Search results for: evolutionary modelling
2158 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling
Procedia PDF Downloads 2982157 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems
Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras
Abstract:
The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.Keywords: MOEAs, multiobjective optimization, ZDT test functions, evolutionary algorithms
Procedia PDF Downloads 4702156 A Holistic Study of the Beta Lyrae Systems V0487 Lac, V0566 Hya and V0666 Lac
Authors: Moqbil S. Alenazi, Magdy. M. Elkhateeb
Abstract:
A comprehensive photometric study and evolutionary state for the newly discovered Beta Lyr systems V0487 Lac, V0566 Hya, and V0666 Lac were carried out by means of their first photometric observations. New times of minima were estimated from the observed light curves, and first (O-C) curves were established for all systems. A windows interface version of the Wilson and Devinney code (W-D) based on model atmospheres and a pass band prescription have been used for the radiative treatment. The accepted models reveal some absolute parameters for the studied systems, which are used in adopting the spectral type of the system's components and their evolutionary status. Distances to each system were calculated, and physical properties were estimated. Locations of the systems on the theoreticalmass–luminosity and mass–radius relations revealed a good fit for all systems components except for the secondary component of the system V0487 Lac.Keywords: eclipsing binaries, light curve modelling, evolutionary state
Procedia PDF Downloads 782155 Variational Evolutionary Splines for Solving a Model of Temporomandibular Disorders
Authors: Alberto Hananel
Abstract:
The aim of this work is to modelize the occlusion of a person with temporomandibular disorders as an evolutionary equation and approach its solution by the construction and characterizing of discrete variational splines. To formulate the problem, certain boundary conditions have been considered. After showing the existence and the uniqueness of the solution of such a problem, a convergence result of a discrete variational evolutionary spline is shown. A stress analysis of the occlusion of a human jaw with temporomandibular disorders by finite elements is carried out in FreeFem++ in order to prove the validity of the presented method.Keywords: approximation, evolutionary PDE, Finite Element Method, temporomandibular disorders, variational spline
Procedia PDF Downloads 3792154 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production
Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara
Abstract:
Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management
Procedia PDF Downloads 4912153 A Novel Guided Search Based Multi-Objective Evolutionary Algorithm
Authors: A. Baviskar, C. Sandeep, K. Shankar
Abstract:
Solving Multi-objective Optimization Problems requires faster convergence and better spread. Though existing Evolutionary Algorithms (EA's) are able to achieve this, the computation effort can further be reduced by hybridizing them with innovative strategies. This study is focuses on converging to the pareto front faster while adapting the advantages of Strength Pareto Evolutionary Algorithm-II (SPEA-II) for a better spread. Two different approaches based on optimizing the objective functions independently are implemented. In the first method, the decision variables corresponding to the optima of individual objective functions are strategically used to guide the search towards the pareto front. In the second method, boundary points of the pareto front are calculated and their decision variables are seeded to the initial population. Both the methods are applied to different constrained and unconstrained multi-objective test functions. It is observed that proposed guided search based algorithm gives better convergence and diversity than several well-known existing algorithms (such as NSGA-II and SPEA-II) in considerably less number of iterations.Keywords: boundary points, evolutionary algorithms (EA's), guided search, strength pareto evolutionary algorithm-II (SPEA-II)
Procedia PDF Downloads 2772152 Theoretical Approaches to Graphic and Formal Generation from Evolutionary Genetics
Authors: Luz Estrada
Abstract:
The currents of evolutionary materialistic thought have argued that knowledge about an object is not obtained through the abstractive method. That is, the object cannot come to be understood if founded upon itself, nor does it take place by the encounter between form and matter. According to this affirmation, the research presented here identified as a problematic situation the absence of comprehension of the formal creation as a generative operation. This has been referred to as a recurrent lack in the production of objects and corresponds to the need to conceive the configurative process from the reality of its genesis. In this case, it is of interest to explore ways of creation that consider the object as if it were a living organism, as well as responding to the object’s experience as embodied in the designer since it unfolds its genesis simultaneously to the ways of existence of those who are involved in the generative experience.Keywords: architecture, theoretical graphics, evolutionary genetics, formal perception
Procedia PDF Downloads 1182151 Co-Evolutionary Fruit Fly Optimization Algorithm and Firefly Algorithm for Solving Unconstrained Optimization Problems
Authors: R. M. Rizk-Allah
Abstract:
This paper presents co-evolutionary fruit fly optimization algorithm based on firefly algorithm (CFOA-FA) for solving unconstrained optimization problems. The proposed algorithm integrates the merits of fruit fly optimization algorithm (FOA), firefly algorithm (FA) and elite strategy to refine the performance of classical FOA. Moreover, co-evolutionary mechanism is performed by applying FA procedures to ensure the diversity of the swarm. Finally, the proposed algorithm CFOA- FA is tested on several benchmark problems from the usual literature and the numerical results have demonstrated the superiority of the proposed algorithm for finding the global optimal solution.Keywords: firefly algorithm, fruit fly optimization algorithm, unconstrained optimization problems
Procedia PDF Downloads 5372150 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller
Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan
Abstract:
Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller
Procedia PDF Downloads 4842149 Roasting Process of Sesame Seeds Modelling Using Gene Expression Programming: A Comparative Analysis with Response Surface Methodology
Authors: Alime Cengiz, Talip Kahyaoglu
Abstract:
Roasting process has the major importance to obtain desired aromatic taste of nuts. In this study, two kinds of roasting process were applied to hulled sesame seeds - vacuum oven and hot air roasting. Efficiency of Gene Expression Programming (GEP), a new soft computing technique of evolutionary algorithm that describes the cause and effect relationships in the data modelling system, and response surface methodology (RSM) were examined in the modelling of roasting processes over a range of temperature (120-180°C) for various times (30-60 min). Color attributes (L*, a*, b*, Browning Index (BI)), textural properties (hardness and fracturability) and moisture content were evaluated and modelled by RSM and GEP. The GEP-based formulations and RSM approach were compared with experimental results and evaluated according to correlation coefficients. The results showed that both GEP and RSM were found to be able to adequately learn the relation between roasting conditions and physical and textural parameters of roasted seeds. However, GEP had better prediction performance than the RSM with the high correlation coefficients (R2 >0.92) for the all quality parameters. This result indicates that the soft computing techniques have better capability for describing the physical changes occuring in sesame seeds during roasting process.Keywords: genetic expression programming, response surface methodology, roasting, sesame seed
Procedia PDF Downloads 4182148 Markowitz and Implementation of a Multi-Objective Evolutionary Technique Applied to the Colombia Stock Exchange (2009-2015)
Authors: Feijoo E. Colomine Duran, Carlos E. Peñaloza Corredor
Abstract:
There modeling component selection financial investment (Portfolio) a variety of problems that can be addressed with optimization techniques under evolutionary schemes. For his feature, the problem of selection of investment components of a dichotomous relationship between two elements that are opposed: The Portfolio Performance and Risk presented by choosing it. This relationship was modeled by Markowitz through a media problem (Performance) - variance (risk), ie must Maximize Performance and Minimize Risk. This research included the study and implementation of multi-objective evolutionary techniques to solve these problems, taking as experimental framework financial market equities Colombia Stock Exchange between 2009-2015. Comparisons three multiobjective evolutionary algorithms, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Indicator-Based Selection in Multiobjective Search (IBEA) were performed using two measures well known performance: The Hypervolume indicator and R_2 indicator, also it became a nonparametric statistical analysis and the Wilcoxon rank-sum test. The comparative analysis also includes an evaluation of the financial efficiency of the investment portfolio chosen by the implementation of various algorithms through the Sharpe ratio. It is shown that the portfolio provided by the implementation of the algorithms mentioned above is very well located between the different stock indices provided by the Colombia Stock Exchange.Keywords: finance, optimization, portfolio, Markowitz, evolutionary algorithms
