Search results for: laser fluorescence diagnosis (LFD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3345

Search results for: laser fluorescence diagnosis (LFD)

3345 Innovative Technologies Functional Methods of Dental Research

Authors: Sergey N. Ermoliev, Margarita A. Belousova, Aida D. Goncharenko

Abstract:

Application of the diagnostic complex of highly informative functional methods (electromyography, reodentography, laser Doppler flowmetry, reoperiodontography, vital computer capillaroscopy, optical tissue oximetry, laser fluorescence diagnosis) allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment. Introduction. It is necessary to create a complex of innovative highly informative and safe functional diagnostic methods for improvement of the quality of patient treatment by the early detection of stomatologic diseases. The purpose of the present study was to investigate the etiology and pathogenesis of functional disorders identified in the pathology of hard tissue, dental pulp, periodontal, oral mucosa and chewing function, and the creation of new approaches to the diagnosis of dental diseases. Material and methods. 172 patients were examined. Density of hard tissues of the teeth and jaw bone was studied by intraoral ultrasonic densitometry (USD). Electromyographic activity of masticatory muscles was assessed by electromyography (EMG). Functional state of dental pulp vessels assessed by reodentography (RDG) and laser Doppler flowmetry (LDF). Reoperiodontography method (RPG) studied regional blood flow in the periodontal tissues. Microcirculatory vascular periodontal studied by vital computer capillaroscopy (VCC) and laser Doppler flowmetry (LDF). The metabolic level of the mucous membrane was determined by optical tissue oximetry (OTO) and laser fluorescence diagnosis (LFD). Results and discussion. The results obtained revealed changes in mineral density of hard tissues of the teeth and jaw bone, the bioelectric activity of masticatory muscles, regional blood flow and microcirculation in the dental pulp and periodontal tissues. LDF and OTO methods estimated fluctuations of saturation level and oxygen transport in microvasculature of periodontal tissues. With LFD identified changes in the concentration of enzymes (nicotinamide, flavins, lipofuscin, porphyrins) involved in metabolic processes Conclusion. Our preliminary results confirmed feasibility and safety the of intraoral ultrasound densitometry technique in the density of bone tissue of periodontium. Conclusion. Application of the diagnostic complex of above mentioned highly informative functional methods allows to perform a multifactorial analysis of the dental status and to prescribe complex etiopathogenetic treatment.

Keywords: electromyography (EMG), reodentography (RDG), laser Doppler flowmetry (LDF), reoperiodontography method (RPG), vital computer capillaroscopy (VCC), optical tissue oximetry (OTO), laser fluorescence diagnosis (LFD)

Procedia PDF Downloads 280
3344 Experimental Device for Fluorescence Measurement by Optical Fiber Combined with Dielectrophoretic Sorting in Microfluidic Chips

Authors: Jan Jezek, Zdenek Pilat, Filip Smatlo, Pavel Zemanek

Abstract:

We present a device that combines fluorescence spectroscopy with fiber optics and dielectrophoretic micromanipulation in PDMS (poly-(dimethylsiloxane)) microfluidic chips. The device allows high speed detection (in the order of kHz) of the fluorescence signal, which is coming from the sample by an inserted optical fiber, e.g. from a micro-droplet flow in a microfluidic chip, or even from the liquid flowing in the transparent capillary, etc. The device uses a laser diode at a wavelength suitable for excitation of fluorescence, excitation and emission filters, optics for focusing the laser radiation into the optical fiber, and a highly sensitive fast photodiode for detection of fluorescence. The device is combined with dielectrophoretic sorting on a chip for sorting of micro-droplets according to their fluorescence intensity. The electrodes are created by lift-off technology on a glass substrate, or by using channels filled with a soft metal alloy or an electrolyte. This device found its use in screening of enzymatic reactions and sorting of individual fluorescently labelled microorganisms. The authors acknowledge the support from the Grant Agency of the Czech Republic (GA16-07965S) and Ministry of Education, Youth and Sports of the Czech Republic (LO1212) together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017).

