Search results for: buildings embodied carbon benchmark
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5237

Search results for: buildings embodied carbon benchmark

5237 Scientometrics Review of Embodied Carbon Benchmarks for Buildings

Authors: A. Rana, M. Badri, D. Lopez Behar, O. Yee, H. Al Bqaei

Abstract:

The building sector is one of the largest emitters of greenhouse gases. However, as operation energy demands of this sector decrease with more effective energy policies and strategies, there is an urgent need to parallel focus on the growing proportion of embodied carbons. In this regard, benchmarks on embodied carbon of buildings can provide a point of reference to compare and improve the environmental performance of buildings for the stakeholders. Therefore, embodied carbon benchmarks can serve as a useful tool to address climate change challenges. This research utilizes the method to provide a knowledge roadmap of embodied carbon benchmarks development and implementation trends. Two main databases, Web of Science and Engineering Village, are considered for the study. The mapping was conducted with the help of VosViewer tool to provide information regarding: the critical research areas; most cited authors and publications; and countries with the highest publications. It is revealed that the role of benchmarks in energy policies is an emerging trend. In addition, the research highlighted that in policies, embodied carbon benchmarks are gaining importance at the material, whole building, and building portfolio levels. This research reveals direction for improvement and future research and of relevance to building industry professionals, policymakers, and researchers.

Keywords: buildings embodied carbon benchmark, methods, policy

Procedia PDF Downloads 167
5236 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment

Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor

Abstract:

The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.

Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment

Procedia PDF Downloads 145
5235 Impact of Design Choices on the Life Cycle Energy of Modern Buildings

Authors: Mahsa Karimpour, Martin Belusko, Ke Xing, Frank Bruno

Abstract:

Traditionally the embodied energy of design choices which reduce operational energy were assumed to have a negligible impact on the life cycle energy of buildings. However with new buildings having considerably lower operational energy, the significance of embodied energy increases. A life cycle assessment of a population of house designs was conducted in a mild and mixed climate zone. It was determined not only that embodied energy dominates life cycle energy, but that the impact on embodied of design choices was of equal significance to the impact on operational energy.

Keywords: building life cycle energy, embodied energy, energy design measures, low energy buildings

Procedia PDF Downloads 768
5234 Furniture Embodied Carbon Calculator for Interior Design Projects

Authors: Javkhlan Nyamjav, Simona Fischer, Lauren Garner, Veronica McCracken

Abstract:

Current whole building life cycle assessments (LCA) primarily focus on structural and major architectural elements to measure building embodied carbon. Most of the interior finishes and fixtures are available on digital tools (such as Tally); however, furniture is still left unaccounted for. Due to its repeated refreshments and its complexity, furniture embodied carbon can accumulate over time, becoming comparable to structure and envelope numbers. This paper presents a method to calculate the Global Warming Potential (GWP) of furniture elements in commercial buildings. The calculator uses the quantity takeoff method with GWP averages gathered from environmental product declarations (EPD). The data was collected from EPD databases and furniture manufacturers from North America to Europe. A total of 48 GWP numbers were collected, with 16 GWP coming from alternative EPD. The finalized calculator shows the average GWP of typical commercial furniture and helps the decision-making process to reduce embodied carbon. The calculator was tested on MSR Design projects and showed furniture can account for more than half of the interior embodied carbon. The calculator highlights the importance of adding furniture to the overall conversation. However, the data collection process showed a) acquiring furniture EPD is not straightforward as other building materials; b) there are very limited furniture EPD, which can be explained from many perspectives, including the EPD price; c) the EPD themselves vary in terms of units, LCA scopes, and timeframes, which makes it hard to compare the products. Even though there are current limitations, the emerging focus on interior embodied carbon will create more demand for furniture EPD. It will allow manufacturers to represent all their efforts on reducing embodied carbon. In addition, the study concludes with recommendations on how designers can reduce furniture-embodied carbon through reuse and closed-loop systems.

Keywords: furniture, embodied carbon, calculator, tenant improvement, interior design

Procedia PDF Downloads 213
5233 The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials

Authors: Francesca Scalisi, Cesare Sposito

Abstract:

The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development.

