Search results for: Stock Market Indices
4754 A Stock Exchange Analysis in Turkish Logistics Sector: Modeling, Forecasting, and Comparison with Logistics Indices
Authors: Eti Mizrahi, Gizem İntepe
Abstract:
The geographical location of Turkey that stretches from Asia to Europe and Russia to Africa makes it an important logistics hub in the region. Although logistics is a developing sector in Turkey, the stock market representation is still low with only two companies listed in Turkey’s stock exchange since 2010. In this paper, we use the daily values of these two listed stocks as a benchmark for the logistics sector. After modeling logistics stock prices, an empirical examination is conducted between the existing logistics indices and these stock prices. The paper investigates whether the measures of logistics stocks are correlated with newly available logistics indices. It also shows the reflection of the economic activity in the logistics sector on the stock exchange market. The results presented in this paper are the first analysis of the behavior of logistics indices and logistics stock prices for Turkey.Keywords: forecasting, logistic stock exchange, modeling, Africa
Procedia PDF Downloads 5434753 Long-Run Relationship among Tehran Stock Exchange and the GCC Countries Financial Markets, Before and After 2007/2008 Financial Crisis
Authors: Mohammad Hossein Ranjbar, Mahdi Bagheri, B. Shivaraj
Abstract:
This study attempts to investigate the relationship between stock market of Iran and GCC countries stock exchanges. Eight markets were included: the stock market of Iran, Kuwait, Bahrain, Qatar, Saudi Arabia, Dubai, Abu Dhabi and Oman. Daily country market indices were collected from January 2005 to December 2010. The potential time-varying behaviors of long-run stock market relationship among selected markets are tested applying correlation test, Augmented Dick Fuller test (ADF), Bilateral and Multilateral Cointegration (Johansen), and the Granger Causality test. The findings suggest that stock market of Iran is negatively correlated with most of the selected markets in the whole duration. But contemporaneous correlations among the eight selected markets are increased positively in period of financial crises. Bilateral Cointegration between selected markets suggests that there is no integration between Tehran stock exchange and other selected markets. Among other markets, except the stock market of Dubai and Abu Dhabi as a one pair, are not cointegrated in whole, but in duration of financial crises integration between selected markets are increased. Finally, investigation of the casual relationship among eight financial markets suggests there are unidirectional and bidirectional causal relationship among some of stock market indices.Keywords: financial crises, Middle East, stock market integration, Granger Causality test, ARDL test
Procedia PDF Downloads 3974752 A Study of Islamic Stock Indices and Macroeconomic Variables
Authors: Mohammad Irfan
Abstract:
The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.Keywords: Indian Shariah Indices, macroeconomic variables, co-integration, Granger causality, vector error correction model (VECM)
Procedia PDF Downloads 2814751 Application of Benford's Law in Analysis of Frankfurt Stock Exchange Index (DAX) Percentage Changes
Authors: Mario Zgela
Abstract:
Application of Benford’s Law is very rarely covered in the field of stock market analysis, especially in percentage change of stock market indices. Deutscher Aktien IndeX (DAX) is very important stock market index of Frankfurt Deutsche Börse which serves as underlying basis for large number of financial instruments. It is calculated for selected 30 German blue chips stocks. In this paper, Benford's Law first digit test is applied on 10 year DAX daily percentage changes in order to check compliance. Deviations of 10 year DAX percentage changes set as well as distortions of certain subsets from Benford's Law distribution are detected. It is possible that deviations are the outcome of speculations; and psychological influence should not be eliminated.Keywords: Benford's Law, DAX, index percentage changes, stock market
Procedia PDF Downloads 2944750 Financial Market Turmoil and Performance of Islamic Equity Indices
Authors: Abul Shamsuddin
Abstract:
The Islamic stock market indices are constructed by screening out stocks that are incompatible with Islam’s prohibition of interest and certain lines of business. This study examines the effects of Islamic screening on the risk-return characteristics of Islamic vis-a-vis mainstream equity portfolios. We use data on Dow Jones Islamic market indices and FTSE Global Islamic indices over 1993-2013. We observe that Islamic equity indices outperform their mainstream counterparts in both raw and risk-adjusted returns. In addition, Islamic equity indices are more resilient to turbulence in international markets than that of their mainstream counterparts. The findings are robust across a variety of portfolio performance measures.Keywords: Dow Jones Islamic market index, FTSE global Islamic index, ethical investment, finance
Procedia PDF Downloads 3564749 Exchange Traded Products on the Warsaw Stock Exchange
Authors: Piotr Prewysz-Kwinto
Abstract:
