerically. Parametric studies are conducted to determine how certain parameters affect the performance of the absorber. The results demonstrate that replacing the static absorber by a dynamic one enhance the absorber performance for wider range of frequencies. The results also indicate that the maximum displacement decreases as the absorber speed and the forcing frequency increase. However, this reduction in maximum displacement is accompanying with increasing in the steady state vibration displacement. It is also indicated that the energy dissipation in moving absorber covers higher range of frequencies.

Keywords: absorber performance, Aeolian vibration, Hamilton’s principle, stockbridge damper

Procedia PDF Downloads 267
2714 Vertical Vibration Mitigation along Railway Lines

Authors: Jürgen Keil, Frank Walther

Abstract:

This article presents two innovative solutions for vertical vibration mitigation barriers including experimental and numerical investigations on the completed barriers. There is a continuing growth of exposure to noise and vibration in people´s daily lives due to the quest for more mobility and flexibility. In previous times neglected, immissions caused by vibrations can lead, for example, to secondary noise or damage in the adjacent buildings. Also people can feel very affected by vibrations. But unlike in new construction, in existing infrastructure and buildings action can be taken almost only on the transmission path of those vibrations. In the following two solutions were shown how vibrations on the transmission path can be mitigated. These are the jet grouting method and a new installation method (patent pending) by means of a prefabricated hollow box which is filled with vibration reducing mats and driven down to depth, are presented. The essential results of the numerical and experimental investigations on the completed wave barriers are included as well. This article is based on the results of a field test with the participation of Keller Holding, which was executed in the context of the European research project RIVAS (Railway Induced Vibration Abatement Solutions), and on a thesis done at the Technical University of Dresden with the involvement of BAUGRUND DRESDEN Ingenieurgesellschaft mbH and the Keller Holding GmbH.

Keywords: jet grouting, rail way lines, vertical vibration mitigation, vibration reducing mats

Procedia PDF Downloads 402
2713 Early Installation Effect on the Machines’ Generated Vibration

Authors: Maitham Al-Safwani

Abstract:

Motor vibration issues were analyzed by several studies. It is generally accepted that vibration issues result from poor equipment installation. We had a water injection pump tested in the factory and exceeded the pump the vibration limit. Once the pump was brought to the site, its half-size shim plates were replaced with full-size shims plates that drastically reduced the vibration. In this study, vibration data was recorded for several similar motors run at the same and different speeds. The vibration values were recorded -for two and a half hours- and the vibration readings were analyzed to determine when the readings became consistent. This was as well supported by recording the audio noises produced by some machines seeking a relationship between changes in machine noises and machine abnormalities, such as vibration.

Keywords: vibration, noise, installation, machine

Procedia PDF Downloads 183
2712 Investigation for the Mechanism of Lateral-Torsional Coupled Vibration of the Propulsion Shaft in a Ship

Authors: Hyungsuk Han, Soohong Jeon, Chungwon Lee, YongHoon Kim

Abstract:

When a rubber mount and flexible coupling are installed on the main engine, high torsional vibration can occur. The root cause of this high torsional vibration can be attributed to the lateral-torsional coupled vibration of the shaft system. Therefore, the lateral-torsional coupled vibration is investigated numerically after approximating the shaft system to a three-degrees-of-freedom Jeffcott rotor. To verify that the high torsional vibration is caused by the lateral-torsional coupled vibration, a test unit that can simulate this lateral-torsional coupled vibration occurring in the propulsion shaft is developed. Performing a vibration test with the test unit, it can be experimentally verified that the high torsional vibration occurring in the propulsion shaft of the particular ship was caused by the lateral-torsional coupled vibration.

