Search results for: biologically inspired algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4214

Search results for: biologically inspired algorithm

4214 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design

Procedia PDF Downloads 426
4213 Method of Visual Prosthesis Design Based on Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Zhu Guo Niu, Peng Ying Hong

Abstract:

There are two issues exited in the traditional visual prosthesis: lacking systematic method and the low level of humanization. To tackcle those obstacles, a visual prosthesis design method based on biologically inspired design is proposed. Firstly, a constrained FBS knowledge cell model is applied to construct the functional model of visual prosthesis in biological field. Then the clustering results of engineering domain are ob-tained with the use of the cross-domain knowledge cell clustering algorithm. Finally, a prototype system is designed to support the bio-logically inspired design where the conflict is digested by TRIZ and other tools, and the validity of the method is verified by the solution scheme

Keywords: knowledge-based engineering, visual prosthesis, biologically inspired design, biomedical engineering

Procedia PDF Downloads 192
4212 Digestion Optimization Algorithm: A Novel Bio-Inspired Intelligence for Global Optimization Problems

Authors: Akintayo E. Akinsunmade

Abstract:

The digestion optimization algorithm is a novel biological-inspired metaheuristic method for solving complex optimization problems. The algorithm development was inspired by studying the human digestive system. The algorithm mimics the process of food ingestion, breakdown, absorption, and elimination to effectively and efficiently search for optimal solutions. This algorithm was tested for optimal solutions on seven different types of optimization benchmark functions. The algorithm produced optimal solutions with standard errors, which were compared with the exact solution of the test functions.

Keywords: bio-inspired algorithm, benchmark optimization functions, digestive system in human, algorithm development

Procedia PDF Downloads 10
4211 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process

Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton

Abstract:

Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.

Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization

Procedia PDF Downloads 116
4210 A Biologically Inspired Approach to Automatic Classification of Textile Fabric Prints Based On Both Texture and Colour Information

Authors: Babar Khan, Wang Zhijie

Abstract:

Machine Vision has been playing a significant role in Industrial Automation, to imitate the wide variety of human functions, providing improved safety, reduced labour cost, the elimination of human error and/or subjective judgments, and the creation of timely statistical product data. Despite the intensive research, there have not been any attempts to classify fabric prints based on printed texture and colour, most of the researches so far encompasses only black and white or grey scale images. We proposed a biologically inspired processing architecture to classify fabrics w.r.t. the fabric print texture and colour. We created a texture descriptor based on the HMAX model for machine vision, and incorporated colour descriptor based on opponent colour channels simulating the single opponent and double opponent neuronal function of the brain. We found that our algorithm not only outperformed the original HMAX algorithm on classification of fabric print texture and colour, but we also achieved a recognition accuracy of 85-100% on different colour and different texture fabric.

Keywords: automatic classification, texture descriptor, colour descriptor, opponent colour channel

Procedia PDF Downloads 485
4209 Algorithms Inspired from Human Behavior Applied to Optimization of a Complex Process

Authors: S. Curteanu, F. Leon, M. Gavrilescu, S. A. Floria

Abstract:

Optimization algorithms inspired from human behavior were applied in this approach, associated with neural networks models. The algorithms belong to human behaviors of learning and cooperation and human competitive behavior classes. For the first class, the main strategies include: random learning, individual learning, and social learning, and the selected algorithms are: simplified human learning optimization (SHLO), social learning optimization (SLO), and teaching-learning based optimization (TLBO). For the second class, the concept of learning is associated with competitiveness, and the selected algorithms are sports-inspired algorithms (with Football Game Algorithm, FGA and Volleyball Premier League, VPL) and Imperialist Competitive Algorithm (ICA). A real process, the synthesis of polyacrylamide-based multicomponent hydrogels, where some parameters are difficult to obtain experimentally, is considered as a case study. Reaction yield and swelling degree are predicted as a function of reaction conditions (acrylamide concentration, initiator concentration, crosslinking agent concentration, temperature, reaction time, and amount of inclusion polymer, which could be starch, poly(vinyl alcohol) or gelatin). The experimental results contain 175 data. Artificial neural networks are obtained in optimal form with biologically inspired algorithm; the optimization being perform at two level: structural and parametric. Feedforward neural networks with one or two hidden layers and no more than 25 neurons in intermediate layers were obtained with values of correlation coefficient in the validation phase over 0.90. The best results were obtained with TLBO algorithm, correlation coefficient being 0.94 for an MLP(6:9:20:2) – a feedforward neural network with two hidden layers and 9 and 20, respectively, intermediate neurons. Good results obtained prove the efficiency of the optimization algorithms. More than the good results, what is important in this approach is the simulation methodology, including neural networks and optimization biologically inspired algorithms, which provide satisfactory results. In addition, the methodology developed in this approach is general and has flexibility so that it can be easily adapted to other processes in association with different types of models.