Keywords: dielectrophoretic sorting, fiber optics, laser, microfluidic chips, microdroplets, spectroscopy

Procedia PDF Downloads 719
3343 Studying the Evolution of Soot and Precursors in Turbulent Flames Using Laser Diagnostics

Authors: Muhammad A. Ashraf, Scott Steinmetz, Matthew J. Dunn, Assaad R. Masri

Abstract:

This study focuses on the evolution of soot and soot precursors in three different piloted diffusion turbulent flames. The fuel composition is as follow flame A (ethylene/nitrogen, 2:3 by volume), flame B (ethylene/air, 2:3 by volume), and flame C (pure methane). These flames are stabilized using a 4mm diameter jet surrounded by a pilot annulus with an outer diameter of 15 mm. The pilot issues combustion products from stoichiometric premixed flames of hydrogen, acetylene, and air. In all cases, the jet Reynolds number is 10,000, and air flows in the coflow stream at a velocity of 5 m/s. Time-resolved laser-induced fluorescence (LIF) is collected at two wavelength bands in the visible (445 nm) and UV regions (266 nm) along with laser-induced incandescence (LII). The combined results are employed to study concentration, size, and growth of soot and precursors. A set of four fast photo-multiplier tubes are used to record emission data in temporal domain. A 266nm laser pulse preferentially excites smaller nanoparticles which emit a fluorescence spectrum which is analysed to track the presence, evolution, and destruction of nanoparticles. A 1064nm laser pulse excites sufficiently large soot particles, and the resulting incandescence is collected at 1064nm. At downstream and outer radial locations, intermittency becomes a relevant factor. Therefore, data collected in turbulent flames is conditioned to account for intermittency so that the resulting mean profiles for scattering, fluorescence, and incandescence are shown for the events that contain traces of soot. It is found that in the upstream regions of the ethylene-air and ethylene-nitrogen flames, the presence of soot precursors is rather similar. However, further downstream, soot concentration grows larger in the ethylene-air flames.

Keywords: laser induced incandescence, laser induced fluorescence, soot, nanoparticles

Procedia PDF Downloads 146
3342 A Study on Real-Time Fluorescence-Photoacoustic Imaging System for Mouse Thrombosis Monitoring

Authors: Sang Hun Park, Moung Young Lee, Su Min Yu, Hyun Sang Jo, Ji Hyeon Kim, Chul Gyu Song

Abstract:

A near-infrared light source used as a light source in the fluorescence imaging system is suitable for use in real-time during the operation since it has no interference in surgical vision. However, fluorescence images do not have depth information. In this paper, we configured the device with the research on molecular imaging systems for monitoring thrombus imaging using fluorescence and photoacoustic. Fluorescence imaging was performed using a phantom experiment in order to search the exact location, and the Photoacoustic image was in order to detect the depth. Fluorescence image obtained when evaluated through current phantom experiments when the concentration of the contrast agent is 25μg / ml, it was confirmed that it looked sharper. The phantom experiment is has shown the possibility with the fluorescence image and photoacoustic image using an indocyanine green contrast agent. For early diagnosis of cardiovascular diseases, more active research with the fusion of different molecular imaging devices is required.

Keywords: fluorescence, photoacoustic, indocyanine green, carotid artery

Procedia PDF Downloads 601
3341 Exploring Structure of Human Chromosomes Using Fluorescence Lifetime Imaging

Authors: A. Bhartiya, S. Botchway, M. Yusuf, I. Robinson

Abstract:

Chromatin condensation is maintained by DNA-based proteins and some divalent cations (Mg²⁺, Ca²⁺, etc.). Condensation process during cell division maintains structural and functional organizations of chromosomes by transferring genetic information correctly to daughter cells. Fluorescence Lifetime Imaging (FLIM) technique measures the fluorescence decay of fixed human chromosomes by calculating the lifetime of fluorophores at a pixel x of the arrival of each photon as a function of time delay t, following excitation with a laser pulse. Fixed metaphase human chromosomes were labelled with DNA-binding dye, DAPI and later DAPI fluorescence lifetime measured using multiphoton microscopy. 5 out of 23 pairs of human chromosomes shown shorter lifetime at the centromere region, differentiating proportion of compaction along the length of chromosomes. Different lifetime was observed in a condensed and de-condensed chromosome. It clearly indicates the involvement of divalent cations in the process of condensation.