Procedia PDF Downloads 3022147 Combining an Optimized Closed Principal Curve-Based Method and Evolutionary Neural Network for Ultrasound Prostate Segmentation
Authors: Tao Peng, Jing Zhao, Yanqing Xu, Jing Cai
Abstract:
Due to missing/ambiguous boundaries between the prostate and neighboring structures, the presence of shadow artifacts, as well as the large variability in prostate shapes, ultrasound prostate segmentation is challenging. To handle these issues, this paper develops a hybrid method for ultrasound prostate segmentation by combining an optimized closed principal curve-based method and the evolutionary neural network; the former can fit curves with great curvature and generate a contour composed of line segments connected by sorted vertices, and the latter is used to express an appropriate map function (represented by parameters of evolutionary neural network) for generating the smooth prostate contour to match the ground truth contour. Both qualitative and quantitative experimental results showed that our proposed method obtains accurate and robust performances.Keywords: ultrasound prostate segmentation, optimized closed polygonal segment method, evolutionary neural network, smooth mathematical model, principal curve
Procedia PDF Downloads 2042146 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: evolutionary computation, feature selection, classification, clustering
Procedia PDF Downloads 3722145 Tractography Analysis of the Evolutionary Origin of Schizophrenia
Authors: Asmaa Tahiri, Mouktafi Amine
Abstract:
A substantial number of traditional medical research has been put forward to managing and treating mental disorders. At the present time, to our best knowledge, it is believed that fundamental understanding of the underlying causes of the majority psychological disorders needs to be explored further to inform early diagnosis, managing symptoms and treatment. The emerging field of evolutionary psychology is a promising prospect to address the origin of mental disorders, potentially leading to more effective treatments. Schizophrenia as a topical mental disorder has been linked to the evolutionary adaptation of the human brain represented in the brain connectivity and asymmetry directly linked to humans higher brain cognition in contrast to other primates being our direct living representation of the structure and connectivity of our earliest common African ancestors. As proposed in the evolutionary psychology scientific literature the pathophysiology of schizophrenia is expressed and directly linked to altered connectivity between the Hippocampal Formation (HF) and Dorsolateral Prefrontal Cortex (DLPFC). This research paper presents the results of the use of tractography analysis using multiple open access Diffusion Weighted Imaging (DWI) datasets of healthy subjects, schizophrenia-affected subjects and primates to illustrate the relevance of the aforementioned brain regions connectivity and the underlying evolutionary changes in the human brain. Deterministic fiber tracking and streamline analysis were used to generate connectivity matrices from the DWI datasets overlaid to compute distances and highlight disconnectivity patterns in conjunction with other fiber tracking metrics; Fractional Anisotropy (FA), Mean Diffusivity (MD) and Radial Diffusivity (RD).Keywords: tractography, evolutionary psychology, schizophrenia, brain connectivity
Procedia PDF Downloads 732144 Evolutionary Methods in Cryptography
Authors: Wafa Slaibi Alsharafat
Abstract:
Genetic algorithms (GA) are random algorithms as random numbers that are generated during the operation of the algorithm determine what happens. This means that if GA is applied twice to optimize exactly the same problem it might produces two different answers. In this project, we propose an evolutionary algorithm and Genetic Algorithm (GA) to be implemented in symmetric encryption and decryption. Here, user's message and user secret information (key) which represent plain text to be transferred into cipher text.Keywords: GA, encryption, decryption, crossover
Procedia PDF Downloads 4462143 Understanding Evolutionary Algorithms through Interactive Graphical Applications
Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez
Abstract:
It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.Keywords: education, evolutionary algorithms, evolution strategies, interactive learning applications