Keywords: Jeffcott rotor, lateral-torsional coupled vibration, propulsion shaft, stability

Procedia PDF Downloads 227
2711 Experimental Study on the Floor Vibration Evaluation of Concrete Slab for Existing Buildings

Authors: Yong-Taeg Lee, Jun-Ho Na, Seung-Hun Kim, Seong-Uk Hong

Abstract:

Damages from noise and vibration are increasing every year, most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the concrete slab measured vibration impact sound for evaluation floor vibration of deteriorated buildings that fails to satisfy with the minimum thickness. In this experimental study, the vibration scale by impact sound was calibrated and compared with ISO and AIJ standard for vibration. The results show that vibration in slab with thickness used in existing building reach human perception levels.

Keywords: vibration, frequency, accelerometer, concrete slab

Procedia PDF Downloads 642
2710 An Analytical Study on the Vibration Reduction Method of Railway Station Using TPU

Authors: Jinho Hur, Minjung Shin, Heekyu Kim

Abstract:

In many places, new railway constructions in the city are being used to build a viaduct station to take advantage of the space below the line, for difficulty of securing railway site and disconnections of areas. The space under the viaduct has limited to use by noise and vibration. In order to use it for various purposes, reducing noise and vibration is required. The vibration reduction method for new structures is recently developed enough to use as accommodation, but the reduction method for existing structures is still far-off. In this study, it suggests vibration reduction method by filling vibration reduction material to column members which is path of structure-bone-noise from trains run. Because most of railroad stations are reinforced concrete structures. It compares vibration reduction of station applied the method and original station by FEM analysis. As a result, reduction of vibration acceleration level in bandwidth 15~30Hz can be reduced. Therefore, using this method for viaduct railroad station, vibration of station is expected to be reduced.

Keywords: structure borne noise, TPU, viaduct rail station, vibration reduction method

Procedia PDF Downloads 543
2709 Development of a Human Vibration Model Considering Muscles and Stiffness of Intervertebral Discs

Authors: Young Nam Jo, Moon Jeong Kang, Hong Hee Yoo

Abstract:

Most human vibration models have been modeled as a multibody system consisting of some rigid bodies and spring-dampers. These models are developed for certain posture and conditions. So, the models cannot be used in vibration analysis in various posture and conditions. The purpose of this study is to develop a human vibration model that represent human vibration characteristics under various conditions by employing a musculoskeletal model. To do this, the human vibration model is developed based on biomechanical models. In addition, muscle models are employed instead of spring-dampers. Activations of muscles are controlled by PD controller to maintain body posture under vertical vibration is applied. Each gain value of the controller is obtained to minimize the difference of apparent mass and acceleration transmissibility between experim ent and analysis by using an optimization method.

Keywords: human vibration analysis, hill type muscle model, PD control, whole-body vibration

Procedia PDF Downloads 448
2708 Tuned Mass Damper Vibration Control of Pedestrian Bridge

Authors: Qinglin Shu

Abstract:

Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe.

Keywords: pedestrian bridges, human-induced vibration, comfort, tuned mass dampers

Procedia PDF Downloads 114
2707 Experimental Study on the Vibration Isolation Performance of Metal-Net Rubber Vibration Absorber

Authors: Su Yi Ming, Hou Ying, Zou Guang Ping

Abstract:

Metal-net rubber is a new dry friction damping material, compared with the traditional metal rubber, which has high mechanization degree, and the mechanical performance of metal-net rubber is more stable. Through the sine sweep experiment and random vibration experiment of metal-net rubber vibration isolator, the influence of several important factors such as the lines slope, relative density and wire diameter on the transfer rate, natural frequency and root-mean-square response acceleration of metal-net rubber vibration isolation system, were studied through the method of control variables. Also, several relevant change curves under different vibration levels were derived, and the effects of vibration level on the natural frequency and root-mean-square response acceleration were analyzed through the curves.

