Search results for: minimum rank
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2410

Search results for: minimum rank

2410 Irreducible Sign Patterns of Minimum Rank of 3 and Symmetric Sign Patterns That Allow Diagonalizability

Authors: Sriparna Bandopadhyay

Abstract:

It is known that irreducible sign patterns in general may not allow diagonalizability and in particular irreducible sign patterns with minimum rank greater than or equal to 4. It is also known that every irreducible sign pattern matrix with minimum rank of 2 allow diagonalizability with rank of 2 and the maximum rank of the sign pattern. In general sign patterns with minimum rank of 3 may not allow diagonalizability if the condition of irreducibility is dropped, but the problem of whether every irreducible sign pattern with minimum rank of 3 allows diagonalizability remains open. In this paper it is shown that irreducible sign patterns with minimum rank of 3 under certain conditions on the underlying graph allow diagonalizability. An alternate proof of the results that every sign pattern matrix with minimum rank of 2 and no zero lines allow diagonalizability with rank of 2 and also that every full sign pattern allows diagonalizability with all permissible ranks of the sign pattern is given. Some open problems regarding composite cycles in an irreducible symmetric sign pattern that support of a rank principal certificate are also answered.

Keywords: irreducible sign patterns, minimum rank, symmetric sign patterns, rank -principal certificate, allowing diagonalizability

Procedia PDF Downloads 101
2409 Some Results on the Generalized Higher Rank Numerical Ranges

Authors: Mohsen Zahraei

Abstract:

‎In this paper, ‎the notion of ‎rank-k numerical range of rectangular complex matrix polynomials‎ ‎are introduced. ‎Some algebraic and geometrical properties are investigated. ‎Moreover, ‎for ε>0 the notion of Birkhoff-James approximate orthogonality sets for ε-higher ‎rank numerical ranges of rectangular matrix polynomials is also introduced and studied. ‎The proposed definitions yield a natural generalization of the standard higher rank numerical ranges.

Keywords: ‎‎Rank-k numerical range‎, ‎isometry‎, ‎numerical range‎, ‎rectangular matrix polynomials

Procedia PDF Downloads 463
2408 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve

Authors: Roger L. Goodwin

Abstract:

This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics.

Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve

Procedia PDF Downloads 480
2407 Developing HRCT Criterion to Predict the Risk of Pulmonary Tuberculosis

Authors: Vandna Raghuvanshi, Vikrant Thakur, Anupam Jhobta

Abstract:

Objective: To design HRCT criterion to forecast the threat of pulmonary tuberculosis. Material and methods: This was a prospective study of 69 patients with clinical suspicion of pulmonary tuberculosis. We studied their medical characteristics, numerous separate HRCT-results, and a combination of HRCT findings to foresee the danger for PTB by utilizing univariate and multivariate investigation. Temporary HRCT diagnostic criteria were planned in view of these outcomes to find out the risk of PTB and tested these criteria on our patients. Results: The results of HRCT chest were analyzed, and Rank was given from 1 to 4 according to the HRCT chest findings. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated. Rank 1: Highly suspected PTB. Rank 2: Probable PTB Rank 3: Nonspecific or difficult to differentiate from other diseases Rank 4: Other suspected diseases • Rank 1 (Highly suspected TB) was present in 22 (31.9%) patients, all of them finally diagnosed to have pulmonary tuberculosis. The sensitivity, specificity, and negative likelihood ratio for RANK 1 on HRCT chest was 53.6%, 100%, and 0.43, respectively. • Rank 2 (Probable TB) was present in 13 patients, out of which 12 were tubercular, and 1 was non-tubercular. • The sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of the combination of Rank 1 and Rank 2 was 82.9%, 96.4%, 23.22, and 0.18, respectively. • Rank 3 (Non-specific TB) was present in 25 patients, and out of these, 7 were tubercular, and 18 were non-tubercular. • When all these 3 ranks were considered together, the sensitivity approached 100% however, the specificity reduced to 35.7%. The positive likelihood ratio and negative likelihood ratio were 1.56 and 0, respectively. • Rank 4 (Other specific findings) was given to 9 patients, and all of these were non-tubercular. Conclusion: HRCT is useful in selecting individuals with greater chances of pulmonary tuberculosis.

