Search results for: lifting
91 Effect of Ambient Oxygen Content and Lifting Frequency on the Participant’s Lifting Capabilities, Muscle Activities, and Perceived Exertion
Authors: Atef M. Ghaleb, Mohamed Z. Ramadan, Khalid Saad Aljaloud
Abstract:
The aim of this study is to assesses the lifting capabilities of persons experiencing hypoxia. It also examines the behavior of the physiological response induced through the lifting process related to changing in the hypoxia and lifting frequency variables. For this purpose, the study performed two consecutive tests by using; (1) training and acclimatization; and (2) an actual collection of data. A total of 10 male students from King Saud University, Kingdom of Saudi Arabia, were recruited in the study. A two-way repeated measures design, with two independent variables (ambient oxygen (15%, 18% and 21%)) and lifting frequency (1 lift/min and 4 lifts/min) and four dependent variables i.e., maximum acceptable weight of lift (MAWL), Electromyography (EMG) of four muscle groups (anterior deltoid, trapezius, biceps brachii, and erector spinae), rating of perceived exertion (RPE), and rating of oxygen feeling (ROF) were used in this study. The results show that lifting frequency has significantly impacted the MAWL and muscles’ activities. The oxygen content had a significant effect on the RPE and ROE. The study has revealed that acclimatization and training sessions significantly reduce the effect of the hypoxia on the human physiological parameters during the manual materials handling tasks.Keywords: lifting capabilities, muscle activities, oxygen content, perceived exertion
Procedia PDF Downloads 12990 Conceptual Design of Suction Cup Lifting System
Authors: Mohammed Aijaz
Abstract:
In industries, to transfer fragile materials like glasses, a holding, lifting, and manipulation system are required. In this report, we designed and analysed a suction cup holding, lifting, and manipulation system that is attached to a head plate and must be able to grip/hold securely, the largest glass panel with 3m x 2.5m x 20mm thick with a mass of 115 kg. The system is able to rotate the panel through 180 degrees in the X, Y, and Z axis in any direction from the outer reach of the robotic arm. The structural analysis is performed to verify the structural strength of the suction cup’s head plate system.Keywords: designing, mechanical, engineering, suction
Procedia PDF Downloads 9689 The Effect of Head Posture on the Kinematics of the Spine During Lifting and Lowering Tasks
Authors: Mehdi Nematimoez
Abstract:
Head posture is paramount to retaining gaze and balance in many activities; its control is thus important in many activities. However, little information is available about the effects of head movement restriction on other spine segment kinematics and movement patterns during lifting and lowering tasks. The aim of this study was to examine the effects of head movement restriction on relative angles and their derivatives using the stepwise segmentation approach during lifting and lowering tasks. Ten healthy men lifted and lowered a box using two styles (stoop and squat), with two loads (i.e., 10 and 20% of body weight); they performed these tasks with two instructed head postures (1. Flexing the neck to keep contact between chin and chest over the task cycle; 2. No instruction, free head posture). The spine was divided into five segments, tracked by six cluster markers (C7, T3, T6, T9, T12, and L5). Relative angles between spine segments and their derivatives (first and second) were analyzed by a stepwise segmentation approach to consider the effect of each segment on the whole spine. Accordingly, head posture significantly affected the derivatives of the relative angles and manifested latency in spine segments movement, i.e., cephalad-to-caudad or caudad-to-cephalad patterns. The relative angles for C7-T3 and T3-T6 increased over the cycle of all lifting and lowering tasks; nevertheless, in lower segments increased significantly when the spine moved into upright standing. However, these effects were clearer during lifting than lowering. Conclusively, the neck flexion can unevenly increase the flexion angles of spine segments from cervical to lumbar over lifting and lowering tasks; furthermore, stepwise segmentation reveals potential for assessing the segmental contribution in spine ROM and movement patterns.Keywords: head movement restriction, spine kinematics, lifting, lowering, stepwise segmentation
Procedia PDF Downloads 24488 Lifting Wavelet Transform and Singular Values Decomposition for Secure Image Watermarking
Authors: Siraa Ben Ftima, Mourad Talbi, Tahar Ezzedine
Abstract:
In this paper, we present a technique of secure watermarking of grayscale and color images. This technique consists in applying the Singular Value Decomposition (SVD) in LWT (Lifting Wavelet Transform) domain in order to insert the watermark image (grayscale) in the host image (grayscale or color image). It also uses signature in the embedding and extraction steps. The technique is applied on a number of grayscale and color images. The performance of this technique is proved by the PSNR (Pick Signal to Noise Ratio), the MSE (Mean Square Error) and the SSIM (structural similarity) computations.Keywords: lifting wavelet transform (LWT), sub-space vectorial decomposition, secure, image watermarking, watermark
Procedia PDF Downloads 27687 Restoring Sagging Neck with Minimal Scar Face Lifting
Authors: Alessandro Marano
Abstract:
The author describes the use of deep plane face lifting and platysmaplasty to treat sagging neck with minimal scars. Series of case study. The author uses a selective deep plane face lift with a minimal access scar that not extend behind the ear lobe, neck liposuction and platysmaplasty to restore the sagging neck; the scars are minimal and no require drainage post-op. The deep plane face lifting can achieve a good result restoring vertical vectors in aging and sagging face, neck district can be treated without cutting the skin behind the ear lobe combining the SMAS vertical suspension and platysmaplasty; surgery can be performed in local anesthesia with sedation in day surgery and fast recovery. Restoring neck sagging without extend scars behind ear lobe is possible in selected patients, procedure is fast, safe, no drainage required, patients are satisfied and healing time is fast and comfortable.Keywords: face lifting, aesthetic, face, neck, platysmaplasty, deep plane
Procedia PDF Downloads 10186 Design of Orientation-Free Handler and Fuzzy Controller for Wire-Driven Heavy Object Lifting System
Authors: Bo-Wei Song, Yun-Jung Lee
Abstract:
This paper presents an intention interface and controller for a wire-driven heavy object lifting system that assists the operator with moving a heavy object. The handler is designed to allow a comfortable working posture for the operator. Plus, as a human assistive system, the operator is involved in the control loop, where a fuzzy control system is used to consider the human control characteristics. The effectiveness and performance of the proposed system are proved by experiments.Keywords: fuzzy controller, handler design, heavy object lifting system, human-assistive device, human-in-the-loop system
Procedia PDF Downloads 51485 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 16384 Low Back Pain and Patients Lifting Behaviors among Nurses Working in Al Sadairy Hospital, Aljouf
Authors: Fatma Abdel Moneim Al Tawil
Abstract:
Low back pain (LBP) among nurses has been the subject of research studies worldwide. However, evidence of the influence of patients lifting behaviors and LBP among nurses in Saudi Arabia remains scarce. The purpose of this study was to investigate the relationship between LBP and nurses lifting behaviors. LBP questionnaire was distributed to 100 nurses working in Alsadairy Hospital distributed as Emergency unit(9),Coronary Care unit (9), Intensive Care Unit (7), Dialysis unit (30), Burn unit (5), surgical unit (11), Medical (14) and, X-ray unit (15). The questionnaire included demographic data, attitude scale, Team work scale, Back pain history and Knowledge scale. Regarding to emergency unit, there is appositive significant relation between teamwork scale and Knowledge as r = (0.807) and P =0.05. Regarding to ICU unit, there is a positive significant relation between teamwork scale and attitude scale as r= (0.781) and P =0.05. Regarding to Dialysis unit, there is a positive significant relation between attitude scale and teamwork scale as r=(0.443) and P =0.05. The findings suggest enhanced awareness of occupational safety with safe patient handling practices among nursing students must be emphasized and integrated into their educational curriculum. Moreover, back pain prevention program should incorporate the promotion of an active lifestyle and fitness training the implementation of institutional patient handling policies.Keywords: low back pain, lifting behaviors, nurses, team work
Procedia PDF Downloads 43583 Effects of Bed Type, Corm Weight and Lifting Time on Quantitative and Qualitative Criteria of Saffron (Crocus sativus L.)
Authors: A. Mollafilabi, A. Koocheki, P. Rezvani Moghaddam, M. Nassiri Mahalati
Abstract:
In order to study the effects of corm weights and times of corm lifting saffron in different planting beds, an experiment was conducted as Factorial layout based on a Randomized Complete Block Design with three replications at the Fadak Research Center of Agricultural Research in Food Science during 2010. Treatments were two corm weights (8-10, 10 < g), two planting beds (stone wool and peat moss) and five levels of lifting time (mi-June, early July, mid-July, early August and mid-August). No. of corms were 457 corms.m-2 and for 40 days and were stored for 90 days in incubation, 85% relative humidity and 25°C temperature in the darkness. Then, saffron corms were transferred to growth chamber with 17 °C in 8 hours light and 16 hours darkness. Characteristics were number of flower, fresh weight of flower, dry weight of flower, fresh and dry weight of stigma, fresh and dry weight of style, fresh and dry weight of stigma+style and Picrocrocin, Safronal and Crocin contents of saffron were measured. Results showed that the corm weight, bed type and time of corm lifting had significant effects on economical yield of saffron such as picked flowers, dry weight of stigma and fresh weight of flowers. The highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid-June as much as 5.2 g.m-2. This yield is 11 fold of average yield of Iranian farms. Picrocrocin, Safranal and Crocin contents was graded as excellent thread in peat moss under controlled conditions compared with ISO Standard of 203.Keywords: corm density, dry stigma, safranal-flowering, yield saffron
Procedia PDF Downloads 33382 Influence of Flight Design on Discharging Profiles of Granular Material in Rotary Dryer
Authors: I. Benhsine, M. Hellou, F. Lominé, Y. Roques
Abstract:
During the manufacture of fertilizer, it is necessary to add water for granulation purposes. The water content is then removed or reduced using rotary dryers. They are commonly used to dry wet granular materials and they are usually fitted with lifting flights. The transport of granular materials occurs when particles cascade from the lifting flights and fall into the air stream. Each cascade consists of a lifting and a falling cycle. Lifting flights are thus of great importance for the transport of granular materials along the dryer. They also enhance the contact between solid particles and the air stream. Optimization of the drying process needs an understanding of the behavior of granular materials inside a rotary dryer. Different approaches exist to study the movement of granular materials inside the dryer. Most common of them are based on empirical formulations or on study the movement of the bulk material. In the present