Keywords: metal-net rubber vibration isolator, relative density, vibration level, wire diameter

Procedia PDF Downloads 396
2706 Computer Simulation Studies of Aircraft Wing Architectures on Vibration Responses

Authors: Shengyong Zhang, Mike Mikulich

Abstract:

Vibration is a crucial limiting consideration in the analysis and design of airplane wing structures to avoid disastrous failures due to the propagation of existing cracks in the material. In this paper, we build CAD models of aircraft wings to capture the design intent with configurations. Subsequent FEA vibration analysis is performed to study the natural vibration properties and impulsive responses of the resulting user-defined wing models. This study reveals the variations of the wing’s vibration characteristics with respect to changes in its structural configurations. Integrating CAD modelling and FEA vibration analysis enables designers to improve wing architectures for implementing design requirements in the preliminary design stage.

Keywords: aircraft wing, CAD modelling, FEA, vibration analysis

Procedia PDF Downloads 165
2705 Research on the Torsional Vibration of a Power-Split Hybrid Powertrain Equipped with a Dual Mass Flywheel

Authors: Xiaolin Tang, Wei Yang, Xiaoan Chen

Abstract:

The research described in this paper was aimed at exploring the torsional vibration characteristics of a power-split hybrid powertrain equipped with a dual mass flywheel. The dynamic equations of governing torsional vibration for this hybrid driveline are presented, and the multi-body dynamic model for the powertrain is established with the software of ADAMS. Accordingly, different parameters of dual mass flywheel are investigated by forced vibration to reduce the torsional vibration of hybrid drive train. The analysis shows that the implementation of a dual mass flywheel is an effective way to decrease the torsional vibration of the hybrid powertrain. At last, the optimal combination of parameters yielding the lowest vibration is provided.

Keywords: dual mass flywheel, hybrid electric vehicle, torsional vibration, powertrain, dynamics

Procedia PDF Downloads 409
2704 Influence of Vibration Amplitude on Reaction Time and Drowsiness Level

Authors: Mohd A. Azizan, Mohd Z. Zali

Abstract:

It is well established that exposure to vibration has an adverse effect on human health, comfort, and performance. However, there is little quantitative knowledge on performance combined with drowsiness level during vibration exposure. This paper reports a study investigating the influence of vibration amplitude on seated occupant reaction time and drowsiness level. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment, total transmitted acceleration measured at interfaces between the seat pan and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) for 20-minutes in separate days. For the purpose of drowsiness measurement, volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale (KSS) before vibration, every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However, the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However, no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. It is concluded that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together, these findings suggest a role of vibration in promoting drowsiness, especially at higher vibration amplitude.

Keywords: drowsiness, human vibration, karolinska sleepiness scale, psychomotor vigilance test

Procedia PDF Downloads 282
2703 Piezoelectric based Passive Vibration Control of Composite Turbine Blade using Shunt Circuit

Authors: Kouider Bendine, Zouaoui Satla, Boukhoulda Farouk Benallel, Shun-Qi Zhang

Abstract:

Turbine blades are subjected to a variety of loads, lead to an undesirable vibration. Such vibration can cause serious damages or even lead to a total failure of the blade. The present paper addresses the vibration control of turbine blade. The study aims to propose a passive vibration control using piezoelectric material. the passive control is effectuated by shunting an RL circuit to the piezoelectric patch in a parallel configuration. To this end, a Finite element model for the blade with the piezoelectric patch is implemented in ANSYS APDL. The model is then subjected to a harmonic frequency-based analysis for the case of control on and off. The results show that the proposed methodology was able to reduce blade vibration by 18%.

Keywords: blade, active piezoelectric vibration control, finite element., shunt circuit

Procedia PDF Downloads 102
2702 Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator

Authors: Jinsiang Shaw, Shih-Chieh Tseng

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure.

Keywords: Fuzzy sliding mode controller, macro-fiber-composite actuator, skyhook controller, vibration suppression

Procedia PDF Downloads 403
2701 Vibration Control of a Flexible Structure Using MFC Actuator

Authors: Jinsiang Shaw, Jeng-Jie Huang

Abstract:

Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure.