Keywords: divalent cations, FLIM (Fluorescence Lifetime Imaging), human chromosomes, multiphoton microscopy

Procedia PDF Downloads 285
3340 Hand-Held X-Ray Fluorescence Spectroscopy for Pre-Diagnostic Studies in Conservation, and Limitations

Authors: Irmak Gunes Yuceil

Abstract:

This paper outlines interferences and analytical errors which are encountered in the qualification and quantification of archaeological and ethnographic artifacts, by means of handheld x-ray fluorescence. These shortcomings were evaluated through case studies carried out on metallic artifacts related to various periods and cultures around Anatolia. An Innov-X Delta Standard 2000 handheld x-ray fluorescence spectrometer was used to collect data from 1361 artifacts, through 6789 measurements and 70 hours’ tube usage, in between 2013-2017. Spectrum processing was done by Delta Advanced PC Software. Qualitative and quantitative results screened by the device were compared with the spectrum graphs, and major discrepancies associated with physical and analytical interferences were clarified in this paper.

Keywords: hand-held x-ray fluorescence spectroscopy, art and archaeology, interferences and analytical errors, pre-diagnosis in conservation

Procedia PDF Downloads 195
3339 A Rare Case of Prolonged Pressure Rise Following Selective Laser Trabeculoplasty

Authors: Aneesha Fonseca, Arij Daas, Muhammed Abdulkader

Abstract:

Transient intraocular pressure (IOP) rise is a common occurrence after glaucoma laser procedures. However, this pressure spike usually lasts only a few days. We describe a case of a 60-year-old Caucasian gentleman who underwent selective laser trabeculoplasty (SLT) in both eyes for ocular hypertension previously treated with Bimatoprost and Timolol and developed a sustained raised IOP. His IOP rose from 34 and 33 mmHg pre-laser to 48 and 42 mmHg after SLT in the right and left eye, respectively. Even after maximum medical therapy (Bimatoprost, Timolol, Brinzolamide Apraclonidine, and oral Acetozolamide), his IOP remained at 32 and 28mmHg. A provisional diagnosis of trabeculitis was made, and topical Ketorolac was commenced in addition to the IOP-lowering medications. Within a week, his IOP came down to 21 and 18mmHg in the right and left eye, respectively.

Keywords: complications, selective laser trabeculoplasty, sustained pressure rise, trabeculitis

Procedia PDF Downloads 100
3338 Investigation of the Carbon Dots Optical Properties Using Laser Scanning Confocal Microscopy and TimE-resolved Fluorescence Microscopy

Authors: M. S. Stepanova, V. V. Zakharov, P. D. Khavlyuk, I. D. Skurlov, A. Y. Dubovik, A. L. Rogach

Abstract:

Carbon dots are small carbon-based spherical nanoparticles, which are typically less than 10 nm in size that can be modified with surface passivation and heteroatoms doping. The light-absorbing ability of carbon dots has attracted a significant amount of attention in photoluminescence for bioimaging and fluorescence sensing applications owing to their advantages, such as tunable fluorescence emission, photo- and thermostability and low toxicity. In this study, carbon dots were synthesized by the solvothermal method from citric acid and ethylenediamine dissolved in water. The solution was heated for 5 hours at 200°C and then cooled down to room temperature. The carbon dots films were obtained by evaporation from a high-concentration aqueous solution. The increase of both luminescence intensity and light transmission was obtained as a result of a 405 nm laser exposure to a part of the carbon dots film, which was detected using a confocal laser scanning microscope (LSM 710, Zeiss). Blueshift up to 35 nm of the luminescence spectrum is observed as luminescence intensity, which is increased more than twofold. The exact value of the shift depends on the time of the laser exposure. This shift can be caused by the modification of surface groups at the carbon dots, which are responsible for long-wavelength luminescence. In addition, a shift of the absorption peak by 10 nm and a decrease in the optical density at the wavelength of 350 nm is detected, which is responsible for the absorption of surface groups. The obtained sample was also studied with time-resolved confocal fluorescence microscope (MicroTime 100, PicoQuant), which made it possible to receive a time-resolved photoluminescence image and construct emission decays of the laser-exposed and non-exposed areas. 5 MHz pulse rate impulse laser has been used as a photoluminescence excitation source. Photoluminescence decay was approximated by two exhibitors. The laser-exposed area has the amplitude of the first-lifetime component (A1) twice as much as before, with increasing τ1. At the same time, the second-lifetime component (A2) decreases. These changes evidence a modification of the surface groups of carbon dots. The detected effect can be used to create thermostable fluorescent marks, the physical size of which is bounded by the diffraction limit of the optics (~ 200-300 nm) used for exposure and to improve the optical properties of carbon dots or in the field of optical encryption. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and financially supported by Government of Russian Federation, Grant 08-08.

