Search results for: false positives and negatives (FPFN)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 441

Search results for: false positives and negatives (FPFN)

441 Improvements in OpenCV's Viola Jones Algorithm in Face Detection–Skin Detection

Authors: Jyoti Bharti, M. K. Gupta, Astha Jain

Abstract:

This paper proposes a new improved approach for false positives filtering of detected face images on OpenCV’s Viola Jones Algorithm In this approach, for Filtering of False Positives, Skin Detection in two colour spaces i.e. HSV (Hue, Saturation and Value) and YCrCb (Y is luma component and Cr- red difference, Cb- Blue difference) is used. As a result, it is found that false detection has been reduced. Our proposed method reaches the accuracy of about 98.7%. Thus, a better recognition rate is achieved.

Keywords: face detection, Viola Jones, false positives, OpenCV

Procedia PDF Downloads 411
440 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: artificial neural networks (ANNs), classifier algorithms, credit risk assessment, logistic regression, machine Learning, support vector machines

Procedia PDF Downloads 107
439 Attack Redirection and Detection using Honeypots

Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat

Abstract:

A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.

Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner

Procedia PDF Downloads 160
438 AI-Powered Prediction of Email Spoofing Using Deep Learning Approach

Authors: N. Kannaiya Raja, Himay Mehta, Jay Garg, Anurag Kumar Singh, Aryan Tiwari, Daksha Thorecha

Abstract:

Email spoofing poses a significant threat to cybersecurity, as it exploits vulnerabilities in email systems to mislead individuals and organizations, leading to data breaches, financial losses, and compromised systems. To tackle this issue, this research presents an AI-powered framework that leverages deep learning techniques to detect spoofed emails with high accuracy. The framework analyzes various factors, including email content, metadata, and sender authenticity, to identify fraudulent messages effectively. Furthermore, the study evaluates machine learning approaches for phishing detection using a balanced dataset of legitimate and phishing emails. Among seven tested algorithms, Gradient Boosting demonstrated superior performance, achieving an accuracy of 96.1% and an AUC score of 97.9%. These findings highlight the advantages of ensemble and neural-based models in capturing intricate phishing patterns. However, challenges such as dependence on specific datasets and the difficulty of detecting deceptive emails that mimic legitimate ones underscore the need for further advancements. The deep learning model, trained on diverse datasets that include linguistic and header information, showed robust results with high accuracy and minimal false positives. This research highlights the crucial role of automation in improving detection systems and strengthening email security. By providing a scalable and efficient solution, it strengthens efforts to combat email spoofing and phishing. Integrating such AI-driven tools into existing email platforms can proactively mitigate these threats, fostering a more secure digital communication environment.

Keywords: neural networks (NN), gradient boosting (GB), decision forest (DF), support vector machine (SVM), false positives and negatives (FPFN), adaptive detection models (ADM)

Procedia PDF Downloads 2
437 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation

Authors: Lae-Jeong Park

Abstract:

The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.

Keywords: pedestrian detection, color segmentation, false positive, feature extraction

Procedia PDF Downloads 283
436 GPU Based Real-Time Floating Object Detection System

Authors: Jie Yang, Jian-Min Meng

Abstract:

A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme.

Keywords: object detection, GPU, motion estimation, parallel processing

Procedia PDF Downloads 479
435 Towards a Conscious Design in AI by Overcoming Dark Patterns

Authors: Ayse Arslan

Abstract:

One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.

Keywords: AI, ML, algorithms, policy, system design

Procedia PDF Downloads 124
434 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 360
433 Diagnostic Accuracy Of Core Biopsy In Patients Presenting With Axillary Lymphadenopathy And Suspected Non-Breast Malignancy

Authors: Monisha Edirisooriya, Wilma Jack, Dominique Twelves, Jennifer Royds, Fiona Scott, Nicola Mason, Arran Turnbull, J. Michael Dixon

Abstract:

Introduction: Excision biopsy has been the investigation of choice for patients presenting with pathological axillary lymphadenopathy without a breast abnormality. Core biopsy of nodes can provide sufficient tissue for diagnosis and has advantages in terms of morbidity and speed of diagnosis. This study evaluates the diagnostic accuracy of core biopsy in patients presenting with axillary lymphadenopathy. Methods: Between 2009 and 2019, 165 patients referred to the Edinburgh Breast Unit had a total of 179 axillary lymph node core biopsies. Results: 152 (92%) of the 165 initial core biopsies were deemed to contain adequate nodal tissue. Core biopsy correctly established malignancy in 75 of the 78 patients with haematological malignancy (96%) and in all 28 patients with metastatic carcinoma (100%) and correctly diagnosed benign changes in 49 of 57 (86%) patients with benign conditions. There were no false positives and no false negatives. In 67 (85.9%) of the 78 patients with hematological malignancy, there was sufficient material in the first core biopsy to allow the pathologist to make an actionable diagnosis and not ask for more tissue sampling prior to treatment. There were no complications of core biopsy. On follow up, none of the patients with benign cores has been shown to have malignancy in the axilla and none with lymphoma had their initial disease incorrectly classified. Conclusions: This study shows that core biopsy is now the investigation of choice for patients presenting with axillary lymphadenopathy even in those suspected as having lymphoma.

Keywords: core biopsy, excision biopsy, axillary lymphadenopathy, non-breast malignancy

Procedia PDF Downloads 246
432 A Human Factors Approach to Workload Optimization for On-Screen Review Tasks

Authors: Christina Kirsch, Adam Hatzigiannis

Abstract:

Rail operators and maintainers worldwide are increasingly replacing walking patrols in the rail corridor with mechanized track patrols -essentially data capture on trains- and on-screen reviews of track infrastructure in centralized review facilities. The benefit is that infrastructure workers are less exposed to the dangers of the rail corridor. The impact is a significant change in work design from walking track sections and direct observation in the real world to sedentary jobs in the review facility reviewing captured data on screens. Defects in rail infrastructure can have catastrophic consequences. Reviewer performance regarding accuracy and efficiency of reviews within the available time frame is essential to ensure safety and operational performance. Rail operators must optimize workload and resource loading to transition to on-screen reviews successfully. Therefore, they need to know what workload assessment methodologies will provide reliable and valid data to optimize resourcing for on-screen reviews. This paper compares objective workload measures, including track difficulty ratings and review distance covered per hour, and subjective workload assessments (NASA TLX) and analyses the link between workload and reviewer performance, including sensitivity, precision, and overall accuracy. An experimental study was completed with eight on-screen reviewers, including infrastructure workers and engineers, reviewing track sections with different levels of track difficulty over nine days. Each day the reviewers completed four 90-minute sessions of on-screen inspection of the track infrastructure. Data regarding the speed of review (km/ hour), detected defects, false negatives, and false positives were collected. Additionally, all reviewers completed a subjective workload assessment (NASA TLX) after each 90-minute session and a short employee engagement survey at the end of the study period that captured impacts on job satisfaction and motivation. The results showed that objective measures for tracking difficulty align with subjective mental demand, temporal demand, effort, and frustration in the NASA TLX. Interestingly, review speed correlated with subjective assessments of physical and temporal demand, but to mental demand. Subjective performance ratings correlated with all accuracy measures and review speed. The results showed that subjective NASA TLX workload assessments accurately reflect objective workload. The analysis of the impact of workload on performance showed that subjective mental demand correlated with high precision -accurately detected defects, not false positives. Conversely, high temporal demand was negatively correlated with sensitivity and the percentage of detected existing defects. Review speed was significantly correlated with false negatives. With an increase in review speed, accuracy declined. On the other hand, review speed correlated with subjective performance assessments. Reviewers thought their performance was higher when they reviewed the track sections faster, despite the decline in accuracy. The study results were used to optimize resourcing and ensure that reviewers had enough time to review the allocated track sections to improve defect detection rates in accordance with the efficiency-thoroughness trade-off. Overall, the study showed the importance of a multi-method approach to workload assessment and optimization, combining subjective workload assessments with objective workload and performance measures to ensure that recommendations for work system optimization are evidence-based and reliable.