Keywords: macro-fiber composite, notch filter, skyhook controller, vibration suppression

Procedia PDF Downloads 462
2700 Effects of Long Term Whole Body Vibration Training on Lipid Profile of Young Men

Authors: Farshad Ghazalian, Laleh Hakemi, Lotfali Pourkazemi, Maryam Ameri, Seyed Hossein Alavi

Abstract:

Background: The use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate long term effects of different amplitudes of whole body vibration training with progressive frequencies on lipid profile of young healthy men. Materials and methods: Thirty three healthy male students were divided randomly in three groups: high amplitude vibration group (n=11), low amplitude vibration group (n=11), and control group (n=11). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25 Hz with increments of 5 Hz weekly. Concentrations TG, HDL, LDL, cholesterol, and VLDL before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. P<0.05 was considered statistically significant. Results: The most important result of the present study is finding no favorable changes of 5-week vibration training with different amplitudes on blood lipid profiles. Discussion and conclusions: It was emphasized that in vibration training there should be a relationship between intensity and volume of exercise and lipid responses in order to improve blood lipoprotein profiles.

Keywords: long term, body, vibration training, lipid

Procedia PDF Downloads 419
2699 Design and Development of the Force Plate for the Study of Driving-Point Biodynamic Responses

Authors: Vikas Kumar, V. H. Saran, Arpit Mathur, Avik Kathuria

Abstract:

The evaluation of biodynamic responses of the human body to whole body vibration exposure is necessary to quantify the exposure effects. A force plate model has been designed with the help of CAD software, which was investigated by performing the modal, stress and strain analysis using finite element approach in the software. The results of the modal, stress and strain analysis were under the limits for measurements of biodynamic responses to whole body vibration. The physical model of the force plate was manufactured and fixed to the vibration simulator and further used in the experimentation for the evaluation of apparent mass responses of the ten recruited subjects standing in an erect posture exposed to vertical whole body vibration. The platform was excited with sinusoidal vibration at vibration magnitude: 1.0 and 1.5 m/s2 rms at different frequency of 2, 3, 4, 5, 6, 8, 10, 12.5, 16 and 20 Hz. The results of magnitude of normalised apparent mass have shown the trend observed in the many past studies. The peak in the normalised apparent mass has been observed at 4 & 5 Hz frequency of vertical whole body vibration. The nonlinearity with respect to vibration magnitude has been also observed in the normalised apparent mass responses.

Keywords: whole body vibration, apparent mass, modeling, force plate

Procedia PDF Downloads 416
2698 Effects of Humidity and Silica Sand Particles on Vibration Generation by Friction Materials of Automotive Brake System

Authors: Mostafa M. Makrahy, Nouby M. Ghazaly, G. T. Abd el-Jaber

Abstract:

This paper presents the experimental study of vibration generated by friction materials of an automotive disc brake system using brake test rig. Effects of silica sand particles which are available on the road surface as an environmental condition with a size varied from 150 μm to 600 μm are evaluated. Also, the vibration of the brake disc is examined against the friction material in humidity environment conditions under variable rotational speed. The experimental results showed that the silica sand particles have significant contribution on the value of vibration amplitude which enhances with increasing the size of silica sand particles at different speed conditions. Also, it is noticed that the friction material is sensitive to humidity and the vibration magnitude increases under wet testing conditions. Moreover, it can be reported that with increasing the applied pressure and rotational speed of the braking system, the vibration amplitudes decrease for all cases.

Keywords: disc brake vibration, friction-induced vibration, silica sand particles, brake operational and environmental conditions

Procedia PDF Downloads 151
2697 Vibration-Based Monitoring of Tensioning Stay Cables of an Extradosed Bridge

Authors: Chun-Chung Chen, Bo-Han Lee, Yu-Chi Sung

Abstract:

Monitoring the status of tensioning force of stay cables is a significant issue for the assessment of structural safety of extradosed bridges. Moreover, it is known that there is a high correlation between the existing tension force and the vibration frequencies of cables. This paper presents the characteristic of frequencies of stay cables of a field extradosed bridge by using vibration-based monitoring methods. The vibration frequencies of each stay cables were measured in stages from the beginning to the completion of bridge construction. The result shows that the vibration frequency variation trend of different lengths of cables at each measured stage is different. The observed feature can help the application of the bridge long-term monitoring system and contribute to the assessment of bridge safety.