Keywords: carbon dots, photoactivation, optical properties, photoluminescence and absorption spectra

Procedia PDF Downloads 165
3337 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode

Procedia PDF Downloads 301
3336 Tetracycline as Chemosensor for Simultaneous Recognition of Al³⁺: Application to Bio-Imaging for Living Cells

Authors: Jesus Alfredo Ortega Granados, Pandiyan Thangarasu

Abstract:

Antibiotic tetracycline presents as a micro-contaminant in fresh water, wastewater and soils, causing environmental and health problems. In this work, tetracycline (TC) has been employed as chemo-sensor for the recognition of Al³⁺ without interring other ions, and the results show that it enhances the fluorescence intensity for Al³⁺ and there is no interference from other coexisting cation ions (Cd²⁺, Ni²⁺, Co²⁺, Sr²⁺, Mg²⁺, Fe³⁺, K⁺, Sm³⁺, Ag⁺, Na⁺, Ba²⁺, Zn²⁺, and Mn²⁺). For the addition of Cu²⁺ to [TET-Al³⁺], it appears that the intensity of fluorescence has been quenched. Other combinations of metal ions in addition to TC do not change the fluorescence behavior. The stoichiometry determined by Job´s plot for the interaction of TC with Al³⁺ was found to be 1:1. Importantly, the detection of Al³⁺⁺ successfully employed in the real samples like living cells, and it was found that TC efficiently performs as a fluorescent probe for Al³⁺ ion in living systems, especially in Saccharomyces cerevisiae; this is confirmed by confocal laser scanning microscopy.

Keywords: chemo-sensor, recognition of Al³⁺ ion, Saccharomyces cerevisiae, tetracycline,

Procedia PDF Downloads 189
3335 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots

Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau

Abstract:

Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.

Keywords: graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence

Procedia PDF Downloads 633
3334 Wobbled Laser Beam Welding for Macro-to Micro-Fabrication Process

Authors: Farzad Vakili-Farahani, Joern Lungershausen, Kilian Wasmer

Abstract:

Wobbled laser beam welding, fast oscillations of a tiny laser beam within a designed path (weld geometry) during the laser pulse illumination, opens new possibilities to improve the marco-to micro-manufacturing process. The present work introduces the wobbled laser beam welding as a robust welding strategy for improving macro-to micro-fabrication process, e.g., the laser processing for gap-bridging and packaging industry. The typical requisites and relevant equipment for the development of a wobbled laser processing unit are addressed, including a suitable laser source, light delivery system, optics, proper beam deflection system and the design geometry. In addition, experiments have been carried out on titanium plate to compare the results of wobbled laser welding with conventional pulsed laser welding. As compared to the pulsed laser welding, the wobbled laser welding offers a much greater fusion area (i.e. additional molten material) while minimizing the HAZ and provides a better confinement of the material microstructural changes.

Keywords: wobbled laser beam welding, wobbling function, beam oscillation, micro welding

Procedia PDF Downloads 328
3333 Co-Registered Identification and Treatment of Skin Tumor with Optical Coherence Tomography-Guided Laser Therapy

Authors: Bo-Huei Huang, Chih-Hsun Yang, Meng-Tsan Tsai

Abstract:

Optical coherence tomography (OCT) enables to provide advantages of noninvasive imaging, high resolution, and high imaging speed. In this study, we integrated OCT and a CW laser for tumor diagnosis and treatment. The axial and transverse resolutions of the developed OCT system are 3 μm and 1 μm, respectively. The frame rate of OCT system is 30 frames/s. In this study, the tumor cells were implanted into the mice skin and scanned by OCT to observe the morphological and angiographic changes. With OCT imaging, 3D microstructures and skin angiography of mice skin can be simultaneously acquired, which can be utilized for identification of the tumor distribution. Then, the CW laser beam can be accurately controlled to expose on the center of the tumor, according to the OCT results. Moreover, OCT was used to monitor the induced photothermolysis and to evaluate the treatment outcome. The results showed that OCT-guided laser therapy could efficiently improve the treatment outcome and the extra damage induced by CW can be greatly reduced. Such OCT-guided laser therapy system could be a potential tool for dermatological applications.