Keywords: embodied energy, embodied carbon, life cycle assessment, architecture, sustainability, material construction

Procedia PDF Downloads 340
5232 Valorization of Industrial Wastes on Hybrid Low Embodied Carbon Cement Based Mortars

Authors: Z. Abdollahnejad, M. Mastali, F. Pacheco-Torgal

Abstract:

Waste reuse is crucial in a context of circular economy and zero waste sustainable needs. Some wastes deserve further studies by the scientific community not only because they are generated in high amount but also because they have a low reuse rate. This paper reports results of 32 hybrid cement mortars based on fly ash and waste glass. They allow to explore the influence of mix design on the cost and on the embodied carbon of the hybrid cement mortars. The embodied carbon data for all constituents were taken from the database Ecoinvent. This study led to the development of a mixture with just 70 kg CO2e.

Keywords: waste reuse, fly ash, waste glass, hybrid cements, cost, embodied carbon

Procedia PDF Downloads 329
5231 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 193
5230 Reasons for the Slow Uptake of Embodied Carbon Estimation in the Sri Lankan Building Sector

Authors: Amalka Nawarathna, Nirodha Fernando, Zaid Alwan

Abstract:

Global carbon reduction is not merely a responsibility of environmentally advanced developed countries, but also a responsibility of developing countries regardless of their less impact on global carbon emissions. In recognition of that, Sri Lanka as a developing country has initiated promoting green building construction as one reduction strategy. However, notwithstanding the increasing attention on Embodied Carbon (EC) reduction in the global building sector, they still mostly focus on Operational Carbon (OC) reduction (through improving operational energy). An adequate attention has not yet been given on EC estimation and reduction. Therefore, this study aims to identify the reasons for the slow uptake of EC estimation in the Sri Lankan building sector. To achieve this aim, 16 numbers of global barriers to estimate EC were identified through existing literature. They were then subjected to a pilot survey to identify the significant reasons for the slow uptake of EC estimation in the Sri Lankan building sector. A questionnaire with a three-point Likert scale was used to this end. The collected data were analysed using descriptive statistics. The findings revealed that 11 out of 16 challenges/ barriers are highly relevant as reasons for the slow uptake in estimating EC in buildings in Sri Lanka while the other five challenges/ barriers remain as moderately relevant reasons. Further, the findings revealed that there are no low relevant reasons. Eventually, the paper concluded that all the known reasons are significant to the Sri Lankan building sector and it is necessary to address them in order to upturn the attention on EC reduction.

Keywords: embodied carbon emissions, embodied carbon estimation, global carbon reduction, Sri Lankan building sector

Procedia PDF Downloads 203
5229 Seismic Retrofits – A Catalyst for Minimizing the Building Sector’s Carbon Footprint

Authors: Juliane Spaak

Abstract:

A life-cycle assessment was performed, looking at seven retrofit projects in New Zealand using LCAQuickV3.5. The study found that retrofits save up to 80% of embodied carbon emissions for the structural elements compared to a new building. In other words, it is only a 20% carbon investment to transform and extend a building’s life. In addition, the systems were evaluated by looking at environmental impacts over the design life of these buildings and resilience using FEMA P58 and PACT software. With the increasing interest in Zero Carbon targets, significant changes in the building and construction sector are required. Emissions for buildings arise from both embodied carbon and operations. Based on the significant advancements in building energy technology, the focus is moving more toward embodied carbon, a large portion of which is associated with the structure. Since older buildings make up most of the real estate stock of our cities around the world, their reuse through structural retrofit and wider refurbishment plays an important role in extending the life of a building’s embodied carbon. New Zealand’s building owners and engineers have learned a lot about seismic issues following a decade of significant earthquakes. Recent earthquakes have brought to light the necessity to move away from constructing code-minimum structures that are designed for life safety but are frequently ‘disposable’ after a moderate earthquake event, especially in relation to a structure’s ability to minimize damage. This means weaker buildings sit as ‘carbon liabilities’, with considerably more carbon likely to be expended remediating damage after a shake. Renovating and retrofitting older assets plays a big part in reducing the carbon profile of the buildings sector, as breathing new life into a building’s structure is vastly more sustainable than the highest quality ‘green’ new builds, which are inherently more carbon-intensive. The demolition of viable older buildings (often including heritage buildings) is increasingly at odds with society’s desire for a lower carbon economy. Bringing seismic resilience and carbon best practice together in decision-making can open the door to commercially attractive outcomes, with retrofits that include structural and sustainability upgrades transforming the asset’s revenue generation. Across the global real estate market, tenants are increasingly demanding the buildings they occupy be resilient and aligned with their own climate targets. The relationship between seismic performance and ‘sustainable design’ has yet to fully mature, yet in a wider context is of profound consequence. A whole-of-life carbon perspective on a building means designing for the likely natural hazards within the asset’s expected lifespan, be that earthquake, storms, damage, bushfires, fires, and so on, ¬with financial mitigation (e.g., insurance) part, but not all, of the picture.