Keywords: vibration-based method, extradosed bridges, bridge health monitoring, bridge stay cables

Procedia PDF Downloads 147
2696 Study on the Dynamic Characteristics Change of Welded Beam Due to Vibration Aging

Authors: S. H. Bae, D. W. Cho, W. B. Jeong, J. R. Cho

Abstract:

Fatigue fracture of an aluminum welded structure is a phenomenon frequently occurring from pores in a weld. In order to grasp the state of the welded structure in operation in real time, the acceleration signal of the structure is measured. At this time, the vibration characteristic of the signal according to the fatigue load is an important parameter of the state diagnosis. This paper was an experimental study on the variation of vibration characteristics of welded beams with vibration aging (especially bending vibration). First simple beams were produced according to welding conditions. Each beam was vibrated and measured beam's PSD (power spectral density) according to the degree of aging. Also, modal testing was conducted to compare the transfer functions of welded beams. Testing result shows that the natural frequencies of the beam changed with the vibration aging due to the change of stiffness in welding part and its stiffness was estimated by the finite element method.

Keywords: modal testing, natural frequency, vibration aging, welded structure

Procedia PDF Downloads 483
2695 Vibration Signals of Small Vertical Axis Wind Turbines

Authors: Aqoul H. H. Alanezy, Ali M. Abdelsalam, Nouby M. Ghazaly

Abstract:

In recent years, progress has been made in increasing the renewable energy share in the power sector particularly in the wind. The experimental study conducted in this paper aims to investigate the effects of number of blades and inflow wind speed on vibration signals of a vertical axis Savonius type wind turbine. The operation of the model of Savonius type wind turbine is conducted to compare two, three and four blades wind turbines to show vibration amplitudes related with wind speed. It is found that the increase of the number of blades leads to decrease of the vibration magnitude. Furthermore, inflow wind speed has reduced effect on the vibration level for higher number of blades.

Keywords: Savonius type wind turbine, number of blades, renewable energy, vibration signals

Procedia PDF Downloads 155
2694 Adoption of Noise and Vibration Management Tools for Major Infrastructure Projects in Sydney, Australia

Authors: Adrian Morris, Rodney Phillips, Mattia Tabacchi

Abstract:

Minimizing construction noise and vibration impacts is a key challenge for major infrastructure projects in urban environments. Before commencing construction works, Construction Noise and Vibration Management Plan (CNVMP) and Construction Noise and Vibration Impact Statements (CNVIS) are required to be prepared and submitted to the relevant government authorities for review and approval. However, the assessment of potential impacts from work activities at pre-approval stage may be inaccurate as works methodology and scheduling are yet to be determined. In response, noise and vibration management tools have been developed to refine and supplement the CNVIS as works progress. These tools have been successfully implemented in major infrastructure projects allowing contractors to plan and assess construction works in a cost effective and timely manner. As a result, noise and vibration management tools have been incorporated into management plans and are increasingly required by regulators.

Keywords: noise management, environmental noise, infrastructure projects, construction, vibration, cost effective

Procedia PDF Downloads 131
2693 The Effect of Tip Parameters on Vibration Modes of Atomic Force Microscope Cantilever

Authors: Mehdi Shekarzadeh, Pejman Taghipour Birgani

Abstract:

In this paper, the effect of mass and height of tip on the flexural vibration modes of an atomic force microscope (AFM) rectangular cantilever is analyzed. A closed-form expression for the sensitivity of vibration modes is derived using the relationship between the resonant frequency and contact stiffness of cantilever and sample. Each mode has a different sensitivity to variations in surface stiffness. This sensitivity directly controls the image resolution. It is obtained an AFM cantilever is more sensitive when the mass of tip is lower and the first mode is the most sensitive mode. Also, the effect of changes of tip height on the flexural sensitivity is negligible.