Keywords: optical coherence tomography, laser therapy, skin tumor, position guide

Procedia PDF Downloads 280
3332 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes

Procedia PDF Downloads 286
3331 Synthesis and Photophysical Studies of BOPIDY Dyes Conjugated with 4-Benzyloxystyryl Substituents

Authors: Bokolombe Pitchou Ngoy, John Mack, Tebello Nyokong

Abstract:

Synthesis and photochemical studies of BODIPY dyes have been investigated in this work in order to have a broad benchmark of this functionalized photosensitizer for biological applications such as photodynamic therapy or antimicrobial activity. The common acid catalyzed synthetic method was used, and BODIPY dyes were obtained in quite a good yield (25 %) followed by bromination and Knoevenagel condensation to afford the BODIPY dyes conjugated with maximum absorbance in the near-infrared region of the electromagnetic spectrum. The fluorescence lifetimes, fluorescence quantum yield, and Singlet oxygen quantum yield of the conjugated BODIPY dyes were determined in different solvents by using Time Correlation Single Photon Counting (TCSPC), fluorimeter, and Laser Flash Photolysis respectively. It was clearly shown that the singlet oxygen quantum yield was higher in THF followed by DMSO compared to another solvent. The same trend was observed for the fluorescence lifetimes.

Keywords: BODIPY, photodynamic therapy, photosensitizer, singlet oxygen

Procedia PDF Downloads 300
3330 Laser Beam Bending via Lenses

Authors: Remzi Yildirim, Fatih. V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin

Abstract:

This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.

Keywords: laser, bending, lens, light, nonlinear optics

Procedia PDF Downloads 488
3329 Laser Light Bending via Lenses

Authors: Remzi Yildirim, Fatih V. Çelebi, H. Haldun Göktaş, A. Behzat Şahin

Abstract:

This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams.

Keywords: laser, bending, lens, light, nonlinear optics

Procedia PDF Downloads 703
3328 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision

Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason

Abstract:

Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.

Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics

Procedia PDF Downloads 241
3327 Diagnosis of Gingivitis Based on Correlations of Laser Doppler Data and Gingival Fluid Cytology

Authors: A. V. Belousov, Yakushenko

Abstract:

One of the main problems of modern dentistry is development a reliable method to detect inflammation in the gums on the stages of diagnosis and assessment of treatment efficacy. We have proposed a method of gingival fluid intake, which successfully combines accessibility, excluding the impact of the annoying and damaging the gingival sulcus factors and provides reliable results (patent of RF№ 2342956 Method of gingival fluid intake). The objects of the study were students - volunteers of Dentistry Faculty numbering 75 people aged 20-21 years. Cellular composition of gingival fluid was studied using microscope "Olympus CX 31" (Japan) with the calculation of epithelial leukocyte index (ELI). Assessment of gingival micro circulation was performed using the apparatus «LAKK–01» (Lazma, Moscow). Cytological investigation noted the highly informative of epithelial leukocyte index (ELI), which demonstrated changes in the mechanisms of protection gums. The increase of ELI occurs during inhibition mechanisms of phagocytosis and activation of epithelial desquamation. The cytological data correlate with micro circulation indicators obtained by laser Doppler flowmetry. We have identified and confirmed the correlations between parameters laser Doppler flowmetry and data cytology gingival fluid in patients with gingivitis.

Keywords: gingivitis, laser doppler flowmetry, gingival fluid cytology, epithelial leukocyte index (ELI)

Procedia PDF Downloads 328
3326 Enhancing of Laser Imaging by Using Ultrasound Effect

Authors: Hayder Raad Hafuze, Munqith Saleem Dawood, Jamal Abdul Jabbar

Abstract:

The effect of using both ultrasounds with laser in medical imaging of the biological tissue has been studied in this paper. Different wave lengths of incident laser light (405 nm, 532 nm, 650 nm, 808 nm and 1064 nm) were used with different ultrasound frequencies (1MHz and 3.3MHz). The results showed that, the change of acoustic intensity enhance the laser penetration of the tissue for different thickness. The existence of the ideal Raman-Nath diffraction pattern were investigated in terms of phase delay and incident angle.