Procedia PDF Downloads 3382142 Polycystic Ovarian Syndrome (PCOS) as an Evolutionary Mismatch Disorder: An Argument for the Significance of Hyperandrogenism on Reproductive Fitness in Ancestral Populations
Authors: Courtney Manthey-Pierce, Anna Warrener
Abstract:
Polycystic ovarian syndrome (PCOS) is the most common endocrine disruptive disorder in females. PCOS is primarily characterized by polycystic ovaries, anovulation, hirsutism, insulin resistance, and hyperandrogenism. Despite negative reproductive consequences for females from anovulation and endocrine dysfunction, genes associated with the pathogenesis of PCOS are highly hereditable (h2 = 0.72). An evolutionary mismatch occurs when a trait that evolved in one environment has become maladaptive in another environment. The idea that PCOS is an evolutionary mismatch disease has been promoted by several researchers. Each trait of the resulting PCOS phenotype should be investigated individually in order to demonstrate an evolutionary mismatch. Hyperandrogenism is often regarded as the main characteristic of PCOS Hyperandrogenism may have aided with conception in older females, increased bone mineral density, and supported prolonged breastfeeding in nutritionally distressed populations. Because of the high prevalence of PCOS in the modern world, approximately 6%, it is often argued that PCOS emerged in an ancestral population prior to the migration out of Africa approximately 200,000 years ago. This environment would be characterized by sporadic periods of nutrition deficit and resource hardships as the climate began changing. Presently, modern society is characterized by obesity and sedentary lifestyles. The prevalence of obesity renders hyperandrogenism PCOS useless as there are no periods of nutritional distress requiring androgens for increased reproductive rates. In an ancestral environment, hyperandrogenism would likely lead to sporadic anovulation and mild secondary symptoms, however high levels of androgens in a modern environment led to prolonged if not permanent infertility and excessive secondary problems. Thus, hyperandrogenism related to PCOS appears to meet evolutionary mismatch criteria. Seen in this light, PCOS may be effectively treated as a probably evolutionary mismatch.Keywords: evolutionary mismatch, heritability, hyperandrogenism, mismatch disorder
Procedia PDF Downloads 2482141 Analysis and Simulation of TM Fields in Waveguides with Arbitrary Cross-Section Shapes by Means of Evolutionary Equations of Time-Domain Electromagnetic Theory
Authors: Ömer Aktaş, Olga A. Suvorova, Oleg Tretyakov
Abstract:
The boundary value problem on non-canonical and arbitrary shaped contour is solved with a numerically effective method called Analytical Regularization Method (ARM) to calculate propagation parameters. As a result of regularization, the equation of first kind is reduced to the infinite system of the linear algebraic equations of the second kind in the space of L2. This equation can be solved numerically for desired accuracy by using truncation method. The parameters as cut-off wavenumber and cut-off frequency are used in waveguide evolutionary equations of electromagnetic theory in time-domain to illustrate the real-valued TM fields with lossy and lossless media.Keywords: analytical regularization method, electromagnetic theory evolutionary equations of time-domain, TM Field
Procedia PDF Downloads 5012140 Tractography Analysis and the Evolutionary Origin of Schizophrenia
Authors: Mouktafi Amine, Tahiri Asmaa
Abstract:
A substantial number of traditional medical research has been put forward to managing and treating mental disorders. At the present time, to our best knowledge, it is believed that a fundamental understanding of the underlying causes of the majority of psychological disorders needs to be explored further to inform early diagnosis, managing symptoms and treatment. The emerging field of evolutionary psychology is a promising prospect to address the origin of mental disorders, potentially leading to more effective treatments. Schizophrenia as a topical mental disorder has been linked to the evolutionary adaptation of the human brain represented in the brain connectivity and asymmetry directly linked to humans' higher brain cognition in contrast to other primates being our direct living representation of the structure and connectivity of our earliest common African ancestors. As proposed in the evolutionary psychology scientific literature, the pathophysiology of schizophrenia is expressed and directly linked to altered connectivity between the Hippocampal Formation (HF) and Dorsolateral Prefrontal Cortex (DLPFC). This research paper presents the results of the use of tractography analysis using multiple open access Diffusion Weighted Imaging (DWI) datasets of healthy subjects, schizophrenia-affected subjects and primates to illustrate the relevance of the aforementioned brain regions' connectivity and the underlying evolutionary changes in the human brain. Deterministic fiber tracking and streamline analysis were used to generate connectivity matrices from the DWI datasets overlaid to compute distances and highlight disconnectivity patterns in conjunction with other fiber tracking metrics: Fractional Anisotropy (FA), Mean Diffusivity (MD) and Radial Diffusivity (RD).Keywords: tractography, diffusion weighted imaging, schizophrenia, evolutionary psychology