Keywords: retrofit, sustainability, earthquake, reuse, carbon, resilient

Procedia PDF Downloads 69
5228 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 79
5227 Life Cycle Assessment of Residential Buildings: A Case Study in Canada

Authors: Venkatesh Kumar, Kasun Hewage, Rehan Sadiq

Abstract:

Residential buildings consume significant amounts of energy and produce a large amount of emissions and waste. However, there is a substantial potential for energy savings in this sector which needs to be evaluated over the life cycle of residential buildings. Life Cycle Assessment (LCA) methodology has been employed to study the primary energy uses and associated environmental impacts of different phases (i.e., product, construction, use, end of life, and beyond building life) for residential buildings. Four different alternatives of residential buildings in Vancouver (BC, Canada) with a 50-year lifespan have been evaluated, including High Rise Apartment (HRA), Low Rise Apartment (LRA), Single family Attached House (SAH), and Single family Detached House (SDH). Life cycle performance of the buildings is evaluated for embodied energy, embodied environmental impacts, operational energy, operational environmental impacts, total life-cycle energy, and total life cycle environmental impacts. Estimation of operational energy and LCA are performed using DesignBuilder software and Athena Impact estimator software respectively. The study results revealed that over the life span of the buildings, the relationship between the energy use and the environmental impacts are identical. LRA is found to be the best alternative in terms of embodied energy use and embodied environmental impacts; while, HRA showed the best life-cycle performance in terms of minimum energy use and environmental impacts. Sensitivity analysis has also been carried out to study the influence of building service lifespan over 50, 75, and 100 years on the relative significance of embodied energy and total life cycle energy. The life-cycle energy requirements for SDH is found to be a significant component among the four types of residential buildings. The overall disclose that the primary operations of these buildings accounts for 90% of the total life cycle energy which far outweighs minor differences in embodied effects between the buildings.

Keywords: building simulation, environmental impacts, life cycle assessment, life cycle energy analysis, residential buildings

Procedia PDF Downloads 470
5226 Carbon Accounting for Sustainable Design and Manufacturing in the Signage Industry

Authors: Prudvi Paresi, Fatemeh Javidan

Abstract:

In recent years, greenhouse gas, or in particular, carbon emissions, have received special attention from environmentalists and designers due to the fact that they significantly contribute to the temperature rise. The building industry is one of the top seven major industries contributing to embodied carbon emission. Signage systems are an integral part of the building industry and bring completeness to the space-building by providing the required information and guidance. A significant amount of building materials, such as steel, aluminium, acrylic, LED, etc., are utilized in these systems, but very limited information is available on their sustainability and carbon footprint. Therefore, there is an urgent need to assess the emissions associated with the signage industry and for controlling these by adopting different mitigation techniques without sacrificing the efficiency of the project. The present paper investigates the embodied carbon of two case studies in the Australian signage industry within the cradle – gate (A1-A3) and gate–site (A4-A5) stages. A material source-based database is considered to achieve more accuracy. The study identified that aluminium is the major contributor to embodied carbon in the signage industry compared to other constituents. Finally, an attempt is made to suggest strategies for mitigating embodied carbon in this industry.

Keywords: carbon accounting, small-scale construction, signage industry, construction materials

Procedia PDF Downloads 114
5225 Study of Methods to Reduce Carbon Emissions in Structural Engineering

Authors: Richard Krijnen, Alan Wang

Abstract:

As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.

Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design

Procedia PDF Downloads 38
5224 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: embodied carbon footprint, Malaysian green homes

Procedia PDF Downloads 342
5223 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback

Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU

Abstract:

The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.

Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate

Procedia PDF Downloads 100
5222 Climate Change Impact Due to Timber Product Imports in the UK

Authors: Juan A. Ferriz-Papi, Allan L. Nantel, Talib E. Butt

Abstract:

Buildings are thought to consume about 50% of the total energy in the UK. The use stage in a building life cycle has the largest energy consumption, although different assessments are showing that the construction can equal several years of maintenance and operations. The selection of materials with lower embodied energy is very important to reduce this consumption. For this reason, timber is one adequate material due to its low embodied energy and the capacity to be used as carbon storage. The use of timber in the construction industry is very significant. Sawn wood, for example, is one of the top 5 construction materials consumed in the UK according to National Statistics. Embodied energy for building products considers the energy consumed in extraction and production stages. However, it is not the same consideration if this product is produced locally as when considering the resource produced further afield. Transport is a very relevant matter that profoundly influences in the results of embodied energy. The case of timber use in the UK is important because the balance between imports and exports is far negative, industry consuming more imported timber than produced. Nearly 80% of sawn softwood used in construction is imported. The imports-exports deficit for sawn wood accounted for more than 180 million pounds during the first four-month period of 2016. More than 85% of these imports come from Europe (83% from the EU). The aim of this study is to analyze climate change impact due to transport for timber products consumed in the UK. An approximate estimation of energy consumed and carbon emissions are calculated considering the timber product’s import origin. The results are compared to the total consumption of each product, estimating the impact of transport on the final embodied energy and carbon emissions. The analysis of these results can help deduce that one big challenge for climate change is the reduction of external dependency, with the associated improvement of internal production of timber products. A study of different types of timber products produced in the UK and abroad is developed to understand the possibilities for this country to improve sustainability and self-management. Reuse and recycle possibilities are also considered.

Keywords: embodied energy, climate change, CO2 emissions, timber, transport

Procedia PDF Downloads 342
5221 Embodied Energy in Concrete and Structural Masonry on Typical Brazilian Buildings

Authors: Marco A. S. González, Marlova P. Kulakowski, Luciano G. Breitenbach, Felipe Kirch

Abstract:

The AEC sector has an expressive environmental responsibility. Actually, most building materials have severe environmental impacts along their production cycle. Professionals enrolled in building design may choice the materials and techniques with less impact among the viable options. This work presents a study about embodied energy in materials of two typical Brazilian constructive alternatives. The construction options considered are reinforced concrete structure and structural masonry. The study was developed for the region of São Leopoldo, southern Brazil. Results indicated that the energy embodied in these two constructive systems is approximately 1.72 GJ•m-2 and 1.26 GJ•m-2, respectively. It may be concluded that the embodied energy is lower in the structural masonry system, with a reduction around to 1/4 in relation to the traditional option. The results can be used to help design decisions.

Keywords: civil construction, sustainability, embodied energy, Brazil

Procedia PDF Downloads 434
5220 Development of a Green Star Certification Tool for Existing Buildings in South Africa

Authors: Bouwer Kleynhans

Abstract:

The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings.

Keywords: certification tool, development process, energy consumption, green buildings

Procedia PDF Downloads 318
5219 JENOSYS: Application of a Web-Based Online Energy Performance Reporting Tool for Government Buildings in Malaysia

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Faiz Fadzil, Mohd Yusof Aizad Mukhtar

Abstract:

One of the areas that present an opportunity to reduce the national carbon emission is the energy management of public buildings. To our present knowledge, there is no easy-to-use and centralized mechanism that enables the government to monitor the overall energy performance, as well as the carbon footprint, of Malaysia’s public buildings. Therefore, the Public Works Department Malaysia, or PWD, has developed a web-based energy performance reporting tool called JENOSYS (JKR Energy Online System), which incorporates a database of utility account numbers acquired from the utility service provider for analysis and reporting. For test case purposes, 23 buildings under PWD were selected and monitored for their monthly energy performance (in kWh), carbon emission reduction (in tCO₂eq) and utility cost (in MYR), against the baseline. This paper demonstrates the simplicity with which buildings without energy metering can be monitored centrally and the benefits that can be accrued by the government in terms of building energy disclosure and concludes with the recommendation of expanding the system to all the public buildings in Malaysia.