work, we are interested in the behavior of each particle in the cross section of the dryer using Discrete Element Method (DEM) to understand. In this paper, we focus on studying the hold-up, the cascade patterns, the falling time and the falling length of the particles leaving the flights. We will be using two segment flights. Three different profiles are used: a straight flight (180° between both segments), an angled flight (with an angle of 150°), and a right-angled flight (90°). The profile of the flight affects significantly the movement of the particles in the dryer. Changing the flight angle changes the flight capacity which leads to different discharging profile of the flight, thus affecting the hold-up in the flight. When the angle of the flight is reduced, the range of the discharge angle increases leading to a more uniformed cascade pattern in time. The falling length and the falling time of the particles also increase up to a maximum value then they start decreasing. Moreover, the results show an increase in the falling length and the falling time up to 70% and 50%, respectively, when using a right-angled flight instead of a straight one.Keywords: discrete element method, granular materials, lifting flight, rotary dryer
Procedia PDF Downloads 32681 Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection
Authors: Mondher Yahyaoui
Abstract:
A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results.Keywords: aileron deflection, camber-surface-bound vortices, classical VLM, generalized VLM, flap deflection
Procedia PDF Downloads 43580 Low Back Pain among Nurses in Penang Public Hospitals: A Study on Prevalence and Factors Associated
Authors: Izani Uzair Zubair, Mohd Ismail Ibrahim, Mohd Nazri Shafei, Hassan Merican Omar Naina Merican, Mohamad Sabri Othman, Mohd Izmi Ahmad Ibrahim, Rasilah Ramli, Rajpal Singh Karam Singh
Abstract:
Nurses experience a higher prevalence of low back pain (LBP) and musculoskeletal complaints as compared to other hospital workers. Due to no proper policy related to LBP, the job has exposed them to the problem. Thus, the current study aims to look at the intensity of the problem and factors associated with development of LBP. Method and Tools: A cross sectional study was carried out among 1292 nurses from six public hospitals in Penang. They were randomly selected and those who were pregnant and have been diagnosed to have LBP were excluded. A Malay validated BACK Questionnaire was used. The associated factors were determined by using multiple logistic regression from SPSS version 20.0. Result: Most of the respondents were at mean age 30 years old and had mean working experience 86 months. The prevalence of LBP was identified as 76% (95% CI 74, 82). Factors that were associated with LBP among nurses include lifting a heavy object (OR2.626 (95% CI 1.978, 3.486) p =0.001 and the estimation weight of the lifted object (OR1.443 (95% CI 1.056, 1.970) p =0.021. Conclusion: Nurses who practice lifting heavy object and weight of the object lifted give a significant contribution to the development of LBP. The prevalence of the problem is significantly high. Thus, a proper no weight lifting policy should be considered.Keywords: low back pain, nurses, Penang public hospital, Penang
Procedia PDF Downloads 48779 Lifting Body Concepts for Unmanned Fixed-Wing Transport Aircrafts
Authors: Anand R. Nair, Markus Trenker
Abstract:
Lifting body concepts were conceived as early as 1917 and patented by Roy Scroggs. It was an idea of using the fuselage as a lift producing body with no or small wings. Many of these designs were developed and even flight tested between 1920’s to 1970’s, but it was not pursued further for commercial flight as at lower airspeeds, such a configuration was incapable to produce sufficient lift for the entire aircraft. The concept presented in this contribution is combining the lifting body design along with a fixed wing to maximise the lift produced by the aircraft. Conventional aircraft fuselages are designed to be aerodynamically efficient, which is to minimise the drag; however, these fuselages produce very minimal or negligible lift. For the design of an unmanned fixed wing transport aircraft, many of the restrictions which are present for commercial aircraft in terms of fuselage design can be excluded, such as windows for the passengers/pilots, cabin-environment systems, emergency exits, and pressurization systems. This gives new flexibility to design fuselages which are unconventionally shaped to contribute to the lift of the aircraft. The two lifting body concepts presented in this contribution are targeting different applications: For a fast cargo delivery drone, the fuselage is based on a scaled airfoil shape with a cargo capacity of 500 kg for euro pallets. The aircraft has a span of 14 m and reaches 1500 km at a cruising speed of 90 m/s. The aircraft could also easily be adapted to accommodate pilot and passengers with modifications to the internal structures, but pressurization is not included as the service ceiling envisioned for this type of aircraft is limited to 10,000 ft. The next concept to be investigated is called a multi-purpose drone, which incorporates a different type of lifting body and is a much more versatile aircraft as it will have a VTOL capability. The aircraft will have a wingspan of approximately 6 m and flight speeds of 60 m/s within the same service ceiling as the fast cargo delivery drone. The multi-purpose drone can be easily adapted for various applications such as firefighting, agricultural purposes, surveillance, and even passenger transport. Lifting body designs are not a new concept, but their effectiveness in terms of cargo transportation has not been widely investigated. Due to their enhanced lift producing capability, lifting body designs enable the reduction of the wing area and the overall weight of the aircraft. This will, in turn, reduce the thrust requirement and ultimately the fuel consumption. The various designs proposed in this contribution will be based on the general aviation category of aircrafts and will be focussed on unmanned methods of operation. These unmanned fixed-wing transport drones will feature appropriate cargo loading/unloading concepts which can accommodate large size cargo for efficient time management and ease of operation. The various designs will be compared in performance to their conventional counterpart to understand their benefits/shortcomings in terms of design, performance, complexity, and ease of operation. The majority of the performance analysis will be carried out using industry relevant standards in computational fluid dynamics software packages.Keywords: lifting body concept, computational fluid dynamics, unmanned fixed-wing aircraft, cargo drone