Keywords: automation, efficiency-thoroughness trade-off, human factors, job design, NASA TLX, performance optimization, subjective workload assessment, workload analysis

Procedia PDF Downloads 126
431 Optimization of Reliability Test Plans: Increase Wafer Fabrication Equipments Uptime

Authors: Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta, Ahmed Zeouita

Abstract:

Semiconductor processing chambers tend to operate in controlled but aggressive operating conditions (chemistry, plasma, high temperature etc.) Owing to this, the design of this equipment requires developing robust and reliable hardware and software. Any equipment downtime due to reliability issues can have cost implications both for customers in terms of tool downtime (reduced throughput) and for equipment manufacturers in terms of high warranty costs and customer trust deficit. A thorough reliability assessment of critical parts and a plan for preventive maintenance/replacement schedules need to be done before tool shipment. This helps to save significant warranty costs and tool downtimes in the field. However, designing a proper reliability test plan to accurately demonstrate reliability targets with proper sample size and test duration is quite challenging. This is mainly because components can fail in different failure modes that fit into different Weibull beta value distributions. Without apriori Weibull beta of a failure mode under consideration, it always leads to over/under utilization of resources, which eventually end up in false positives or false negatives estimates. This paper proposes a methodology to design a reliability test plan with optimal model size/duration/both (independent of apriori Weibull beta). This methodology can be used in demonstration tests and can be extended to accelerated life tests to further decrease sample size/test duration.

Keywords: reliability, stochastics, preventive maintenance

Procedia PDF Downloads 25
430 Exploring Bidirectional Encoder Representations from the Transformers’ Capabilities to Detect English Preposition Errors

Authors: Dylan Elliott, Katya Pertsova

Abstract:

Preposition errors are some of the most common errors created by L2 speakers. In addition, improving error correction and detection methods remains an open issue in the realm of Natural Language Processing (NLP). This research investigates whether the bidirectional encoder representations from the transformers model (BERT) have the potential to correct preposition errors accurately enough to be useful in error correction software. This research finds that BERT performs strongly when the scope of its error correction is limited to preposition choice. The researchers used an open-source BERT model and over three hundred thousand edited sentences from Wikipedia, tagged for part of speech, where only a preposition edit had occurred. To test BERT’s ability to detect errors, a technique known as multi-level masking was used to generate suggestions based on sentence context for every prepositional environment in the test data. These suggestions were compared with the original errors in the data and their known corrections to evaluate BERT’s performance. The suggestions were further analyzed to determine if BERT more often agreed with the judgements of the Wikipedia editors. Both the untrained and fined-tuned models were compared. Finetuning led to a greater rate of error-detection which significantly improved recall, but lowered precision due to an increase in false positives or falsely flagged errors. However, in most cases, these false positives were not errors in preposition usage but merely cases where more than one preposition was possible. Furthermore, when BERT correctly identified an error, the model largely agreed with the Wikipedia editors, suggesting that BERT’s ability to detect misused prepositions is better than previously believed. To evaluate to what extent BERT’s false positives were grammatical suggestions, we plan to do a further crowd-sourcing study to test the grammaticality of BERT’s suggested sentence corrections against native speakers’ judgments.

Keywords: BERT, grammatical error correction, preposition error detection, prepositions

Procedia PDF Downloads 150
429 Modified Lot Quality Assurance Sampling (LQAS) Model for Quality Assessment of Malaria Parasite Microscopy and Rapid Diagnostic Tests in Kano, Nigeria

Authors: F. Sarkinfada, Dabo N. Tukur, Abbas A. Muaz, Adamu A. Yahuza

Abstract:

Appropriate Quality Assurance (QA) of parasite-based diagnosis of malaria to justify Artemisinin-based Combination Therapy (ACT) is essential for Malaria Programmes. In Low and Middle Income Countries (LMIC), resource constrain appears to be a major challenge in implementing the conventional QA system. We designed and implemented a modified LQAS model for QA of malaria parasite (MP) microscopy and RDT in a State Specialist Hospital (SSH) and a University Health Clinic (UHC) in Kano, Nigeria. The capacities of both facilities for MP microscopy and RDT were assessed before implementing a modified LQAS over a period of 3 months. Quality indicators comprising the qualities of blood film and staining, MP positivity rates, concordance rates, error rates (in terms of false positives and false negatives), sensitivity and specificity were monitored and evaluated. Seventy one percent (71%) of the basic requirements for malaria microscopy was available in both facilities, with the absence of certifies microscopists, SOPs and Quality Assurance mechanisms. A daily average of 16 to 32 blood samples were tested with a blood film staining quality of >70% recorded in both facilities. Using microscopy, the MP positivity rates were 50.46% and 19.44% in SSH and UHS respectively, while the MP positivity rates were 45.83% and 22.78% in SSH and UHS when RDT was used. Higher concordance rates of 88.90% and 93.98% were recorded in SSH and UHC respectively using microscopy, while lower rates of 74.07% and 80.58% in SSH and UHC were recorded when RDT was used. In both facilities, error rates were higher when RDT was used than with microscopy. Sensitivity and specificity were higher when microscopy was used (95% and 84% in SSH; 94% in UHC) than when RDT was used (72% and 76% in SSH; 78% and 81% in UHC). It could be feasible to implement an integrated QA model for MP microscopy and RDT using modified LQAS in Malaria Control Programmes in Low and Middle Income Countries that might have resource constrain for parasite-base diagnosis of malaria to justify ACT treatment.