Keywords: energy-efficient buildings, energy management systems, government buildings, JENOSYS

Procedia PDF Downloads 170
5218 Concepts in the Design of Lateral-Load Systems in High Rise Buildings to Reduce Operational Energy Consumption

Authors: Mohamed Ali MiladKrem Salem, Sergio F.Breña, Sanjay R. Arwade, Simi T. Hoque

Abstract:

The location of the main lateral‐load resisting system in high-rise buildings may have positive impacts on sustainability through a reduction in operational energy consumption, and this paper describes an assessment of the accompanying effects on structural performance. It is found that there is a strong influence of design for environmental performance on the structural performance the building, and that systems selected primarily with an eye towards energy use reduction may require substantial additional structural stiffening to meet safety and serviceability limits under lateral load cases. We present a framework for incorporating the environmental costs of meeting structural design requirements through the embodied energy of the core structural materials and also address the issue of economic cost brought on by incorporation of environmental concerns into the selection of the structural system. We address these issues through four case study high-rise buildings with differing structural morphologies (floor plan and core arrangement) and assess each of these building models for cost and embodied energy when the base structural system, which has been suggested by architect Kenneth Yeang based on environmental concerns, is augmented to meet lateral drift requirements under the wind loads prescribed by ASCE 7-10.

Keywords: sustainable, embodied, Outrigger, skyscraper, morphology, efficiency

Procedia PDF Downloads 471
5217 NABERS Indoor Environment - a Rating Tool to Benchmark the IEQ of Australian Office Commercial Buildings

Authors: Kazi Hossain

Abstract:

The National Australian Built Environment Rating System (NABERS) is the key industry standard for measuring and benchmarking environmental performance of existing buildings in Australia. Developed and run by the New South Wales government, NABERS measures the operational efficiency of different types of buildings by using a set of tools that provide an easy to understand graphical rating outcome ranged from 0 to 6 stars. This set of tools also include a tool called NABERS IE which enables tenants or building managers to benchmark their buildings indoor environment quality against the national market. Launched in 2009, the number NABERS IE ratings have steadily increased from 10 certified ratings in 2011 to 43 in 2013. However there is a massive uptake of over 50 ratings alone in 2014 making the number of ratings to reach over 100. This paper outlines the methodology used to create this tool, a statistical overview of the tool, and the driving factor that motivates the building owners and managers to use this tool every year to rate their buildings.

Keywords: Acoustic comfort, Indoor air quality, Indoor Environment, NABERS, National Australian Built Environment Rating System, Performance rating, Rating System, Thermal comfort, Ventilation effectiveness, Visual comfort.

Procedia PDF Downloads 555
5216 Automation of Embodied Energy Calculations for Buildings through Building Information Modelling

Authors: Ahmad Odeh

Abstract:

Researchers are currently more concerned about the calculations of energy at the operational stage, mainly due to its larger environmental impact, but the fact remains, embodied energies represent a substantial contributor unaccounted for in the overall energy computation method. The calculation of materials’ embodied energy during the construction stage is complicated. This is due to the various factors involved. The equipment used, fuel needed, and electricity required for each type of materials varies with location and thus the embodied energy will differ for each project. Moreover, the method used in manufacturing, transporting and putting in place will have significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at calculating embodied energies based on such variabilities. It presents a systematic approach that uses an efficient method of calculation to provide a new insight for the selection of construction materials. The model is developed in a BIM environment. The quantification of materials’ energy is determined over the three main stages of their lifecycle: manufacturing, transporting and placing. The model uses three major databases each of which contains set of the construction materials that are most commonly used in building projects. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by machinery to place the materials in their intended locations. Through geospatial data analysis, the model automatically calculates the distances between the suppliers and construction sites and then uses dataset information for energy computations. The computational sum of all the energies is automatically calculated and then the model provides designers with a list of usable equipment along with the associated embodied energies.

Keywords: BIM, lifecycle energy assessment, building automation, energy conservation

Procedia PDF Downloads 188
5215 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper

Authors: Ahmad Naqi

Abstract:

Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).

Keywords: passive control system, oil damper, seismic assessment, lumped mass model

Procedia PDF Downloads 112
5214 A Comparative Life Cycle Assessment: The Design of a High Performance Building Envelope and the Impact on Operational and Embodied Energy

Authors: Stephanie Wall, Guido Wimmers

Abstract:

The construction and operation of buildings greatly contribute to environmental degradation through resource and energy consumption and greenhouse gas emissions. The design of the envelope system affects the environmental impact of a building in two major ways; 1) high thermal performance and air tightness can significantly reduce the operational energy of the building and 2) the material selection for the envelope largely impacts the embodied energy of the building. Life cycle assessment (LCA) is a scientific methodology that is used to systematically analyze the environmental load of processes or products, such as buildings, over their life. The paper will discuss the results of a comparative LCA of different envelope designs and the long-term monitoring of the Wood Innovation Research Lab (WIRL); a Passive House (PH), industrial building under construction in Prince George, Canada. The WIRL has a footprint of 30m x 30m on a concrete raft slab foundation and consists of shop space as well as a portion of the building that includes a two-story office/classroom space. The lab building goes beyond what was previously thought possible in regards to energy efficiency of industrial buildings in cold climates due to their large volume to surface ratio, small floor area, and high air change rate, and will be the first PH certified industrial building in Canada. These challenges were mitigated through the envelope design which utilizes solar gains while minimizing overheating, reduces thermal bridges with thick (570mm) prefabricated truss walls filled with blown in mineral wool insulation and a concrete slab and roof insulated with EPS rigid insulation. The envelope design results in lower operational and embodied energy when compared to buildings built to local codes or with steel. The LCA conducted using Athena Impact Estimator for Buildings identifies project specific hot spots as well illustrates that for high-efficiency buildings where the operational energy is relatively low; the embodied energy of the material selection becomes a significant design decision as it greatly impacts the overall environmental footprint of the building. The results of the LCA will be reinforced by long-term monitoring of the buildings envelope performance through the installation of temperature and humidity sensors throughout the floor slab, wall and roof panels and through detailed metering of the energy consumption. The data collected from the sensors will also be used to reinforce the results of hygrothermal analysis using WUFI®, a program used to verify the durability of the wall and roof panels. The WIRL provides an opportunity to showcase the use of wood in a high performance envelope of an industrial building and to emphasize the importance of considering the embodied energy of a material in the early stages of design. The results of the LCA will be of interest to leading researchers and scientists committed to finding sustainable solutions for new construction and high-performance buildings.

Keywords: high performance envelope, life cycle assessment, long term monitoring, passive house, prefabricated panels

Procedia PDF Downloads 160
5213 Urban Rehabilitation Assessment: Buildings' Integrity and Embodied Energy

Authors: Joana Mourão

Abstract:

Transition to a low carbon economy requires changes in consumption and production patterns, including the improvement of existing buildings’ environmental performance. Urban rehabilitation is a top policy priority in Europe, creating an opportunity to increase this performance. However, urban rehabilitation comprises different typologies of interventions with distinct levels of consideration for cultural urban heritage values and for environmental values, thus with different impacts. Cities rely on both material and non-material forms of heritage that are deep-rooted and resilient. One of the most relevant parts of that urban heritage is the historical pre-industrial housing stock, with an extensive presence in many European cities, as Lisbon. This stock is rehabilitated and transformed at the framework of urban management and local governance traditions, as well as the framework of the global economy, and in that context, faces opportunities and threats that need evaluation and control. The scope of this article is to define methodological bases and research lines for the assessment of impacts that urban rehabilitation initiatives set on the vulnerable and historical pre-industrial urban housing stock, considering it as an environmental and cultural unreplaceable material value and resource. As a framework, this article reviews the concepts of urban regeneration, urban renewal, current buildings conservation and refurbishment, and energy refurbishment of buildings, seeking to define key typologies of urban rehabilitation that represent different approaches to the urban fabric, in terms of scope, actors, and priorities. Moreover, main types of interventions - basing on a case-study in a XVIII century neighborhood in Lisbon - are defined and analyzed in terms of the elements lost in each type of intervention, and relating those to urbanistic, architectonic and constructive values of urban heritage, as well as to environmental and energy efficiency. Further, the article overviews environmental cultural heritage assessment and life-cycle assessment tools, selecting relevant and feasible impact assessment criteria for urban buildings rehabilitation regulation, focusing on multi-level urban heritage integrity. Urbanistic, architectonic, constructive and energetic integrity are studied as criteria for impact assessment and specific indicators are proposed. The role of these criteria in sustainable urban management is discussed. Throughout this article, the key challenges for urban rehabilitation planning and management, concerning urban built heritage as a resource for sustainability, are discussed and clarified.