Procedia PDF Downloads 24578 Performance Evaluation for Weightlifting Lifter by Barbell Trajectory
Authors: Ying-Chen Lin, Ching-Ting Hsu, Wei-Hua Ho
Abstract:
The purpose of this study is to investigate the kinematic characteristics and differences of the snatch barbell trajectory of 53 kg class female weight lifters. We take the 2014 Taiwan College Cup players as examples, and tend to make kinematic applications through the proven weightlifting barbell track system. The competition videos are taken by consumer camcorder with a tripod which set up at the side of the lifter. The results will be discussed in three parts, the first part is various lifting phase, the second part is the compare lifting between success and unsuccessful, and the third part is the outstanding player compare with the general. Conclusion through the barbell can be used to observe the trajectories of our players cite the usual process cannot be observed in the presence of malfunction or habits, so that the coach can find the problem more accurately guide the players. Our system can be applied in practice and competition to increase the resilience of the lifter on the field.Keywords: computer aided sport training, kinematic, trajectory, weightlifting
Procedia PDF Downloads 45477 Characteristics of Interaction Forces Acting on a Newly-Design Rotary Blade for Thai Walking Tractor
Authors: Sirisak Choedkiatphon, Tanya Niyamapa
Abstract:
This research aimed to indeed understand the soil-rotary blade interaction of the newly-design rotary blade for Thai walking tractor. Therefore, this study was carried out to clarify the characteristics of the horizontal and the vertical forces and the moment around a rotary shaft of prototype rotary blade 15 lengthwise slice angle. It was set up and tested in laboratory soil bin at Kasetsart University under sandy loam and clay soil at soil dry bulk density and soil specific weight of 9.81 kN/m3 and 11.3% (d.b.), respectively. The tests were conducted at travel speeds of 0.069 and 0.142 m/s and rotational speeds of 150, 250 and 350 rpm. The characteristic of pushing-forward and lifting-up forces and moment around a rotor shaft were obtained by using the EOR transducer. Also, the acting point of resultant force of these soil-blade reaction forces was determined. The pushing-forward and lifting-up forces, moment around a rotor shaft and resultant force increased at higher travel speed and higher soil moisture content. In tilling stage, the acting points of resultant force located inside the circumstance of the blade locus. The results showed that the variation of magnitude and direction of pushing-forward, lifting-up and resultant forces corresponded to soil-blade interaction of the newly-design in tilling stage.Keywords: rotary blde, soil-blade interaction, walking tractor, clay, sandy loam
Procedia PDF Downloads 20976 Fast Aerodynamic Evaluation of Transport Aircraft in Early Phases
Authors: Xavier Bertrand, Alexandre Cayrel
Abstract:
The early phase of an aircraft development is instrumental as it really drives the potential of a new concept. Any weakness in the high-level design (wing planform, moveable surfaces layout etc.) will be extremely difficult and expensive to recover later in the aircraft development process. Aerodynamic evaluation in this very early development phase is driven by two main criteria: a short lead-time to allow quick iterations of the geometrical design, and a high quality of the calculations to get an accurate & reliable assessment of the current status. These two criteria are usually quite contradictory. Actually, short lead time of a couple of hours from end-to-end can be obtained with very simple tools (semi-empirical methods for instance) although their accuracy is limited, whereas higher quality calculations require heavier/more complex tools, which obviously need more complex inputs as well, and a significantly longer lead time. At this point, the choice has to be done between accuracy and lead-time. A brand new approach has been developed within Airbus, aiming at obtaining quickly high quality evaluations of the aerodynamic of an aircraft. This methodology is based on a joint use of Surrogate Modelling and a lifting line code. The Surrogate Modelling is used to get the wing sections characteristics (e.g. lift coefficient vs. angle of attack), whatever the airfoil geometry, the status of the moveable surfaces (aileron/spoilers) or the high-lift devices deployment. From these characteristics, the lifting line code is used to get the 3D effects on the wing whatever the flow conditions (low/high Mach numbers etc.). This methodology has been applied successfully to a concept of medium range aircraft.Keywords: aerodynamics, lifting line, surrogate model, CFD
Procedia PDF Downloads 35975 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces
Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen
Abstract:
The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems
Procedia PDF Downloads 37674 Multibody Constrained Dynamics of Y-Method Installation System for a Large Scale Subsea Equipment
Authors: Naeem Ullah, Menglan Duan, Mac Darlington Uche Onuoha