Keywords: malaria, microscopy, quality assurance, RDT

Procedia PDF Downloads 229
428 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 293
427 Filtering Intrusion Detection Alarms Using Ant Clustering Approach

Authors: Ghodhbani Salah, Jemili Farah

Abstract:

With the growth of cyber attacks, information safety has become an important issue all over the world. Many firms rely on security technologies such as intrusion detection systems (IDSs) to manage information technology security risks. IDSs are considered to be the last line of defense to secure a network and play a very important role in detecting large number of attacks. However the main problem with today’s most popular commercial IDSs is generating high volume of alerts and huge number of false positives. This drawback has become the main motivation for many research papers in IDS area. Hence, in this paper we present a data mining technique to assist network administrators to analyze and reduce false positive alarms that are produced by an IDS and increase detection accuracy. Our data mining technique is unsupervised clustering method based on hybrid ANT algorithm. This algorithm discovers clusters of intruders’ behavior without prior knowledge of a possible number of classes, then we apply K-means algorithm to improve the convergence of the ANT clustering. Experimental results on real dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.

Keywords: intrusion detection system, alarm filtering, ANT class, ant clustering, intruders’ behaviors, false alarms

Procedia PDF Downloads 406
426 Mosaic Augmentation: Insights and Limitations

Authors: Olivia A. Kjorlien, Maryam Asghari, Farshid Alizadeh-Shabdiz

Abstract:

The goal of this paper is to investigate the impact of mosaic augmentation on the performance of object detection solutions. To carry out the study, YOLOv4 and YOLOv4-Tiny models have been selected, which are popular, advanced object detection models. These models are also representatives of two classes of complex and simple models. The study also has been carried out on two categories of objects, simple and complex. For this study, YOLOv4 and YOLOv4 Tiny are trained with and without mosaic augmentation for two sets of objects. While mosaic augmentation improves the performance of simple object detection, it deteriorates the performance of complex object detection, specifically having the largest negative impact on the false positive rate in a complex object detection case.

Keywords: accuracy, false positives, mosaic augmentation, object detection, YOLOV4, YOLOV4-Tiny

Procedia PDF Downloads 136
425 Digital Self-Identity and the Role of Interactivity in Psychiatric Assessment and Treatment

Authors: Kevin William Taylor

Abstract:

This work draws upon research in the fields of games development and mental health treatments to assess the influence that interactive entertainment has on the populous, and the potential of technology to affect areas of psychiatric assessment and treatment. It will use studies to establish the evolving direction of interactive media in the development of ‘digital self-identity,’ and how this can be incorporated into treatment to the benefit of psychiatry. It will determine that this approach will require collaborative production between developers and psychiatrists in order to ensure precise goals are met, improving the success of serious gaming for psychiatric assessment and treatment. Analysis documents the reach of video games across a growing global community of gamers, highlighting cases of the positives and negatives of video game usage. The games industry is largely oblivious to the psychological negatives, with psychiatrists encountering new conditions such as gaming addiction, which is now recognized by the World Health Organization. With an increasing amount of gamers worldwide, and an additional time per day invested in online gaming and character development, the concept of virtual identity as a means of expressing the id needs further study to ensure successful treatment. In conclusion, the assessment and treatment of game-related conditions are currently reactionary, and while some mental health professionals have begun utilizing interactive technologies to assist with the assessment and treatment of conditions, this study will determine how the success of these products can be enhanced. This will include collaboration between software developers and psychiatrists, allowing new avenues of skill-sharing in interactive design and development. Outlining how to innovate approaches to engagement will reap greater rewards in future interactive products developed for psychiatric assessment and treatment.