Keywords: artificial neural networks, human behaviors of learning and cooperation, human competitive behavior, optimization algorithms

Procedia PDF Downloads 108
4208 A New Tool for Global Optimization Problems: Cuttlefish Algorithm

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.

Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization, global optimization problems

Procedia PDF Downloads 564
4207 Elimination of Low Order Harmonics in Multilevel Inverter Using Nature-Inspired Metaheuristic Algorithm

Authors: N. Ould Cherchali, A. Tlemçani, M. S. Boucherit, A. Morsli

Abstract:

Nature-inspired metaheuristic algorithms, particularly those founded on swarm intelligence, have attracted much attention over the past decade. Firefly algorithm has appeared in approximately seven years ago, its literature has enlarged considerably with different applications. It is inspired by the behavior of fireflies. The aim of this paper is the application of firefly algorithm for solving a nonlinear algebraic system. This resolution is needed to study the Selective Harmonic Eliminated Pulse Width Modulation strategy (SHEPWM) to eliminate the low order harmonics; results have been applied on multilevel inverters. The final results from simulations indicate the elimination of the low order harmonics as desired. Finally, experimental results are presented to confirm the simulation results and validate the efficaciousness of the proposed approach.

Keywords: firefly algorithm, metaheuristic algorithm, multilevel inverter, SHEPWM

Procedia PDF Downloads 148
4206 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms

Authors: Tian Xia, Yuan Yan Tang

Abstract:

In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.

Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian

Procedia PDF Downloads 469
4205 Towards a Biologically Inspired Supercritical Airfoil Adapted for Gliding Cross-Domain Vehicles

Authors: Hanyue Shen, Jiaying Zhang, Xingwei Kong

Abstract:

Growing research on cross-domain vehicles (CDVs) has addressed the requirement to balance airfoil efficiency in air and water. No existing airfoil is specifically developed to adapt to the large Reynold’s number range CDVs operate in. This research proposes a supercritical airfoil biologically inspired by Atlantic Puffins. The initial airfoil is parameterized with the composite Karman-Trefftz method, optimized with a series of multi-stage gradient descend procedures, and compared with other airfoils with Xfoil. Results from Xfoil are also validated via Fluent and experiment considering curvatures on the designed airfoil might affect the accuracy of Xfoil. The results indicate that while CFD and Xfoil results closely align, Xfoil produces results closest to the experimental value. The bionic airfoil demonstrates superior performance in the range Re = 2·10⁴ to Re = 2·10⁵ compared to other studied airfoils, satisfying design requirements. This airfoil and its future counterparts are probable solutions to be implemented on fixed-wing CDVs desiring to glide in the given working conditions, providing an efficient and structurally simple pathway.

Keywords: fluid dynamics, airfoil design, biomimicry, cross domain vehicle

Procedia PDF Downloads 52
4204 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks

Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir

Abstract:

Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.

Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.

Procedia PDF Downloads 89
4203 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation

Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta

Abstract:

Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.