Keywords: pulmonary, tuberculosis, multivariate, HRCT

Procedia PDF Downloads 175
2406 Robust Variogram Fitting Using Non-Linear Rank-Based Estimators

Authors: Hazem M. Al-Mofleh, John E. Daniels, Joseph W. McKean

Abstract:

In this paper numerous robust fitting procedures are considered in estimating spatial variograms. In spatial statistics, the conventional variogram fitting procedure (non-linear weighted least squares) suffers from the same outlier problem that has plagued this method from its inception. Even a 3-parameter model, like the variogram, can be adversely affected by a single outlier. This paper uses the Hogg-Type adaptive procedures to select an optimal score function for a rank-based estimator for these non-linear models. Numeric examples and simulation studies will demonstrate the robustness, utility, efficiency, and validity of these estimates.

Keywords: asymptotic relative efficiency, non-linear rank-based, rank estimates, variogram

Procedia PDF Downloads 434
2405 Rank of Semigroup: Generating Sets and Cases Revealing Limitations of the Concept of Independence

Authors: Zsolt Lipcsey, Sampson Marshal Imeh

Abstract:

We investigate a certain characterisation for rank of a semigroup by Howie and Ribeiro (1999), to ascertain the relevance of the concept of independence. There are cases where the concept of independence fails to be useful for this purpose. One would expect the basic element to be the maximal independent subset of a given semigroup. However, we construct examples for semigroups where finite basis exist and the basis is larger than the number of independent elements.

Keywords: generating sets, independent set, rank, cyclic semigroup, basis, commutative

Procedia PDF Downloads 192
2404 Trend Detection Using Community Rank and Hawkes Process

Authors: Shashank Bhatnagar, W. Wilfred Godfrey

Abstract:

We develop in this paper, an approach to find the trendy topic, which not only considers the user-topic interaction but also considers the community, in which user belongs. This method modifies the previous approach of user-topic interaction to user-community-topic interaction with better speed-up in the range of [1.1-3]. We assume that trend detection in a social network is dependent on two things. The one is, broadcast of messages in social network governed by self-exciting point process, namely called Hawkes process and the second is, Community Rank. The influencer node links to others in the community and decides the community rank based on its PageRank and the number of users links to that community. The community rank decides the influence of one community over the other. Hence, the Hawkes process with the kernel of user-community-topic decides the trendy topic disseminated into the social network.

Keywords: community detection, community rank, Hawkes process, influencer node, pagerank, trend detection

Procedia PDF Downloads 388
2403 Developing a Translator Career Path: Based on the Dreyfus Model of Skills Acquisition

Authors: Noha A. Alowedi

Abstract:

This paper proposes a Translator Career Path (TCP) which is based on the Dreyfus Model of Skills Acquisition as the conceptual framework. In this qualitative study, the methodology to collect and analyze the data takes an inductive approach that draws upon the literature to form the criteria for the different steps in the TCP. This path is based on descriptors of expert translator performance and best employees’ practice documented in the literature. Each translator skill will be graded as novice, advanced beginner, competent, proficient, and expert. Consequently, five levels of translator performance are identified in the TCP as five ranks. The first rank is the intern translator, which is equivalent to the novice level; the second rank is the assistant translator, which is equivalent to the advanced beginner level; the third rank is the associate translator, which is equivalent to the competent level; the fourth rank is the translator, which is equivalent to the proficient level; finally, the fifth rank is the expert translator, which is equivalent to the expert level. The main function of this career path is to guide the processes of translator development in translation organizations. Although it is designed primarily for the need of in-house translators’ supervisors, the TCP can be used in academic settings for translation trainers and teachers.

Keywords: Dreyfus model, translation organization, translator career path, translator development, translator evaluation, translator promotion

Procedia PDF Downloads 377
2402 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation

Procedia PDF Downloads 265
2401 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee

Abstract:

Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 315
2400 Analysis of Temporal Factors Influencing Minimum Dwell Time Distributions

Authors: T. Pedersen, A. Lindfeldt

Abstract:

The minimum dwell time is an important part of railway timetable planning. Due to its stochastic behaviour, the minimum dwell time should be considered to create resilient timetables. While there has been significant focus on how to determine and estimate dwell times, to our knowledge, little research has been carried out regarding temporal and running direction variations of these. In this paper, we examine how the minimum dwell time varies depending on temporal factors such as the time of day, day of the week and time of the year. We also examine how it is affected by running direction and station type. The minimum dwell time is estimated by means of track occupation data. A method is proposed to ensure that only minimum dwell times and not planned dwell times are acquired from the track occupation data. The results show that on an aggregated level, the average minimum dwell times in both running directions at a station are similar. However, when temporal factors are considered, there are significant variations. The minimum dwell time varies throughout the day with peak hours having the longest dwell times. It is also found that the minimum dwell times are influenced by weekday, and in particular, weekends are found to have lower minimum dwell times than most other days. The findings show that there is a potential to significantly improve timetable planning by taking minimum dwell time variations into account.