Keywords: virtual reality, virtual identity, interactivity, psychiatry

Procedia PDF Downloads 151
424 A Method for False Alarm Recognition Based on Multi-Classification Support Vector Machine

Authors: Weiwei Cui, Dejian Lin, Leigang Zhang, Yao Wang, Zheng Sun, Lianfeng Li

Abstract:

Built-in test (BIT) is an important technology in testability field, and it is widely used in state monitoring and fault diagnosis. With the improvement of modern equipment performance and complexity, the scope of BIT becomes larger, and it leads to the emergence of false alarm problem. The false alarm makes the health assessment unstable, and it reduces the effectiveness of BIT. The conventional false alarm suppression methods such as repeated test and majority voting cannot meet the requirement for a complicated system, and the intelligence algorithms such as artificial neural networks (ANN) are widely studied and used. However, false alarm has a very low frequency and small sample, yet a method based on ANN requires a large size of training sample. To recognize the false alarm, we propose a method based on multi-classification support vector machine (SVM) in this paper. Firstly, we divide the state of a system into three states: healthy, false-alarm, and faulty. Then we use multi-classification with '1 vs 1' policy to train and recognize the state of a system. Finally, an example of fault injection system is taken to verify the effectiveness of the proposed method by comparing ANN. The result shows that the method is reasonable and effective.

Keywords: false alarm, fault diagnosis, SVM, k-means, BIT

Procedia PDF Downloads 160
423 A New Second Tier Screening for Congenital Adrenal Hyperplasia Utilizing One Dried Blood Spot

Authors: Engy Shokry, Giancarlo La Marca, Maria Luisa Della Bona

Abstract:

Newborn screening for Congenital Adrenal Hyperplasia (CAH) relies on quantification of 17α-hydroxyprogesterone using enzyme immunoassays. These assays, in spite of being rapid, readily available and easy to perform, its reliability was found questionable due to lack of selectivity and specificity resulting in large number of false-positives, consequently family anxiety and associated hospitalization costs. To improve specificity of conventional 17α-hydroxyprogesterone screening which may experience false transient elevation in preterm, low birth weight or acutely ill neonates, steroid profiling by LC-MS/MS as a second-tier test was implemented. Unlike the previously applied LC-MS/MS methods, with the disadvantage of requiring a relatively high number of blood drops. Since newborn screening tests are increasing, it is necessary to minimize the sample volume requirement to make the maximum use of blood samples collected on filter paper. The proposed new method requires just one 3.2 mm dried blood spot (DBS) punch. Extraction was done using methanol: water: formic acid (90:10:0.1, v/v/v) containing deuterium labelled internal standards. Extracts were evaporated and reconstituted in 10 % acetone in water. Column switching strategy for on-line sample clean-up was applied to improve the chromatographic run. The first separative step retained the investigated steroids and passed through the majority of high molecular weight impurities. After the valve switching, the investigated steroids are back flushed from the POROS® column onto the analytical column and separated using gradient elution. Found quantitation limits were 5, 10 and 50 nmol/L for 17α-hydroxyprogesterone, androstenedione and cortisol respectively with mean recoveries of between 98.31-103.24 % and intra-/ inter-assay CV% < 10 % except at LLOQ. The method was validated using standard addition calibration and isotope dilution strategies. Reference ranges were determined by analysing samples from 896 infants of various ages at the time of sample collection. The method was also applied on patients with confirmed CAH. Our method represents an attractive combination of low sample volume requirement, minimal sample preparation time without derivatization and quick chromatography (5 min). The three steroid profile and the concentration ratios (17OHP + androstenedione/cortisol) allowed better screening outcomes of CAH reducing false positives, associated costs and anxiety.

Keywords: congenital adrenal hyperplasia (CAH), 17α-hydroxyprogesterone, androstenedione, cortisol, LC-MS/MS

Procedia PDF Downloads 441
422 To Evaluate the Function of Cardiac Viability After Administration of I131

Authors: Baburao Ganpat Apte, Gajodhar

Abstract:

Introduction: diopathic Parkinson’s disease (PD) is the most common neurodegenerative disorder. Early PD may present a diagnostic challenge with broad differential diagnoses that are not associated with striatal dopamine deficiency. This test was performed by using special type of radioactive precursor which was made available through our logistics. 131I-TOPA L-6-[131I] Iodo-3,4-Trihydroxyphenylalnine (131I -TOPA) is a positron emission tomography (PET) agent that measures the uptake of dopamine precursors for assessment of presynaptic dopaminergic integrity and has been shown to accurately reflect the sign of nervous mind going in patients suffers from monoaminergic disturbances in PD. Both qualitative and quantitative analyses of the scans were performed. Therefore, the early clinical diagnosis alone may be accurate and this reinforces the importance of functional imaging targeting the patholigically of the disease process. The patient’s medical records were then assessed for length of follow-up, response to levotopa, clinical course of sickness, and usually though of symptoms at time of 131I -TOPA PET. A respective analysis was carried out for all patients that gone through 131I -TOPA PET brain scan for motor symptoms suspicious for PD between 2000 - 2006. The eventual diagnosis by the referring neurologist, movement therapist, physiotherapist, was used as the accurate measurements in standard for further analysis. In this study, our goal to illustrate our local experience to determine the accuracy of 131I -TOPA PET for diagnosis of PD. We studied a total of 48 patients. Of the 25 scans, it found that one was a false negative, 40 were true positives, and 7 were true negatives. The resultant values are Sensitivity 90.4% (95% CI: 100%-71.3%), Specificity 100% (92% CI: 100%-58.0%), PPV 100% (91% CI 100%-75.7%), and NPV 80.5% (95% CI: 92.5%-48.5%). Result: Twenty-three patients were found in the initial query, and 1 were excluded (2 uncertain diagnosis, 2 inadequate follow-up). Twenty-eight patients (28 scans) remained with 15 males (62%) and 8 females (30%). All the patients had a clinical follow-up of at least 3 years, however the median length of follow-up was 5.5 years (range: 2-8 years). The median age at scan time was 51.2 years (range: 35-75)

Keywords: 18F-TOPA, petct, parkinson’s disease, cardiac

Procedia PDF Downloads 33
421 Virtual Marketing Team Leadership and Burnout: Literature Review, Implications for Managers, and Recommendations for Future Research

Authors: Chad A. Roberts

Abstract:

In the digitally connected world, global virtual teams are increasingly becoming the norm at large, multinational companies. Marketing managers see the positives of virtual teams. They also see the negatives. Employees who work from home may feel isolated, unorganized, and distracted by homelife. These complexities create a phenomenon that leaves virtual team members feeling burnout, a significant issue for marketing leaders and their team members. This paper examines remote worker burnout in global virtual marketing team settings. It provides an overview of the benefits and downsides to remote working marketing teams. The paper presents the literature on remote work stress and burnout, discusses ways marketing leaders can help prevent virtual employee burnout and suggests future research studies.

Keywords: burnout, COVID-19 pandemic, leadership, marketing, remote work, virtual team

Procedia PDF Downloads 225
420 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes

Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse

Abstract:

Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools.

Keywords: AI, LLM, ML, sports

Procedia PDF Downloads 18
419 Automatic Segmentation of Lung Pleura Based On Curvature Analysis

Authors: Sasidhar B., Bhaskar Rao N., Ramesh Babu D. R., Ravi Shankar M.

Abstract:

Segmentation of lung pleura is a preprocessing step in Computer-Aided Diagnosis (CAD) which helps in reducing false positives in detection of lung cancer. The existing methods fail in extraction of lung regions with the nodules at the pleura of the lungs. In this paper, a new method is proposed which segments lung regions with nodules at the pleura of the lungs based on curvature analysis and morphological operators. The proposed algorithm is tested on 06 patient’s dataset which consists of 60 images of Lung Image Database Consortium (LIDC) and the results are found to be satisfactory with 98.3% average overlap measure (AΩ).

Keywords: curvature analysis, image segmentation, morphological operators, thresholding

Procedia PDF Downloads 599
418 A Study on the False Alarm Rates of MEWMA and MCUSUM Control Charts When the Parameters Are Estimated

Authors: Umar Farouk Abbas, Danjuma Mustapha, Hamisu Idi

Abstract:

It is now a known fact that quality is an important issue in manufacturing industries. A control chart is an integrated and powerful tool in statistical process control (SPC). The mean µ and standard deviation σ parameters are estimated. In general, the multivariate exponentially weighted moving average (MEWMA) and multivariate cumulative sum (MCUSUM) are used in the detection of small shifts in joint monitoring of several correlated variables; the charts used information from past data which makes them sensitive to small shifts. The aim of the paper is to compare the performance of Shewhart xbar, MEWMA, and MCUSUM control charts in terms of their false rates when parameters are estimated with autocorrelation. A simulation was conducted in R software to generate the average run length (ARL) values of each of the charts. After the analysis, the results show that a comparison of the false alarm rates of the charts shows that MEWMA chart has lower false alarm rates than the MCUSUM chart at various levels of parameter estimated to the number of ARL0 (in control) values. Also noticed was that the sample size has an advert effect on the false alarm of the control charts.