Abstract:
The lowering of subsea equipment into the deep waters is a challenging job due to the harsh offshore environment. Many researchers have introduced various installation systems to deploy the payload safely into the deep oceans. In general practice, dual floating vessels are not employed owing to the prevalent safety risks and hazards caused by ever-increasing dynamical effects sourced by mutual interaction between the bodies. However, while keeping in the view of the optimal grounds, such as economical one, the Y-method, the two conventional tugboats supporting the equipment by the two independent strands connected to a tri-plate above the equipment, has been employed to study multibody dynamics of the dual barge lifting operations. In this study, the two tugboats and the suspended payload (Y-method) are deployed for the lowering of subsea equipment into the deep waters as a multibody dynamic system. The two-wire ropes are used for the lifting and installation operation by this Y-method installation system. 6-dof (degree of freedom) for each body are considered to establish coupled 18-dof multibody model by embedding technique or velocity transformation technique. The fundamental and prompt advantage of this technique is that the constraint forces can be eliminated directly, and no extra computational effort is required for the elimination of the constraint forces. The inertial frame of reference is taken at the surface of the water as the time-independent frame of reference, and the floating frames of reference are introduced in each body as the time-dependent frames of reference in order to formulate the velocity transformation matrix. The local transformation of the generalized coordinates to the inertial frame of reference is executed by applying the Euler Angle approach. The spherical joints are articulated amongst the multibody as the kinematic joints. The hydrodynamic force, the two-strand forces, the hydrostatic force, and the mooring forces are taken into consideration as the external forces. The radiation force of the hydrodynamic force is obtained by employing the Cummins equation. The wave exciting part of the hydrodynamic force is obtained by using force response amplitude operators (RAOs) that are obtained by the commercial solver ‘OpenFOAM’. The strand force is obtained by considering the wire rope as an elastic spring. The nonlinear hydrostatic force is obtained by the pressure integration technique at each time step of the wave movement. The mooring forces are evaluated by using Faltinsen analytical approach. ‘The Runge Kutta Method’ of Fourth-Order is employed to evaluate the coupled equations of motion obtained for 18-dof multibody model. The results are correlated with the simulated Orcaflex Model. Moreover, the results from Orcaflex Model are compared with the MOSES Model from previous studies. The MBDS of single barge lifting operation from the former studies are compared with the MBDS of the established dual barge lifting operation. The dynamics of the dual barge lifting operation are found larger in magnitude as compared to the single barge lifting operation. It is noticed that the traction at the top connection point of the cable decreases with the increase in the length, and it becomes almost constant after passing through the splash zone.Keywords: dual barge lifting operation, Y-method, multibody dynamics, shipbuilding, installation of subsea equipment, shipbuilding
Procedia PDF Downloads 20373 Preparation of hydrophobic silica membranes supported on alumina hollow fibers for pervaporation applications
Authors: Ami Okabe, Daisuke Gondo, Akira Ogawa, Yasuhisa Hasegawa, Koichi Sato, Sadao Araki, Hideki Yamamoto
Abstract:
Membrane separation draws attention as the energy-saving technology. Pervaporation (PV) uses hydrophobic ceramic membranes to separate organic compounds from industrial wastewaters. PV makes it possible to separate organic compounds from azeotropic mixtures and from aqueous solutions. For the PV separation of low concentrations of organics from aqueous solutions, hydrophobic ceramic membranes are expected to have high separation performance compared with that of conventional hydrophilic membranes. Membrane separation performance is evaluated based on the pervaporation separation index (PSI), which depends on both the separation factor and the permeate flux. Ingenuity is required to increase the PSI such that the permeate flux increases without reducing the separation factor or to increase the separation factor without reducing the flux. A thin separation layer without defects and pinholes is required. In addition, it is known that the flux can be increased without reducing the separation factor by reducing the diffusion resistance of the membrane support. In a previous study, we prepared hydrophobic silica membranes by a molecular templating sol−gel method using cetyltrimethylammonium bromide (CTAB) to form pores suitable for permitting the passage of organic compounds through the membrane. We separated low-concentration organics from aqueous solutions by PV using these membranes. In the present study, hydrophobic silica membranes were prepared on a porous alumina hollow fiber support that is thinner than the previously used alumina support. Ethyl acetate (EA) is used in large industrial quantities, so it was selected as the organic substance to be separated. Hydrophobic silica membranes were prepared by dip-coating porous alumina supports with a -alumina interlayer into a silica sol containing CTAB and vinyltrimethoxysilane (VTMS) as the silica precursor. Membrane thickness increases with the lifting speed of the sol in the dip-coating process. Different thicknesses of the γ-alumina layer were prepared by dip-coating the support into a boehmite sol at different lifting speeds (0.5, 1, 3, and 5 mm s-1). Silica layers were subsequently formed by dip-coating using an immersion time of 60 s and lifting speed of 1 mm s-1. PV measurements of the EA (5 wt.%)/water system were carried out using VTMS hydrophobic silica membranes prepared on -alumina layers of different thicknesses. Water and EA flux showed substantially constant value despite of the change of the lifting speed to form the γ-alumina interlayer. All prepared hydrophobic silica membranes showed the higher PSI compared with the hydrophobic membranes using the previous alumina support of hollow fiber.Keywords: membrane separation, pervaporation, hydrophobic, silica