Keywords: urban rehabilitation, impact assessment criteria, buildings integrity, embodied energy

Procedia PDF Downloads 194
5212 Environmental Impact of a New-Build Educational Building in England: Life-Cycle Assessment as a Method to Calculate Whole Life Carbon Emissions

Authors: Monkiz Khasreen

Abstract:

In the context of the global trend towards reducing new buildings carbon footprint, the design team is required to make early decisions that have a major influence on embodied and operational carbon. Sustainability strategies should be clear during early stages of building design process, as changes made later can be extremely costly. Life-Cycle Assessment (LCA) could be used as the vehicle to carry other tools and processes towards achieving the requested improvement. Although LCA is the ‘golden standard’ to evaluate buildings from 'cradle to grave', lack of details available on the concept design makes LCA very difficult, if not impossible, to be used as an estimation tool at early stages. Issues related to transparency and accessibility of information in the building industry are affecting the credibility of LCA studies. A verified database derived from LCA case studies is required to be accessible to researchers, design professionals, and decision makers in order to offer guidance on specific areas of significant impact. This database could be the build-up of data from multiple sources within a pool of research held in this context. One of the most important factors that affects the reliability of such data is the temporal factor as building materials, components, and systems are rapidly changing with the advancement of technology making production more efficient and less environmentally harmful. Recent LCA studies on different building functions, types, and structures are always needed to update databases derived from research and to form case bases for comparison studies. There is also a need to make these studies transparent and accessible to designers. The work in this paper sets out to address this need. This paper also presents life-cycle case study of a new-build educational building in England. The building utilised very current construction methods and technologies and is rated as BREEAM excellent. Carbon emissions of different life-cycle stages and different building materials and components were modelled. Scenario and sensitivity analyses were used to estimate the future of new educational buildings in England. The study attempts to form an indicator during the early design stages of similar buildings. Carbon dioxide emissions of this case study building, when normalised according to floor area, lie towards the lower end of the range of worldwide data reported in the literature. Sensitivity analysis shows that life cycle assessment results are highly sensitive to future assumptions made at the design stage, such as future changes in electricity generation structure over time, refurbishment processes and recycling. The analyses also prove that large savings in carbon dioxide emissions can result from very small changes at the design stage.

Keywords: architecture, building, carbon dioxide, construction, educational buildings, England, environmental impact, life-cycle assessment

Procedia PDF Downloads 110
5211 Embodied Spiritualities and Emerging Search for Social Transformation: An Embodied Ethnographic Study of Yoga Practices in Medellin, Colombia

Authors: Lina M. Vidal

Abstract:

This paper discusses yoga practices involvement in both self-transformation and social transformations by means of an embodied ethnographic approach to different initiatives for social change in Medellín. In the context of gradual popularization of embodied spiritualities, yoga practices have opened their way in calls for social change in a performative perspective which involves collective experiences, reflections and production of embodied knowledge. Through the reflection on bodily dimension and corporal experience, this ethnographic approach acknowledges inter-corporality and somatic modes of attention during observations and personal experiences. In social change initiatives that include yoga practices were identified transformations of common understanding on social issues such as it is produced by institutionalized education, health system and other fields of knowledge. This is clearly visible in yoga projects for children in vulnerable conditions, homeless people, prisoners, and young people recovering from drug addiction. These projects are often promoted by organizations and networks, which incorporate individual life stories into collective experiences. Dissemination of yoga is heading to a broad institutional and cultural legitimation of yoga and of spirituality that impact different fields of social work and everyday life in general. This way, yoga is becoming an embodied activist way of life and a legitimate field for social work.

Keywords: embodied ethnography, Medellin, social transformation, embodied spiritualities, yoga practices

Procedia PDF Downloads 185
5210 Dynamic Modeling of the Green Building Movement in the U.S.: Strategies to Reduce Carbon Footprint of Residential Building Stock

Authors: Nuri Onat, Omer Tatari, Gokhan Egilmez

Abstract:

The U.S. buildings consume significant amount of energy and natural resources and they are responsible for approximately 40 % of the greenhouse gases emitted in the United States. Awareness of these environmental impacts paved the way for the adoption of green building movement. The green building movement is a rapidly increasing trend. Green Construction market has generated $173 billion dollars in GDP, supported over 2.4 million jobs, and provided $123 billion dollars in labor earnings. The number of LEED certified buildings is projected to be almost half of the all new, nonresidential buildings by 2015. National Science and Technology Council (NSTC) aims to increase number of net-zero energy buildings (NZB). The ultimate goal is to have all commercial NZB by 2050 in the US (NSTC 2008). Green Building Initiative (GBI) became the first green building organization that is accredited by American National Standards Institute (ANSI), which will also boost number of green buildings certified by Green Globes. However, there is much less focus on greening the residential buildings, although the environmental impacts of existing residential buildings are more than that of commercial buildings. In this regard, current research aims to model the residential green building movement with a dynamic model approach and assess the possible strategies to stabilize the carbon footprint of the U.S. residential building stock. Three aspects of sustainable development are considered in policy making, namely: high performance green building (HPGB) construction, NZB construction and building retrofitting. 19 different policy options are proposed and analyzed. Results of this study explored that increasing the construction rate of HPGBs or NZBs is not a sufficient policy to stabilize the carbon footprint of the residential buildings. Energy efficient building retrofitting options are found to be more effective strategies then increasing HPGBs and NZBs construction. Also, significance of shifting to renewable energy sources for electricity generation is stressed.