Keywords: channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, lévy flight distribution, optimization, improved multi–objective firefly algorithms, Pareto optimal

Procedia PDF Downloads 322
4202 Multimodal Optimization of Density-Based Clustering Using Collective Animal Behavior Algorithm

Authors: Kristian Bautista, Ruben A. Idoy

Abstract:

A bio-inspired metaheuristic algorithm inspired by the theory of collective animal behavior (CAB) was integrated to density-based clustering modeled as multimodal optimization problem. The algorithm was tested on synthetic, Iris, Glass, Pima and Thyroid data sets in order to measure its effectiveness relative to CDE-based Clustering algorithm. Upon preliminary testing, it was found out that one of the parameter settings used was ineffective in performing clustering when applied to the algorithm prompting the researcher to do an investigation. It was revealed that fine tuning distance δ3 that determines the extent to which a given data point will be clustered helped improve the quality of cluster output. Even though the modification of distance δ3 significantly improved the solution quality and cluster output of the algorithm, results suggest that there is no difference between the population mean of the solutions obtained using the original and modified parameter setting for all data sets. This implies that using either the original or modified parameter setting will not have any effect towards obtaining the best global and local animal positions. Results also suggest that CDE-based clustering algorithm is better than CAB-density clustering algorithm for all data sets. Nevertheless, CAB-density clustering algorithm is still a good clustering algorithm because it has correctly identified the number of classes of some data sets more frequently in a thirty trial run with a much smaller standard deviation, a potential in clustering high dimensional data sets. Thus, the researcher recommends further investigation in the post-processing stage of the algorithm.

Keywords: clustering, metaheuristics, collective animal behavior algorithm, density-based clustering, multimodal optimization

Procedia PDF Downloads 230
4201 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition

Authors: Samia Sadouki Chibani, Abdelkamel Tari

Abstract:

Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.

Keywords: bio-inspired algorithms, elephant herding optimization, QoS optimization, web service composition

Procedia PDF Downloads 327
4200 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures

Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee

Abstract:

This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.

Keywords: structural vibration control, wireless system, MR damper, feedback control, embedded system

Procedia PDF Downloads 211
4199 Solving a Micromouse Maze Using an Ant-Inspired Algorithm

Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira

Abstract:

This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.

Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking

Procedia PDF Downloads 126
4198 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm

Authors: Anuradha Chug, Sunali Gandhi

Abstract:

Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.

Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm

Procedia PDF Downloads 381
4197 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing

Authors: Brwa Abdulrahman Abubaker

Abstract:

Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.

Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning

Procedia PDF Downloads 21
4196 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data

Authors: Haifa Ben Saber, Mourad Elloumi

Abstract:

In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of ​​EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.

Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.

Procedia PDF Downloads 372
4195 Curve Fitting by Cubic Bezier Curves Using Migrating Birds Optimization Algorithm

Authors: Mitat Uysal

Abstract:

A new met heuristic optimization algorithm called as Migrating Birds Optimization is used for curve fitting by rational cubic Bezier Curves. This requires solving a complicated multivariate optimization problem. In this study, the solution of this optimization problem is achieved by Migrating Birds Optimization algorithm that is a powerful met heuristic nature-inspired algorithm well appropriate for optimization. The results of this study show that the proposed method performs very well and being able to fit the data points to cubic Bezier Curves with a high degree of accuracy.

Keywords: algorithms, Bezier curves, heuristic optimization, migrating birds optimization

Procedia PDF Downloads 337
4194 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem

Authors: Guilherme Baldo Carlos

Abstract:

The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.

Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling

Procedia PDF Downloads 147
4193 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67
4192 Effect of Hull-Less Barley Flakes and Malt Extract on Yoghurt Quality

Authors: Ilze Beitane, Evita Straumite

Abstract:

The aim of the research was to evaluate the influence of flakes from biologically activated hull-less barley grain and malt extract on quality of yoghurt during its storage. The results showed that the concentration of added malt extract and storage time influenced the changes of pH and lactic acid in yoghurt samples. Sensory properties-aroma, taste, consistency and appearance-of yoghurt enriched with flakes from biologically activated hull-less barley grain and malt extract changed significantly (p<0.05) during storage. Yoghurt with increased proportion of malt extract had sweeter taste and more flowing consistency. Sensory properties (taste, aroma, consistency, and appearance) of yoghurt samples enriched with 5% flakes from biologically activated hull-less barley grain (YFBG 5%) and 5% flakes from biologically activated hull-less barley grain and 2% malt extract (YFBG 5% ME 2%) did not change significantly during one week of storage.

Keywords: Barley flakes, malt extract, yoghurt, sensory analysis

Procedia PDF Downloads 300
4191 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems

Authors: Nabil Mezhoud

Abstract:

The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.

Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm

Procedia PDF Downloads 76
4190 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models

Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh

Abstract:

In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.

Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals

Procedia PDF Downloads 302
4189 Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic

Authors: Mahdi Alshamasin, Riad Al-Kasasbeh, Nikolay Korenevskiy

Abstract:

We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making.

Keywords: acupuncture points, fuzzy logic, diagnostically important points (DIP), confidence factors, membership functions, stomach diseases

Procedia PDF Downloads 467
4188 Enhancing the Work of Art through Fashion Attire

Authors: A. N. Roslen, S. A. Syed-Sahil, A. Musavir

Abstract:

In Malaysia, there are only few fashion designers who are inspired by the work of artists when creating their collections. The researchers confirmed this statement by interviewing fashion experts in Malaysia. The objectives of this study are to: 1. Investigate the acceptance of fashion inspired by the work of art among consumers. 2. Encourage more designers to use work of art as their inspirations. 3. Promote Malaysian Artists through fashion. Thus, the researchers interviewed Malaysian fashion designers, image consultants, and one famous Malaysian Artist (Awang Damit). All of them had agreed that the fashion inspired by the work of art in Malaysia has a long way to go. Therefore, the researchers’ aim is to attract more fashion designers to use the work of local artists in their creations. The researchers had used interview, survey and experimentation as methods of this study. In the experimentation procedure, paintings of local artist, Awang Damit was used as a source of inspiration in creating a design Line. The result of this study had shown that fashion inspired by work of art is acknowledged and accepted by the designers and consumers.

Keywords: art, fashion, inspiration, local artist

Procedia PDF Downloads 460
4187 Investigation in Gassy Ozone Influence on Flaxes Made from Biologically Activated Whole Wheat Grains Quality Parameters

Authors: Tatjana Rakcejeva, Jelena Zagorska, Elina Zvezdina

Abstract:

The aim of the current research was to investigate the gassy ozone effect on quality parameters of flaxes made form whole biologically activated wheat grains. The research was accomplished on in year 2012 harvested wheat grains variety ′Zentos′. Grains were washed, wetted; grain biological activation was performed in the climatic chamber up to 24 hours. After biological activation grains was compressed; than flaxes was dried in convective drier till constant moisture content 9±1%. For grain treatment gassy ozone concentration as 0.0002% and treatment time – 6 min was used. In the processed flaxes the content of A and G tocopherol decrease by 23% and by 9%; content of B2 and B6 vitamins – by 11% and by 10%; elaidic acid – by 46%, oleic acid – by 29%; arginine (by 80%), glutamine (by 74%), asparagine and serine (by 68%), valine (by 62%), cysteine (by 54%) and tyrosine (by 47%).

Keywords: gassy ozone, flaxes, biologically activated grains, quality parameters, treatment

Procedia PDF Downloads 236
4186 Finding Bicluster on Gene Expression Data of Lymphoma Based on Singular Value Decomposition and Hierarchical Clustering

Authors: Alhadi Bustaman, Soeganda Formalidin, Titin Siswantining

Abstract:

DNA microarray technology is used to analyze thousand gene expression data simultaneously and a very important task for drug development and test, function annotation, and cancer diagnosis. Various clustering methods have been used for analyzing gene expression data. However, when analyzing very large and heterogeneous collections of gene expression data, conventional clustering methods often cannot produce a satisfactory solution. Biclustering algorithm has been used as an alternative approach to identifying structures from gene expression data. In this paper, we introduce a transform technique based on singular value decomposition to identify normalized matrix of gene expression data followed by Mixed-Clustering algorithm and the Lift algorithm, inspired in the node-deletion and node-addition phases proposed by Cheng and Church based on Agglomerative Hierarchical Clustering (AHC). Experimental study on standard datasets demonstrated the effectiveness of the algorithm in gene expression data.

Keywords: agglomerative hierarchical clustering (AHC), biclustering, gene expression data, lymphoma, singular value decomposition (SVD)

Procedia PDF Downloads 278
4185 Anatomical Survey for Text Pattern Detection

Authors: S. Tehsin, S. Kausar

Abstract:

The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.

Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction

Procedia PDF Downloads 444