Procedia PDF Downloads 522139 The Analysis of Application of Green Bonds in New Energy Vehicles in China: From Evolutionary Game Theory
Authors: Jing Zhang
Abstract:
Sustainable development in the new energy vehicles field is the requirement of the net zero aim. Green bonds are accepted as a practical financial tool to boost the transformation of relevant enterprises. The paper analyzes the interactions among governments, enterprises of new energy vehicles, and financial institutions by an evolutionary game theory model and offers advice to stakeholders in China. The decision-making subjects of green behavior are affected by experiences, interests, perception ability, and risk preference, so it is difficult for them to be completely rational. Based on the bounded rationality hypothesis, this paper applies prospect theory in the evolutionary game analysis framework and analyses the costs of government regulation of enterprises adopting green bonds. The influence of the perceived value of revenue prospect and the probability and risk transfer coefficient of the government's active regulation on the decision-making agent's strategy is verified by numerical simulation. Finally, according to the research conclusions, policy suggestions are given to promote green bonds.Keywords: green bonds, new energy vehicles, sustainable development, evolutionary Game Theory model
Procedia PDF Downloads 882138 Modelling Railway Noise Over Large Areas, Assisted by GIS
Authors: Conrad Weber
Abstract:
The modelling of railway noise over large projects areas can be very time consuming in terms of preparing the noise models and calculation time. An open-source GIS program has been utilised to assist with the modelling of operational noise levels for 675km of railway corridor. A range of GIS algorithms were utilised to break up the noise model area into manageable calculation sizes. GIS was utilised to prepare and filter a range of noise modelling inputs, including building files, land uses and ground terrain. A spreadsheet was utilised to manage the accuracy of key input parameters, including train speeds, train types, curve corrections, bridge corrections and engine notch settings. GIS was utilised to present the final noise modelling results. This paper explains the noise modelling process and how the spreadsheet and GIS were utilised to accurately model this massive project efficiently.Keywords: noise, modeling, GIS, rail
Procedia PDF Downloads 1222137 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: surface roughness, fused deposition modelling (FDM), adaptive neuro fuzzy inference system (ANFIS), orientation
Procedia PDF Downloads 4622136 Building Information Modelling: A Review to Indian Scenario
Authors: P. Agnivesh, P. V. Ponambala Moorthi
Abstract:
Evolution of information modelling leads to the visualisation of well-organized built environment. Building Information Modelling (BIM) is considered as evolution in the off-site construction which essentially enhances and controls the present scenario of on-site construction paradigms. Promptness, sustainability and security are considered as the important characteristics of the building information modelling. Projects that uses BIM are tied firmly by technology but distributed organizationally. This allows different team members in the project to associate and integrate the works and work flows. This will in turn improve the efficiency of work breakdown structure. Internationally BIM had been accepted as modern computer aided way of information sharing by construction industry for efficient way of manipulation in order to avoid the on-site misperceptions. Even though, in developing countries like India BIM is in the phase of start and requires lot of mandates and policies to be brought about by the government for its widespread implementations. This paper reviews the current scenario of BIM worldwide and in India and suggests for the improved implementation of building modelling for Indian policy condition.Keywords: building information modelling, Indian polity, information modelling, information sharing, mandates and policies, sustainability.