Keywords: minimum dwell time, operations quality, timetable planning, track occupation data

Procedia PDF Downloads 201
2399 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps

Authors: Yong Bum Shin

Abstract:

This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.

Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process

Procedia PDF Downloads 86
2398 Assuming the Decision of Having One (More) Child: The New Dimensions of the Post Communist Romanian Family

Authors: Horea-Serban Raluca-Ioana, Istrate Marinela

Abstract:

The first part of the paper analyzes the dynamics of the total fertility rate both at the national and regional level, pointing out the regional disparities in the distribution of this indicator. At the same time, we also focus on the collapse of the number of live births, on the changes in the fertility rate by birth rank, as well as on the failure of acquiring the desired number of children. The second part of the study centres upon a survey applied to urban families with 3 and more than 3 offspring. The preliminary analysis highlights the fact that an increased fertility (more than 3rd rank) is triggered by the parents’ above the average material condition and superior education. The current situation of Romania, which is still passing through a period of relatively rapid demographic changes, marked by numerous convulsions, requires a new approach, in compliance with the recent interpretations appropriate to a new post-transitional demographic regime.

Keywords: fertility rate, family size intention, third birth rank, regional disparities

Procedia PDF Downloads 330
2397 Optimization of Lubricant Distribution with Alternative Coordinates and Number of Warehouses Considering Truck Capacity and Time Windows

Authors: Taufik Rizkiandi, Teuku Yuri M. Zagloel, Andri Dwi Setiawan

Abstract:

Distribution and growth in the transportation and warehousing business sector decreased by 15,04%. There was a decrease in Gross Domestic Product (GDP) contribution level from rank 7 of 4,41% in 2019 to 3,81% in rank 8 in 2020. A decline in the transportation and warehousing business sector contributes to GDP, resulting in oil and gas companies implementing an efficient supply chain strategy to ensure the availability of goods, especially lubricants. Fluctuating demand for lubricants and warehouse service time limits are essential things that are taken into account in determining an efficient route. Add depots points as a solution so that demand for lubricants is fulfilled (not stock out). However, adding a depot will increase operating costs and storage costs. Therefore, it is necessary to optimize the addition of depots using the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). This research case study was conducted at an oil and gas company that produces lubricants from 2019 to 2021. The study results obtained the optimal route and the addition of a depot with a minimum additional cost. The total cost remains efficient with the addition of a depot when compared to one depot from Jakarta.

Keywords: CVRPTW, optimal route, depot, tabu search algorithm

Procedia PDF Downloads 141
2396 A Kruskal Based Heuxistic for the Application of Spanning Tree

Authors: Anjan Naidu

Abstract:

In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.

Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90

Procedia PDF Downloads 445
2395 Challenging the Constitutionality of Mandatory Sentences: A South African Perspective

Authors: Alphonso Goliath

Abstract:

With mandatory minimum sentences, even with its qualification of “substantial and compelling circumstances”, the sentence severity for violent crimes has increased substantially to combat crime. Considering the upsurge in violent crime, the paper argues that minimum sentences failed to prevent or curb violent crime. These sentences deprive offenders more than what is reasonably necessary of their freedom to curb the offense and punish the offender. Minimum sentences amount to cruel, inhuman, and degrading punishment unjustified and vulnerable to constitutional challenge.