Procedia PDF Downloads 40472 Optimum of Offshore Structures Lifting Padeyes Using Finite Element Method
Authors: Abdelrahim Hamadelnil
Abstract:
Padeye design and analysis plays important roles during the lifting, load out and installation of heavy structures. This paper explains the disadvantages of limiting the effective thickness of the cheek plate to 75% of the main plate thickness. In addition, a sensitivity study about the impact of the out of plane force on the padeye design is discussed. This study also explains the fabrication requirements to ensure that the designed strength is achieved. The objective of this study is to elaborate and discuss the philosophy of padeye design and to propose the suitable effective cheek plate thickness to be considered in the analysis of padeye. A finite element analysis using London University Structure Analysis System (LUSAS), is conducted and compared with the hand calculation. The benefits and advantage of using FE analysis is addressed in this paper. At the end of this paper, a guideline elaborating the philosophy of the design of the padeye is developed and the suitable effective thickness of cheek plate to be considered in the design is recommended. In addition, a comparison between the finite element result and the hand calculation using beam theory is discussed as well.Keywords: cheek plate, effective thickness, out of plane force, Padeye
Procedia PDF Downloads 32671 Measuring the Effectiveness of Response Inhibition regarding to Motor Complexity: Evidence from the Stroop Effect
Authors: Germán Gálvez-García, Marta Lavin, Javiera Peña, Javier Albayay, Claudio Bascour, Jesus Fernandez-Gomez, Alicia Pérez-Gálvez
Abstract:
We studied the effectiveness of response inhibition in movements with different degrees of motor complexity when they were executed in isolation and alternately. Sixteen participants performed the Stroop task which was used as a measure of response inhibition. Participants responded by lifting the index finger and reaching the screen with the same finger. Both actions were performed separately and alternately in different experimental blocks. Repeated measures ANOVAs were used to compare reaction time, movement time, kinematic errors and Movement errors across conditions (experimental block, movement, and congruency). Delta plots were constructed to perform distributional analyses of response inhibition and accuracy rate. The effectiveness of response inhibition did not show difference when the movements were performed in separated blocks. Nevertheless, it showed differences when they were performed alternately in the same experimental block, being more effective for the lifting action. This could be due to a competition of the available resources during a more complex scenario which also demands to adopt some strategy to avoid errors.Keywords: response inhibition, motor complexity, Stroop task, delta plots
Procedia PDF Downloads 39470 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 29969 Workplace Risk Assessment in a Paint Factory
Authors: Rula D. Alshareef, Safa S. Alqathmi, Ghadah K. Alkhouldi, Reem O. Bagabas, Farheen B. Hasan
Abstract:
Safety engineering is among the most crucial considerations in any work environment. Providing mentally, physically, and environmentally safe work conditions must be the top priority of any successful organization. Company X is a local paint production company in Saudi Arabia; in a month, the factory experienced two significant accidents, which indicates that workers’ safety is overlooked. The aim of the research is to examine the risks, assess the root causes and recommend control measures that will eventually contribute to providing a safe workplace. The methodology used is sectioned into three phases, risk identification, assessment, and finally, mitigation. In the identification phase, the team used Rapid Entire Body Assessment (REBA) and National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) tools to holistically establish knowledge about the current risk posed to the factory. The physical hazards in the factory were assessed in two different operations, which are mixing and filling/packaging. For the risk assessment phase, the hazards were deeply analyzed through their severity and impact. Additionally, through risk mitigation, the Rapid Entire Body Assessment (REBA) score decreased from 11 to 7, and the National Institute for Occupational Safety and Health Lifting Index (NIOSH LI) has been reduced from 5.27 to 1.85.Keywords: ergonomics, safety, workplace risks, hazards, awkward posture, fatigue, work environment
Procedia PDF Downloads 7968 Different Motor Inhibition Processes in Action Selection Stage: A Study with Spatial Stroop Paradigm
Authors: German Galvez-Garcia, Javier Albayay, Javiera Peña, Marta Lavin, George A. Michael
Abstract:
The aim of this research was to investigate whether the selection of the actions needs different inhibition processes during the response selection stage. In Experiment 1, we compared the magnitude of the Spatial Stroop effect, which occurs in response selection stage, in two motor actions (lifting vs reaching) when the participants performed both actions in the same block or in different blocks (mixed block vs. pure blocks).Within pure blocks, we obtained faster latencies when lifting actions were performed, but no differences in the magnitude of the Spatial Stroop effect were observed. Within mixed block, we obtained faster latencies as well as bigger-magnitude for Spatial Stroop effect when reaching actions were performed. We concluded that when no action selection is required (the pure blocks condition), inhibition works as a unitary system, whereas in the mixed block condition, where action selection is required, different inhibitory processes take place within a common processing stage. In Experiment 2, we investigated this common processing stage in depth by limiting participants’ available resources, requiring them to engage in a concurrent auditory task within a mixed block condition. The Spatial Stroop effect interacted with Movement as it did in Experiment 1, but it did not significantly interact with available resources (Auditory task x Spatial Stroop effect x Movement interaction). Thus, we concluded that available resources are distributed equally to both inhibition processes; this reinforces the likelihood of there being a common processing stage in which the different inhibitory processes take place.Keywords: inhibition process, motor processes, selective inhibition, dual task
Procedia PDF Downloads 39267 Increased Reaction and Movement Times When Text Messaging during Simulated Driving
Authors: Adriana M. Duquette, Derek P. Bornath
Abstract:
Reaction Time (RT) and Movement Time (MT) are important components of everyday life that have an effect on the way in which we move about our environment. These measures become even more crucial when an event can be caused (or avoided) in a fraction of a second, such as the RT and MT required while driving. The purpose of this study was to develop a more simple method of testing RT and MT during simulated driving with or without text messaging, in a university-aged population (n = 170). In the control condition, a randomly-delayed red light stimulus flashed on a computer interface after the participant began pressing the ‘gas’ pedal on a foot switch mat. Simple RT was defined as the time between the presentation of the light stimulus and the initiation of lifting the foot from the switch mat ‘gas’ pedal; while MT was defined as the time after the initiation of lifting the foot, to the initiation of depressing the switch mat ‘brake’ pedal. In the texting condition, upon pressing the ‘gas’ pedal, a ‘text message’ appeared on the computer interface in a dialog box that the participant typed on their cell phone while waiting for the light stimulus to turn red. In both conditions, the sequence was repeated 10 times, and an average RT (seconds) and average MT (seconds) were recorded. Condition significantly (p = .000) impacted overall RTs, as the texting condition (0.47 s) took longer than the no-texting (control) condition (0.34 s). Longer MTs were also recorded during the texting condition (0.28 s) than in the control condition (0.23 s), p = .001. Overall increases in Response Time (RT + MT) of 189 ms during the texting condition would equate to an additional 4.2 meters (to react to the stimulus and begin braking) if the participant had been driving an automobile at 80 km per hour. In conclusion, increasing task complexity due to the dual-task demand of text messaging during simulated driving caused significant increases in RT (41%), MT (23%) and Response Time (34%), thus further strengthening the mounting evidence against text messaging while driving.Keywords: simulated driving, text messaging, reaction time, movement time
Procedia PDF Downloads 52366 Combination Method Cold Plasma and Liquid Threads
Authors: Nino Tsamalaidze
Abstract:
Cold plasma is an ionized neutral gas with a temperature of 30-40 degrees, but the impact of HP includes not only gas, but also active molecules, charged particles, heat and UV radiation of low power The main goal of the technology we describe is to launch the natural function of skin regeneration and improve the metabolism inside, which leads to a huge effect of rejuvenation. In particular: eliminate fine mimic wrinkles; get rid of wrinkles around the mouth (purse-string wrinkles); reduce the overhang of the upper eyelid; eliminate bags under the eyes; provide a lifting effect on the oval of the face; reduce stretch marks; shrink pores; even out the skin, reduce the appearance of acne, scars; remove pigmentation. A clear indication of the major findings of the study is based on the current patients practice. The method is to use combination of cold plasma and liquid threats. The advantage of cold plasma is undoubtedly its efficiency, the result of its implementation can be compared with the result of a surgical facelift, despite the fact that the procedure is non-invasive and the risks are minimized. Another advantage is that the technique can be applied on the most sensitive skin of the face - these are the eyelids and the space around the eyes. Cold plasma is one of the few techniques that eliminates bags under the eyes and overhanging eyelids, while not violating the integrity of the tissues. In addition to rejuvenation and lifting effect, among the benefits of cold plasma is also getting rid of scars, kuperoze, stretch marks and other skin defects, plasma allows to get rid of acne, seborrhea, skin fungus and even heals ulcers. The cold plasma method makes it possible to achieve a result similar to blepharoplasty. Carried out on the skin of the eyelids, the procedure allows non-surgical correction of the eyelid line in 3-4 sessions. One of the undoubted advantages of this method is a short rehabilitation and rapid healing of the skin.Keywords: wrinkles, telangiectasia, pigmentation, pore closing
Procedia PDF Downloads 8465 Nose Macroneedling Tie Suture Hidden Technique
Authors: Mohamed Ghoz, Hala Alsabeh
Abstract:
Context: Macroscopic Nose Macroneedling (MNM) is a new non-surgical procedure for lifting and tightening the nose. It is a tissue-non-invasive technique that uses a needle to create micro-injuries in the skin. These injuries stimulate the production of collagen and elastin, which results in the tightening and lifting of the skin. Research Aim: The research aim of this study was to investigate the efficacy and safety of MNM for the treatment of nasal deformities. Methodology A total of 100 patients with nasal deformities were included in this study. The patients were randomly assigned to either the MNM group or the control group. The MNM group received a single treatment of MNM, while the control group received no treatment. The patients were evaluated at baseline, 6 months, and 12 months after treatment. Findings: The results of this study showed that MNM was effective in improving the appearance of the nose in patients with nasal deformities. At 6 months after treatment, the patients in the MNM group had significantly improved nasal tip projection, nasal bridge height, and nasal width compared to the patients in the control group. The improvements in nasal appearance were maintained at 12 months after treatment. Theoretical Importance: The findings of this study provide support for the use of MNM as a safe and effective treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities. Data Collection: Data was collected from the patients using a variety of methods, including clinical assessments, photographic assessments, and patient-reported outcome measures. Analysis Procedures: The data was analyzed using a variety of statistical methods, including descriptive statistics, inferential statistics, and meta-analysis. Question Addressed: The research question addressed in this study was whether MNM is an effective and safe treatment for nasal deformities. Conclusion: The findings of this study suggest that MNM is an effective and safe treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities.Keywords: nose, surgery, tie, suture
Procedia PDF Downloads 7564 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances
Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi
Abstract:
This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.Keywords: crane, dynamic model, overloading condition, vibration
Procedia PDF Downloads 57563 Study on Adding Story and Seismic Strengthening of Old Masonry Buildings
Authors: Youlu Huang, Huanjun Jiang
Abstract:
A large number of old masonry buildings built in the last century still remain in the city. It generates the problems of unsafety, obsolescence, and non-habitability. In recent years, many old buildings have been reconstructed through renovating façade, strengthening, and adding floors. However, most projects only provide a solution for a single problem. It is difficult to comprehensively solve problems of poor safety and lack of building functions. Therefore, a comprehensive functional renovation program of adding reinforced concrete frame story at the bottom via integrally lifting the building and then strengthening the building was put forward. Based on field measurement and YJK calculation software, the seismic performance of an actual three-story masonry structure in Shanghai was identified. The results show that the material strength of masonry is low, and the bearing capacity of some masonry walls could not meet the code requirements. The elastoplastic time history analysis of the structure was carried out by using SAP2000 software. The results show that under the 7 degrees rare earthquake, the seismic performance of the structure reaches 'serious damage' performance level. Based on the code requirements of the stiffness ration of the bottom frame (lateral stiffness ration of the transition masonry story and frame story), the bottom frame story was designed. The integral lifting process of the masonry building was introduced based on many engineering examples. The reinforced methods for the bottom frame structure strengthened by the steel-reinforced mesh mortar surface layer (SRMM) and base isolators, respectively, were proposed. The time history analysis of the two kinds of structures, under the frequent earthquake, the fortification earthquake, and the rare earthquake, was conducted by SAP2000 software. For the bottom frame structure, the results show that the seismic response of the masonry floor is significantly reduced after reinforced by the two methods compared to the masonry structure. The previous earthquake disaster indicated that the bottom frame is vulnerable to serious damage under a strong earthquake. The analysis results showed that under the rare earthquake, the inter-story displacement angle of the bottom frame floor meets the 1/100 limit value of the seismic code. The inter-story drift of the masonry floor for the base isolated structure under different levels of earthquakes is similar to that of structure with SRMM, while the base-isolated program is better to protect the bottom frame. Both reinforced methods could significantly improve the seismic performance of the bottom frame structure.Keywords: old buildings, adding story, seismic strengthening, seismic performance
Procedia PDF Downloads 12162 Investigation of the Aerodynamic Characteristics of a Vertical Take-Off and Landing Mini Unmanned Aerial Vehicle Configuration
Authors: Amir Abdelqodus, Mario Shehata
Abstract:
The purpose of the paper is to model and evaluate the aerodynamic coefficients and stability derivatives of a Vertical, Take-off and Landing Unmanned Aerial Vehicle configuration (VTOL UAV), which is a fixed wing UAV and a quad-copter hybrid capable of both vertical and conventional take-off and/or landing. The aerodynamic analysis of this configuration was carried out using CFD commercial package Ansys Fluent. Also, the aerodynamic coefficients for the case of the UAV without the quad-copter is carried out analytically using MATLAB programmed codes, and the resulting data is verified using Lifting Line Theory and potential method programs. The two results are then compared to understand the effect of adding the quad-copter on the aerodynamic performance of the UAV.Keywords: aerodynamics, CFD, potential flow, UAV, VTOL
Procedia PDF Downloads 444