Procedia PDF Downloads 3772135 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO
Procedia PDF Downloads 1122134 Heat Transfer and Diffusion Modelling
Authors: R. Whalley
Abstract:
The heat transfer modelling for a diffusion process will be considered. Difficulties in computing the time-distance dynamics of the representation will be addressed. Incomplete and irrational Laplace function will be identified as the computational issue. Alternative approaches to the response evaluation process will be provided. An illustration application problem will be presented. Graphical results confirming the theoretical procedures employed will be provided.Keywords: heat, transfer, diffusion, modelling, computation
Procedia PDF Downloads 5542133 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.Keywords: Intelligent Transportation Systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning
Procedia PDF Downloads 4722132 Analyzing Test Data Generation Techniques Using Evolutionary Algorithms
Authors: Arslan Ellahi, Syed Amjad Hussain
Abstract:
Software Testing is a vital process in software development life cycle. We can attain the quality of software after passing it through software testing phase. We have tried to find out automatic test data generation techniques that are a key research area of software testing to achieve test automation that can eventually decrease testing time. In this paper, we review some of the approaches presented in the literature which use evolutionary search based algorithms like Genetic Algorithm, Particle Swarm Optimization (PSO), etc. to validate the test data generation process. We also look into the quality of test data generation which increases or decreases the efficiency of testing. We have proposed test data generation techniques for model-based testing. We have worked on tuning and fitness function of PSO algorithm.Keywords: search based, evolutionary algorithm, particle swarm optimization, genetic algorithm, test data generation
Procedia PDF Downloads 1912131 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.Keywords: radial basis function network, hybrid learning, multi-objective optimization, genetic algorithm
Procedia PDF Downloads 5652130 Dynamic Construction Site Layout Using Ant Colony Optimization
Authors: Yassir AbdelRazig
Abstract:
Evolutionary optimization methods such as genetic algorithms have been used extensively for the construction site layout problem. More recently, ant colony optimization algorithms, which are evolutionary methods based on the foraging behavior of ants, have been successfully applied to benchmark combinatorial optimization problems. This paper proposes a formulation of the site layout problem in terms of a sequencing problem that is suitable for solution using an ant colony optimization algorithm. In the construction industry, site layout is a very important planning problem. The objective of site layout is to position temporary facilities both geographically and at the correct time such that the construction work can be performed satisfactorily with minimal costs and improved safety and working environment. During the last decade, evolutionary methods such as genetic algorithms have been used extensively for the construction site layout problem. This paper proposes an ant colony optimization model for construction site layout. A simple case study for a highway project is utilized to illustrate the application of the model.Keywords: ant colony, construction site layout, optimization, genetic algorithms
Procedia PDF Downloads 3832129 Study on Horizontal Ecological Compensation Mechanism in Yangtze River Economic Belt Basin: Based on Evolutionary Game Analysis and Water Quality and Quantity Model
Authors: Tingyu Zhang
Abstract:
The horizontal ecological compensation (HEC) mechanism is the key to stimulating the active participation of the whole basin in ecological protection. In this paper, we construct an evolutionary model for HEC in the Yangtze River Economic Belt (YREB) basin with the introduction of the central government constraint and incentive mechanism (CGCIM) and explore the conditions for the realization of a (Protection and compensation) strategy that meets the social expectations. Further, the water quality-water quantity model is utilized to measure the HEC amount with the characteristic factual data of the YREB in 2020-2022. The results show that the stability of the evolutionary game model of upstream and downstream governments in the YREB is closely related to the CGCIM. If (Protection Compensation) is to be realized as the only evolutionary stable strategy of the evolutionary game system composed of upstream and downstream governments, it is necessary for the CGCIM to satisfy that the sum of the incentives for the protection side and its unilateral or bilateral constraints is greater than twice the input cost of the active strategy, and the sum of the incentives for the compensation side and its unilateral or bilateral constraints is greater than the amount of ecological compensation that needs to be paid by it when it adopts the active strategy. At this point, the total amount of HEC that the downstream government should give to the upstream government of the YREB is 2856.7 million yuan in 2020, 5782.1 million yuan in 2021, and 23166.7 million yuan in 2022. The results of the study can provide a reference for promoting the improvement and refinement of the HEC mechanism in the YREB.Keywords: horizontal ecological compensation, Yangtze river economic belt, evolutionary game analysis, water quality and quantity model research on territorial ecological restoration in Mianzhu city, Sichuan, under the dual evaluation framework
Procedia PDF Downloads 50