Keywords: average run length, MCUSUM chart, MEWMA chart, false alarm rate, parameter estimation, simulation

Procedia PDF Downloads 226
417 Semi-Supervised Learning Using Pseudo F Measure

Authors: Mahesh Balan U, Rohith Srinivaas Mohanakrishnan, Venkat Subramanian

Abstract:

Positive and unlabeled learning (PU) has gained more attention in both academic and industry research literature recently because of its relevance to existing business problems today. Yet, there still seems to be some existing challenges in terms of validating the performance of PU learning, as the actual truth of unlabeled data points is still unknown in contrast to a binary classification where we know the truth. In this study, we propose a novel PU learning technique based on the Pseudo-F measure, where we address this research gap. In this approach, we train the PU model to discriminate the probability distribution of the positive and unlabeled in the validation and spy data. The predicted probabilities of the PU model have a two-fold validation – (a) the predicted probabilities of reliable positives and predicted positives should be from the same distribution; (b) the predicted probabilities of predicted positives and predicted unlabeled should be from a different distribution. We experimented with this approach on a credit marketing case study in one of the world’s biggest fintech platforms and found evidence for benchmarking performance and backtested using historical data. This study contributes to the existing literature on semi-supervised learning.

Keywords: PU learning, semi-supervised learning, pseudo f measure, classification

Procedia PDF Downloads 241
416 Advanced Machine Learning Algorithm for Credit Card Fraud Detection

Authors: Manpreet Kaur

Abstract:

When legitimate credit card users are mistakenly labelled as fraudulent in numerous financial delated applications, there are numerous ethical problems. The innovative machine learning approach we have suggested in this research outperforms the current models and shows how to model a data set for credit card fraud detection while minimizing false positives. As a result, we advise using random forests as the best machine learning method for predicting and identifying credit card transaction fraud. The majority of victims of these fraudulent transactions were discovered to be credit card users over the age of 60, with a higher percentage of fraudulent transactions taking place between the specific hours.

Keywords: automated fraud detection, isolation forest method, local outlier factor, ML algorithm, credit card

Procedia PDF Downloads 119
415 Teaching English to Students with Hearing Impairments - A Preliminary Study

Authors: Jane O`Halloran

Abstract:

This research aims to identify the issues and challenges of teaching English as a Foreign Language to Japanese university students who have special learning needs. This study sought to investigate factors influencing the academic performance of students with special or additional needs in an inclusive education context. This study will focus on a consideration of the methods available to support those with hearing impairments. While the study population is limited, it is important to give classes to be inclusive places where all students receive equal access to content. Hearing impairments provide an obvious challenge to language learning and, therefore, second-language learning. However, strategies and technologies exist to support the instructor without specialist training. This paper aims to identify these and present them to other teachers of English as a second language who wish to provide the best possible learning experience for every student. Two case studies will be introduced to compare and contrast the experience of in-class teaching and the online option and to share the positives and negatives of the two approaches. While the study focuses on the situation in a university in Japan, the lessons learned by the author may have universal value to any classroom with a student with a hearing disability.

Keywords: inclusive learning, special needs, hearing impairments, teaching strategies

Procedia PDF Downloads 141
414 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements

Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal

Abstract:

In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, Despite the tradeoff between the noise level and the speed of the detection. In this paper, An improvement is introduced in the Kalman filter, Through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, The effect on the response to false alarms is also presented and false alarm rate show improvement.

Keywords: Kalman filter, innovation, false detection, improvement

Procedia PDF Downloads 605
413 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 112
412 Modeling False Statements in Texts

Authors: Francielle A. Vargas, Thiago A. S. Pardo

Abstract:

According to the standard philosophical definition, lying is saying something that you believe to be false with the intent to deceive. For deception detection, the FBI trains its agents in a technique named statement analysis, which attempts to detect deception based on parts of speech (i.e., linguistics style). This method is employed in interrogations, where the suspects are first asked to make a written statement. In this poster, we model false statements using linguistics style. In order to achieve this, we methodically analyze linguistic features in a corpus of fake news in the Portuguese language. The results show that they present substantial lexical, syntactic and semantic variations, as well as punctuation and emotion distinctions.

Keywords: deception detection, linguistics style, computational linguistics, natural language processing

Procedia PDF Downloads 223