Keywords: atomic force microscope, AFM, vibration analysis, flexural vibration, cantilever

Procedia PDF Downloads 385
2692 Application of Fuzzy Approach to the Vibration Fault Diagnosis

Authors: Jalel Khelil

Abstract:

In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification.

Keywords: fault diagnosis, fuzzy classification k-nearest neighbor, vibration

Procedia PDF Downloads 466
2691 Root Cause Analysis of Excessive Vibration in a Feeder Pump of a Large Thermal Electric Power Plant: A Simulation Approach

Authors: Kavindan Balakrishnan

Abstract:

Root cause Identification of the Vibration phenomenon in a feedwater pumping station was the main objective of this research. First, the mode shapes of the pumping structure were investigated using numerical and analytical methods. Then the flow pressure and streamline distribution in the pump sump were examined using C.F.D. simulation, which was hypothesized can be a cause of vibration in the pumping station. As the problem specification of this research states, the vibration phenomenon in the pumping station, with four parallel pumps operating at the same time and heavy vibration recorded even after several maintenance steps. They also specified that a relatively large amplitude of vibration exited by pumps 1 and 4 while others remain normal. As a result, the focus of this research was on determining the cause of such a mode of vibration in the pump station with the assistance of Finite Element Analysis tools and Analytical methods. Major outcomes were observed in structural behavior which is favorable to the vibration pattern phenomenon in the pumping structure as a result of this research. Behaviors of the numerical and analytical models of the pump structure have similar characteristics in their mode shapes, particularly in their 2nd mode shape, which is considerably related to the exact cause of the research problem statement. Since this study reveals several possible points of flow visualization in the pump sump model that can be a favorable cause of vibration in the system, there is more room for improved investigation on flow conditions relating to pump vibrations.

Keywords: vibration, simulation, analysis, Ansys, Matlab, mode shapes, pressure distribution, structure

Procedia PDF Downloads 124
2690 Gearbox Defect Detection in the Semi Autogenous Mills Using the Vibration Analysis Technique

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Semi autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Any defect occurrence in semi autogenous mills can stop the production line. A Gearbox is a significant part of a rotating machine or a mill, so, the gearbox monitoring is a necessary process to prevent the unwanted defects. When a defect happens in a gearbox bearing, this defect can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. Vibration analysis is one of the most effective and common ways to detect the bearing defects in the mills. Vibration signal in a mill can be made by different parts of the mill including electromotor, pinion girth gear, different rolling bearings, and tire. When a vibration signal, made by the aforementioned parts, is added to the gearbox vibration spectrum, an accurate and on time defect detection in the gearbox will be difficult. In this paper, a new method is proposed to detect the gearbox bearing defects in the semi autogenous mill on time and accurately, using the vibration signal analysis method. In this method, if the vibration values are increased in the vibration curve, the probability of defect occurrence is investigated by comparing the equipment vibration values and the standard ones. Then, all vibration frequencies are extracted from the vibration signal and the equipment defect is detected using the vibration spectrum curve. This method is implemented on the semi autogenous mills in the Golgohar mining and industrial company in Iran. The results show that the proposed method can detect the bearing looseness on time and accurately. After defect detection, the bearing is opened before the equipment failure and the predictive maintenance actions are implemented on it.

Keywords: condition monitoring, gearbox defects, predictive maintenance, vibration analysis

Procedia PDF Downloads 465
2689 A Variable Stiffness Approach to Vibration Control

Authors: S. A. Alotaibi, M. A. Al-Ajmi

Abstract:

This work introduces a new concept for controlling the mechanical vibrations via variable stiffness coil spring. The concept relies on fitting a screw though the spring to change the number of active spring coils. A prototype has been built and tested with promising results toward an innovation in the field of vibration control.

Keywords: variable stiffness, coil spring, vibration control, computer science

Procedia PDF Downloads 407