Keywords: tissue, laser, ultrasound, effect, imaging

Procedia PDF Downloads 433
3325 Precise Spatially Selective Photothermolysis Skin Treatment by Multiphoton Absorption

Authors: Yimei Huang, Harvey Lui, Jianhua Zhao, Zhenguo Wu, Haishan Zeng

Abstract:

Conventional laser treatment of skin diseases and cosmetic surgery is based on the principle of one-photon absorption selective photothermolysis which relies strongly on the difference in the light absorption between the therapeutic target and its surrounding tissue. However, when the difference in one-photon absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To overcome this problem, we developed a spatially selective photothermolysis method based on multiphoton absorption in which the heat generation is restricted to the focal point of a tightly focused near-infrared femtosecond laser beam aligned with the target of interest. A multimodal optical microscope with co-registered reflectance confocal imaging (RCM), two-photon fluorescence imaging (TPF), and second harmonic generation imaging (SHG) capabilities was used to perform and monitor the spatially selective photothermolysis. Skin samples excised from the shaved backs of euthanized NODSCID mice were used in this study. Treatments were performed by focusing and scaning the laser beam in the dermis with a 50µm×50µm target area. Treatment power levels of 200 mW to 400 mW and modulated pulse trains of different duration and period were experimented. Different treatment parameters achieved different degrees of spatial confinement of tissue alterations as visualized by 3-D RCM/TPF/SHG imaging. At 200 mW power level, 0.1 s pulse train duration, 4.1 s pulse train period, the tissue damage was found to be restricted precisely to the 50µm×50µm×10µm volume, where the laser focus spot had scanned through. The overlying epidermis/dermis tissue and the underneath dermis tissue were intact although there was light passing through these regions.

Keywords: multiphoton absorption photothermolysis, reflectance confocal microscopy, second harmonic generation microscopy, spatially selective photothermolysis, two-photon fluorescence microscopy

Procedia PDF Downloads 515
3324 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: artificial neural network, bending angle, fuzzy logic, laser forming

Procedia PDF Downloads 597
3323 Optimum Er: YAG Laser Parameters for Orthodontic Composite Debonding: An in vitro Study

Authors: Mohammad Zamzam, Wesam Bachir, Imad Asaad

Abstract:

Several studies have produced estimates of Er:YAG laser parameters and specifications but there is still insufficient data for reliable selection of laser parameters. As a consequence, there is a heightened need for ideal specifications of Er:YAG laser to reduce the amount of enamel ablation. The objective of this paper is to investigate the influence of Er:YAG laser parameters, energy level and pulse duration, on orthodontic composite removal after bracket debonding. The sample consisted of 45 cuboids of orthodontic composite made by plastic moulds. The samples were divided into three groups, each was irradiated with Er:YAG laser set at different energy levels and three values for pulse durations (50 µs, 100 µs, and 300 µs). Geometrical parameters (depth and area) of cavities formed by laser irradiation were determined. ANCOVA test showed statistically significant difference (p < 0.0.5) between the groups indicating a potential effect of laser pulse duration on the geometrical parameters after controlling laser energy level. A post-hoc Bonferroni test ranked the 50µ Er:YAG laser pulse as the most influential factor for all geometrical parameters in removing remnant composite from enamel surface. Also, 300 mJ laser pulses caused the largest removal of the composite. The results of the present study demonstrated the efficacy of 50 µs and 300 mJ Er:YAG laser pulse for removal of remnant orthodontic composite.

Keywords: enamel, Er:YAG, geometrical parameters, orthodontic composite, remnant composite

Procedia PDF Downloads 553
3322 To Study the Effect of Optic Fibre Laser Cladding of Cast Iron with Silicon Carbide on Wear Rate

Authors: Kshitij Sawke, Pradnyavant Kamble, Shrikant Patil

Abstract:

The study investigates the effect on wear rate of laser clad of cast iron with silicon carbide. Metal components fail their desired use because they wear, which causes them to lose their functionality. The laser has been used as a heating source to create a melt pool over the surface of cast iron, and then a layer of hard silicon carbide is deposited. Various combinations of power and feed rate of laser have experimented. A suitable range of laser processing parameters was identified. Wear resistance and wear rate properties were evaluated and the result showed that the wear resistance of the laser treated samples was exceptional to that of the untreated samples.

Keywords: laser clad, processing parameters, wear rate, wear resistance

Procedia PDF Downloads 257
3321 Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium

Authors: Y. J. Chen, T. M. Yue, Z. N. Guo

Abstract:

This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface.