Keywords: constitutionality, deterrence, incapacitation, minimum sentencing legislation, prison overcrowding, rehabilitation, recidivism, retribution, violent crime

Procedia PDF Downloads 90
2394 On the Basis Number and the Minimum Cycle Bases of the Wreath Product of Paths with Wheels

Authors: M. M. M. Jaradat

Abstract:

For a given graph G, the set Ԑ of all subsets of E(G) forms an |E(G)| dimensional vector space over Z2 with vector addition X⊕Y = (X\Y ) [ (Y \X) and scalar multiplication 1.X = X and 0.X = Ø for all X, Yϵ Ԑ. The cycle space, C(G), of a graph G is the vector subspace of (E; ⊕; .) spanned by the cycles of G. Traditionally there have been two notions of minimality among bases of C(G). First, a basis B of G is called a d-fold if each edge of G occurs in at most d cycles of the basis B. The basis number, b(G), of G is the least non-negative integer d such that C(G) has a d-fold basis; a required basis of C(G) is a basis for which each edge of G belongs to at most b(G) elements of B. Second, a basis B is called a minimum cycle basis (MCB) if its total length Σ BϵB |B| is minimum among all bases of C(G). The lexicographic product GρH has the vertex set V (GρH) = V (G) x V (H) and the edge set E(GρH) = {(u1, v1)(u2, v2)|u1 = u2 and v1 v2 ϵ E(H); or u1u2 ϵ E(G) and there is α ϵ Aut(H) such that α (v1) = v2}. In this work, a construction of a minimum cycle basis for the wreath product of wheels with paths is presented. Also, the length of the longest cycle of a minimum cycle basis is determined. Moreover, the basis number for the wreath product of the same is investigated.

Keywords: cycle space, minimum cycle basis, basis number, wreath product

Procedia PDF Downloads 282
2393 South African Mandatory Minimum Sentencing: Causes and Consequences

Authors: Alphonso Augustine Goliath

Abstract:

In 1997 South Africa adopted legislation introducing severe mandatory minimum sentences. This was a political response to counter the escalating violent crime the country experienced when it transitioned to democracy. Despite minimum sentences being fully operational for more than two decades, violent crimes like murder and rape have not abated. This paper provides a critique of the efficacy of minimums sentences with a primary focus on the legislation’s main aim of preventing or curbing crime, its relationship with prison overcrowding, and its continued constitutionality.

Keywords: constitutionality, deterrence, incapacitation, minimum sentencing legislation, prison overcrowding, rehabilitation, recidivism, retribution, violent crime

Procedia PDF Downloads 86
2392 Minimum Vertices Dominating Set Algorithm for Secret Sharing Scheme

Authors: N. M. G. Al-Saidi, K. A. Kadhim, N. A. Rajab

Abstract:

Over the past decades, computer networks and data communication system has been developing fast, so, the necessity to protect a transmitted data is a challenging issue, and data security becomes a serious problem nowadays. A secret sharing scheme is a method which allows a master key to be distributed among a finite set of participants, in such a way that only certain authorized subsets of participants to reconstruct the original master key. To create a secret sharing scheme, many mathematical structures have been used; the most widely used structure is the one that is based on graph theory (graph access structure). Subsequently, many researchers tried to find efficient schemes based on graph access structures. In this paper, we propose a novel efficient construction of a perfect secret sharing scheme for uniform access structure. The dominating set of vertices in a regular graph is used for this construction in the following way; each vertex represents a participant and each minimum independent dominating subset represents a minimal qualified subset. Some relations between dominating set, graph order and regularity are achieved, and can be used to demonstrate the possibility of using dominating set to construct a secret sharing scheme. The information rate that is used as a measure for the efficiency of such systems is calculated to show that the proposed method has some improved values.

Keywords: secret sharing scheme, dominating set, information rate, access structure, rank

Procedia PDF Downloads 396
2391 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods

Authors: A. Senthil Kumar, V. Murali Bhaskaran

Abstract:

In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.

Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)

Procedia PDF Downloads 290
2390 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints

Procedia PDF Downloads 147
2389 Investigating the Effects of Data Transformations on a Bi-Dimensional Chi-Square Test

Authors: Alexandru George Vaduva, Adriana Vlad, Bogdan Badea

Abstract:

In this research, we conduct a Monte Carlo analysis on a two-dimensional χ2 test, which is used to determine the minimum distance required for independent sampling in the context of chaotic signals. We investigate the impact of transforming initial data sets from any probability distribution to new signals with a uniform distribution using the Spearman rank correlation on the χ2 test. This transformation removes the randomness of the data pairs, and as a result, the observed distribution of χ2 test values differs from the expected distribution. We propose a solution to this problem and evaluate it using another chaotic signal.

Keywords: chaotic signals, logistic map, Pearson’s test, Chi Square test, bivariate distribution, statistical independence

Procedia PDF Downloads 101
2388 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting

Authors: Kourosh Modarresi

Abstract:

The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.

Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation

Procedia PDF Downloads 460
2387 Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Authors: Mohammad Sahadet Hossain, Shamsil Arifeen, Mehrab Hossian Likhon

Abstract:

In this paper, we analyze a linear time invariant (LTI) descriptor system of large dimension. Since these systems are difficult to simulate, compute and store, we attempt to reduce this large system using Low Rank Cholesky Factorized Alternating Directions Implicit (LRCF-ADI) iteration followed by Square Root Balanced Truncation. LRCF-ADI solves the dual Lyapunov equations of the large system and gives low-rank Cholesky factors of the gramians as the solution. Using these cholesky factors, we compute the Hankel singular values via singular value decomposition. Later, implementing square root balanced truncation, the reduced system is obtained. The bode plots of original and lower order systems are used to show that the magnitude and phase responses are same for both the systems.

Keywords: low-rank cholesky factor alternating directions implicit iteration, LTI Descriptor system, Lyapunov equations, Square-root balanced truncation

Procedia PDF Downloads 420
2386 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: consensus, curse of correlation, imbalance classification, rank-based chain-mode ensemble

Procedia PDF Downloads 141
2385 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 126
2384 Weighted Rank Regression with Adaptive Penalty Function

Authors: Kang-Mo Jung

Abstract:

The use of regularization for statistical methods has become popular. The least absolute shrinkage and selection operator (LASSO) framework has become the standard tool for sparse regression. However, it is well known that the LASSO is sensitive to outliers or leverage points. We consider a new robust estimation which is composed of the weighted loss function of the pairwise difference of residuals and the adaptive penalty function regulating the tuning parameter for each variable. Rank regression is resistant to regression outliers, but not to leverage points. By adopting a weighted loss function, the proposed method is robust to leverage points of the predictor variable. Furthermore, the adaptive penalty function gives us good statistical properties in variable selection such as oracle property and consistency. We develop an efficient algorithm to compute the proposed estimator using basic functions in program R. We used an optimal tuning parameter based on the Bayesian information criterion (BIC). Numerical simulation shows that the proposed estimator is effective for analyzing real data set and contaminated data.

Keywords: adaptive penalty function, robust penalized regression, variable selection, weighted rank regression

Procedia PDF Downloads 479
2383 System Identification in Presence of Outliers

Authors: Chao Yu, Qing-Guo Wang, Dan Zhang

Abstract:

The outlier detection problem for dynamic systems is formulated as a matrix decomposition problem with low-rank, sparse matrices and further recast as a semidefinite programming (SDP) problem. A fast algorithm is presented to solve the resulting problem while keeping the solution matrix structure and it can greatly reduce the computational cost over the standard interior-point method. The computational burden is further reduced by proper construction of subsets of the raw data without violating low rank property of the involved matrix. The proposed method can make exact detection of outliers in case of no or little noise in output observations. In case of significant noise, a novel approach based on under-sampling with averaging is developed to denoise while retaining the saliency of outliers and so-filtered data enables successful outlier detection with the proposed method while the existing filtering methods fail. Use of recovered “clean” data from the proposed method can give much better parameter estimation compared with that based on the raw data.

Keywords: outlier detection, system identification, matrix decomposition, low-rank matrix, sparsity, semidefinite programming, interior-point methods, denoising

Procedia PDF Downloads 308
2382 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode

Authors: Girish Chavadappanavar

Abstract:

The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).

Keywords: climate impact, regression analysis, yield and forecast model, sugar models

Procedia PDF Downloads 76
2381 GIS-Based Topographical Network for Minimum “Exertion” Routing

Authors: Katherine Carl Payne, Moshe Dror

Abstract:

The problem of minimum cost routing has been extensively explored in a variety of contexts. While there is a prevalence of routing applications based on least distance, time, and related attributes, exertion-based routing has remained relatively unexplored. In particular, the network structures traditionally used to construct minimum cost paths are not suited to representing exertion or finding paths of least exertion based on road gradient. In this paper, we introduce a topographical network or “topograph” that enables minimum cost routing based on the exertion metric on each arc in a given road network as it is related to changes in road gradient. We describe an algorithm for topograph construction and present the implementation of the topograph on a road network of the state of California with ~22 million nodes.

Keywords: topograph, RPE, routing, GIS

Procedia PDF Downloads 549