Keywords: green building movement, residential buildings, carbon footprint, system dynamics

Procedia PDF Downloads 425
5209 Using Nature-Based Solutions to Decarbonize Buildings in Canadian Cities

Authors: Zahra Jandaghian, Mehdi Ghobadi, Michal Bartko, Alex Hayes, Marianne Armstrong, Alexandra Thompson, Michael Lacasse

Abstract:

The Intergovernmental Panel on Climate Change (IPCC) report stated the urgent need to cut greenhouse gas emissions to avoid the adverse impacts of climatic changes. The United Nations has forecasted that nearly 70 percent of people will live in urban areas by 2050 resulting in a doubling of the global building stock. Given that buildings are currently recognised as emitting 40 percent of global carbon emissions, there is thus an urgent incentive to decarbonize existing buildings and to build net-zero carbon buildings. To attain net zero carbon emissions in communities in the future requires action in two directions: I) reduction of emissions; and II) removal of on-going emissions from the atmosphere once de-carbonization measures have been implemented. Nature-based solutions (NBS) have a significant role to play in achieving net zero carbon communities, spanning both emission reductions and removal of on-going emissions. NBS for the decarbonisation of buildings can be achieved by using green roofs and green walls – increasing vertical and horizontal vegetation on the building envelopes – and using nature-based materials that either emit less heat to the atmosphere thus decreasing photochemical reaction rates, or store substantial amount of carbon during the whole building service life within their structure. The NBS approach can also mitigate urban flooding and overheating, improve urban climate and air quality, and provide better living conditions for the urban population. For existing buildings, de-carbonization mostly requires retrofitting existing envelopes efficiently to use NBS techniques whereas for future construction, de-carbonization involves designing new buildings with low carbon materials as well as having the integrity and system capacity to effectively employ NBS. This paper presents the opportunities and challenges in respect to the de-carbonization of buildings using NBS for both building retrofits and new construction. This review documents the effectiveness of NBS to de-carbonize Canadian buildings, identifies the missing links to implement these techniques in cold climatic conditions, and determine a road map and immediate approaches to mitigate the adverse impacts of climate change such as urban heat islanding. Recommendations are drafted for possible inclusion in the Canadian building and energy codes.

Keywords: decarbonization, nature-based solutions, GHG emissions, greenery enhancement, buildings

Procedia PDF Downloads 91
5208 The Application of Conceptual Metaphor Theory to the Treatment of Depression

Authors: Uma Kanth, Amy Cook

Abstract:

Conceptual Metaphor Theory (CMT) proposes that metaphor is fundamental to human thought. CMT utilizes embodied cognition, in that emotions are conceptualized as effects on the body because of a coupling of one’s bodily experiences and one’s somatosensory system. Time perception is a function of embodied cognition and conceptual metaphor in that one’s experience of time is inextricably dependent on one’s perception of the world around them. A hallmark of depressive disorders is the distortion in one’s perception of time, such as neurological dysfunction and psychomotor retardation, and yet, to the author’s best knowledge, previous studies have not before linked CMT, embodied cognition, and depressive disorders. Therefore, the focus of this paper is the investigation of how the applications of CMT and embodied cognition (especially regarding time perception) have promise in improving current techniques to treat depressive disorders. This paper aimed to extend, through a thorough review of literature, the theoretical basis required to further research into CMT and embodied cognition’s application in treating time distortion related symptoms of depressive disorders. Future research could include the development of brain training technologies that capitalize on the principles of CMT, with the aim of promoting cognitive remediation and cognitive activation to mitigate symptoms of depressive disorder.

Keywords: depression, conceptual metaphor theory, embodied cognition, time

Procedia PDF Downloads 159