Keywords: laser direct joining, Ti/PET interface, laser energy, XPS depth profiling, chemical bond, tensile failure load

Procedia PDF Downloads 211
3320 Fluorescence Sensing as a Tool to Estimate Palm Oil Quality and Yield

Authors: Norul Husna A. Kasim, Siva K. Balasundram

Abstract:

The gap between ‘actual yield’ and ‘potential yield’ has remained a problem in the Malaysian oil palm industry. Ineffective maturity assessment and untimely harvesting have compounded this problem. Typically, the traditional method of palm oil quality and yield assessment is destructive, costly and laborious. Fluorescence-sensing offers a new means of assessing palm oil quality and yield non-destructively. This work describes the estimation of palm oil quality and yield using a multi-parametric fluorescence sensor (Multiplex®) to quantify the concentration of secondary metabolites, such as anthocyanin and flavonoid, in fresh fruit bunches across three different palm ages (6, 9, and 12 years-old). Results show that fluorescence sensing is an effective means of assessing FFB maturity, in terms of palm oil quality and yield quantifications.

Keywords: anthocyanin, flavonoid fluorescence sensor, palm oil yield and quality

Procedia PDF Downloads 809
3319 Laser Irradiated GeSn Photodetector for Improved Infrared Photodetection

Authors: Patrik Scajev, Pavels Onufrijevs, Algirdas Mekys, Tadas Malinauskas, Dominykas Augulis, Liudvikas Subacius, Kuo-Chih Lee, Jevgenijs Kaupuzs, Arturs Medvids, Hung Hsiang Cheng

Abstract:

In this study, we focused on the optoelectronic properties of the photodiodes prepared by using 200 nm thick Ge₀.₉₅Sn₀.₀₅ epitaxial layers on Ge/n-Si substrate with aluminum contacts. Photodiodes were formed on non-irradiated and Nd: YAG laser irradiated Ge₀.₉₅Sn₀.₀₅ layers. The samples were irradiated by pulsed Nd: YAG laser with 136.7-462.6 MW/cm² intensity. The photodiodes were characterized by using short laser pulses with the wavelength in the 2.0-2.6 μm range. The laser-irradiated diode was found more sensitive in the long-wavelength range due to laser-induced Sn atoms redistribution providing formation of graded bandgap structure. Sub-millisecond photocurrent relaxation in the diodes revealed their suitability for image sensors. Our findings open the perspective for improving the photo-sensitivity of GeSn alloys in the mid-infrared by pulsed laser processing.

Keywords: GeSn, laser processing, photodetector, infrared

Procedia PDF Downloads 153
3318 Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma

Authors: Sandeep Kumar, Naveen Gupta

Abstract:

The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing.

Keywords: non-Gaussian beam, collisional plasma, variational theory, self-focusing

Procedia PDF Downloads 195
3317 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Shaheen Bachy, Jörg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: laser structuring, simulation, finite element analysis, thermal modeling

Procedia PDF Downloads 349
3316 Development of 3D Laser Scanner for Robot Navigation

Authors: Ali Emre Öztürk, Ergun Ercelebi

Abstract:

Autonomous robotic systems needs an equipment like a human eye for their movement. Robotic camera systems, distance sensors and 3D laser scanners have been used in the literature. In this study a 3D laser scanner has been produced for those autonomous robotic systems. In general 3D laser scanners are using 2 dimension laser range finders that are moving on one-axis (1D) to generate the model. In this study, the model has been obtained by a one-dimensional laser range finder that is moving in two –axis (2D) and because of this the laser scanner has been produced cheaper. Furthermore for the laser scanner a motor driver, an embedded system control board has been used and at the same time a user interface card has been used to make the communication between those cards and computer. Due to this laser scanner, the density of the objects, the distance between the objects and the necessary path ways for the robot can be calculated. The data collected by the laser scanner system is converted in to cartesian coordinates to be modeled in AutoCAD program. This study shows also the synchronization between the computer user interface, AutoCAD and the embedded systems. As a result it makes the solution cheaper for such systems. The scanning results are enough for an autonomous robot but the scan cycle time should be developed. This study makes also contribution for further studies between the hardware and software needs since it has a powerful performance and a low cost.

Keywords: 3D laser scanner, embedded system, 1D laser range finder, 3D model

Procedia PDF Downloads 275