A dynamic development of financial market is accompanied by the emergence of new products on stock exchanges which give absolutely new possibilities of investing money. Currently, the most innovative financial instruments offered to investors are exchange traded products (ETP). They can be defined as financial instruments whose price depends on the value of the underlying instrument. Thus, they offer investors a possibility of making a profit that results from the change in value of the underlying instrument without having to buy it. Currently, the Warsaw Stock Exchange offers many types of ETPs. They are investment products with full or partial capital protection, products without capital protection as well as leverage products, issued on such underlying instruments as indices, sector indices, commodity indices, prices of energy commodities, precious metals, agricultural produce or prices of shares of domestic and foreign companies. This paper presents the mechanism of functioning of ETP available on the Warsaw Stock Exchange and the results of the analysis of statistical data on these financial instruments.Keywords: exchange traded products, financial market, investment, stock exchange
Procedia PDF Downloads 3494748 Causality between Stock Indices and Cryptocurrencies during the Russia-Ukraine War
Authors: Nidhal Mgadmi, Abdelhafidh Othmani
Abstract:
This article examines the causal relationship between stock indices and cryptocurrencies during the current war between Russia and Ukraine. The econometric investigation runs from February 24, 2022, to April 12, 2023, focusing on seven stock market indices (S&P500, DAX, CAC40, Nikkei, TSX, MOEX, and PFTS) and seven cryptocurrencies (Bitcoin, Ethereum, Litcoin, Dash, Ripple, DigiByte and XEM). In this article, we try to understand how investors react to fluctuations in financial assets to seek safe havens in cryptocurrencies. We used dynamic causality to detect a possible causal relationship in the short term and seven models to estimate the long-term relationship between cryptocurrencies and financial assets. The causal relationship between financial market indexes and cryptocurrency coins in the short run indicates that three famous cryptocurrencies (BITCOIN, ETHEREUM, RIPPLE) and the two digital assets with minor popularity (XEM, Digibyte) are impacted by the German, Russian, and Ukrainian stock markets. In the long run, we found a positive and significate effect of the American, Canadian, French, and Ukrainian stock market indexes on Bitcoin. Thus, the stability of the traditional financial markets during the current war period can be explained on the one hand by investors’ fears of an unstable business climate, and on the other hand, by speculators’ sentiment towards new electronic products, which are perceived as hedging instruments and a safe haven in the face of the conflict between Ukraine and Russia.Keywords: causality, stock indices, cryptocurrency, war, Russia, Ukraine
Procedia PDF Downloads 684747 Evaluating Performance of Value at Risk Models for the MENA Islamic Stock Market Portfolios
Authors: Abderrazek Ben Maatoug, Ibrahim Fatnassi, Wassim Ben Ayed
Abstract:
In this paper we investigate the issue of market risk quantification for Middle East and North Africa (MENA) Islamic market equity. We use Value-at-Risk (VaR) as a measure of potential risk in Islamic stock market, for long and short position, based on Riskmetrics model and the conditional parametric ARCH class model volatility with normal, student and skewed student distribution. The sample consist of daily data for the 2006-2014 of 11 Islamic stock markets indices. We conduct Kupiec and Engle and Manganelli tests to evaluate the performance for each model. The main finding of our empirical results show that (i) the superior performance of VaR models based on the Student and skewed Student distribution, for the significance level of α=1% , for all Islamic stock market indices, and for both long and short trading positions (ii) Risk Metrics model, and VaR model based on conditional volatility with normal distribution provides the best accurate VaR estimations for both long and short trading positions for a significance level of α=5%.Keywords: value-at-risk, risk management, islamic finance, GARCH models
Procedia PDF Downloads 5924746 Estimating the Volatilite of Stock Markets in Case of Financial Crisis
Authors: Gultekin Gurcay
Abstract:
In this paper, effects and responses of stock were analyzed. This analysis was done periodically. The dimensions of the financial crisis impact on the stock market were investigated by GARCH model. In this context, S&P 500 stock market is modeled with DAX, NIKKEI and BIST100. In this way, The effects of the changing in S&P 500 stock market were examined on European and Asian stock markets. Conditional variance coefficient will be calculated through garch model. The scope of the crisis period, the conditional covariance coefficient will be analyzed comparatively.Keywords: conditional variance coefficient, financial crisis, garch model, stock market
Procedia PDF Downloads 2954745 Testing the Weak Form Efficiency of Islamic Stock Market: Empirical Evidence from Indonesia
Authors: Herjuno Bagus Wicaksono, Emma Almira Fauni, Salma Amelia Dina
Abstract:
The Efficient Market Hypothesis (EMH) states that, in an efficient capital market, price fully reflects the information available in the market. This theory has influenced many investors behavior in trading in the stock market. Advanced researches have been conducted to test the efficiency of the stock market in particular countries. Indonesia, as one of the emerging countries, has performed substantial growth in the past years. Hence, this paper aims to examine the efficiency of Islamic stock market in Indonesia in its weak form. The daily stock price data from Indonesia Sharia Stock Index (ISSI) for the period October 2015 to October 2016 were used to do the statistical tests: Run Test and Serial Correlation Test. The results show that there is no serial correlation between the current price with the past prices and the market follows the random walk. This research concludes that Indonesia Islamic stock market is weak form efficient.Keywords: efficient market hypothesis, Indonesia sharia stock index, random walk, weak form efficiency
Procedia PDF Downloads 4614744 Analyzing the Impact of Global Financial Crisis on Interconnectedness of Asian Stock Markets Using Network Science
Authors: Jitendra Aswani
Abstract:
In the first section of this study, impact of Global Financial Crisis (GFC) on the synchronization of fourteen Asian Stock Markets (ASM’s) of countries like Hong Kong, India, Thailand, Singapore, Taiwan, Pakistan, Bangladesh, South Korea, Malaysia, Indonesia, Japan, China, Philippines and Sri Lanka, has been analysed using the network science and its metrics like degree of node, clustering coefficient and network density. Then in the second section of this study by introducing the US stock market in existing network and developing a Minimum Spanning Tree (MST) spread of crisis from the US stock market to Asian Stock Markets (ASM) has been explained. Data used for this study is adjusted the closing price of these indices from 6th January, 2000 to 15th September, 2013 which further divided into three sub-periods: Pre, during and post-crisis. Using network analysis, it is found that Asian stock markets become more interdependent during the crisis than pre and post crisis, and also Hong Kong, India, South Korea and Japan are systemic important stock markets in the Asian region. Therefore, failure or shock to any of these systemic important stock markets can cause contagion to another stock market of this region. This study is useful for global investors’ in portfolio management especially during the crisis period and also for policy makers in formulating the financial regulation norms by knowing the connections between the stock markets and how the system of these stock markets changes in crisis period and after that.Keywords: global financial crisis, Asian stock markets, network science, Kruskal algorithm
Procedia PDF Downloads 4244743 Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market
Authors: Rosdyana Mangir Irawan Kusuma, Wei-Chun Kao, Ho-Thi Trang, Yu-Yen Ou, Kai-Lung Hua
Abstract:
Stock market prediction is still a challenging problem because there are many factors that affect the stock market price such as company news and performance, industry performance, investor sentiment, social media sentiment, and economic factors. This work explores the predictability in the stock market using deep convolutional network and candlestick charts. The outcome is utilized to design a decision support framework that can be used by traders to provide suggested indications of future stock price direction. We perform this work using various types of neural networks like convolutional neural network, residual network and visual geometry group network. From stock market historical data, we converted it to candlestick charts. Finally, these candlestick charts will be feed as input for training a convolutional neural network model. This convolutional neural network model will help us to analyze the patterns inside the candlestick chart and predict the future movements of the stock market. The effectiveness of our method is evaluated in stock market prediction with promising results; 92.2% and 92.1 % accuracy for Taiwan and Indonesian stock market dataset respectively.Keywords: candlestick chart, deep learning, neural network, stock market prediction
Procedia PDF Downloads 4504742 Stock Market Developments, Income Inequality, Wealth Inequality
Authors: Quang Dong Dang
Abstract:
This paper examines the possible effects of stock market developments by channels on income and wealth inequality. We use the Bayesian Multilevel Model with the explanatory variables of the market’s channels, such as accessibility, efficiency, and market health in six selected countries: the US, UK, Japan, Vietnam, Thailand, and Malaysia. We found that generally, the improvements in the stock market alleviate income inequality. However, stock market expansions in higher-income countries are likely to trigger income inequality. We also found that while enhancing the quality of channels of the stock market has counter-effects on wealth equality distributions, open accessibilities help reduce wealth inequality distributions within the scope of the study. In addition, the inverted U-shaped hypothesis seems not to be valid in six selected countries between the period from 2006 to 2020.Keywords: Bayesian multilevel model, income inequality, inverted u-shaped hypothesis, stock market development, wealth inequality
Procedia PDF Downloads 1084741 Volatility Transmission between Oil Price and Stock Return of Emerging and Developed Countries
Authors: Algia Hammami, Abdelfatteh Bouri
Abstract:
In this work, our objective is to study the transmission of volatility between oil and stock markets in developed (USA, Germany, Italy, France and Japan) and emerging countries (Tunisia, Thailand, Brazil, Argentina, and Jordan) for the period 1998-2015. Our methodology consists of analyzing the monthly data by the GARCH-BEKK model to capture the effect in terms of volatility in the variation of the oil price on the different stock market. The empirical results in the emerging countries indicate that the relationships are unidirectional from the stock market to the oil market. For the developed countries, we find that the transmission of volatility is unidirectional from the oil market to stock market. For the USA and Italy, we find no transmission between the two markets. The transmission is bi-directional only in Thailand. Following our estimates, we also noticed that the emerging countries influence almost the same extent as the developed countries, while at the transmission of volatility there a bid difference. The GARCH-BEKK model is more effective than the others versions to minimize the risk of an oil-stock portfolio.Keywords: GARCH, oil prices, stock market, volatility transmission
Procedia PDF Downloads 4384740 On the Influence of the Covid-19 Pandemic on Tunisian Stock Market: By Sector Analysis
Authors: Nadia Sghaier
Abstract:
In this paper, we examine the influence of the COVID-19 pandemic on the performance of the Tunisian stock market and 12 sectors over a recent period from 23 March 2020 to 18 August 2021, including several waves and the introduction of vaccination. The empirical study is conducted using cointegration techniques which allows for long and short-run relationships. The obtained results indicate that both daily growth in confirmed cases and deaths have a negative and significant effect on the stock market returns. In particular, this effect differs across sectors. It seems more pronounced in financial, consumer goods and industrials sectors. These findings have important implications for investors to predict the behavior of the stock market or sectors returns and to implement hedging strategies during the COVID-19 pandemic.Keywords: Tunisian stock market, sectors, COVID-19 pandemic, cointegration techniques
Procedia PDF Downloads 2014739 The Impact of Bitcoin on Stock Market Performance
Authors: Oliver Takawira, Thembi Hope
Abstract:
This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices.Keywords: bitcoin, stock market, interest rates, ARDL
Procedia PDF Downloads 1074738 Uncertainty and Volatility in Middle East and North Africa Stock Market during the Arab Spring
Authors: Ameen Alshugaa, Abul Mansur Masih
Abstract:
This paper sheds light on the economic impacts of political uncertainty caused by the civil uprisings that swept the Arab World and have been collectively known as the Arab Spring. Measuring documented effects of political uncertainty on regional stock market indices, we examine the impact of the Arab Spring on the volatility of stock markets in eight countries in the Middle East and North Africa (MENA) region: Egypt, Lebanon, Jordon, United Arab Emirate, Qatar, Bahrain, Oman and Kuwait. This analysis also permits testing the existence of financial contagion among equity markets in the MENA region during the Arab Spring. To capture the time-varying and multi-horizon nature of the evidence of volatility and contagion in the eight MENA stock markets, we apply two robust methodologies on consecutive data from November 2008 to March 2014: MGARCH-DCC, Continuous Wavelet Transforms (CWT). Our results indicate two key findings. First, the discrepancies between volatile stock markets of countries directly impacted by the Arab Spring and countries that were not directly impacted indicate that international investors may still enjoy portfolio diversification and investment in MENA markets. Second, the lack of financial contagion during the Arab Spring suggests that there is little evidence of cointegration among MENA markets. Providing a general analysis of the economic situation and the investment climate in the MENA region during and after the Arab Spring, this study bear significant importance for policy makers, local and international investors, and market regulators.Keywords: Portfolio Diversification , MENA Region , Stock Market Indices, MGARCH-DCC, Wavelet Analysis, CWT
Procedia PDF Downloads 2924737 Heterogeneous Intelligence Traders and Market Efficiency: New Evidence from Computational Approach in Artificial Stock Markets
Authors: Yosra Mefteh Rekik
Abstract:
A computational agent-based model of financial markets stresses interactions and dynamics among a very diverse set of traders. The growing body of research in this area relies heavily on computational tools which by-pass the restrictions of an analytical method. The main goal of this research is to understand how the stock market operates and behaves how to invest in the stock market and to study traders’ behavior within the context of the artificial stock markets populated by heterogeneous agents. All agents are characterized by adaptive learning behavior represented by the Artificial Neuron Networks. By using agent-based simulations on artificial market, we show that the existence of heterogeneous agents can explain the price dynamics in the financial market. We investigate the relation between market diversity and market efficiency. Our empirical findings demonstrate that greater market heterogeneity play key roles in market efficiency.Keywords: agent-based modeling, artificial stock market, heterogeneous expectations, financial stylized facts, computational finance
Procedia PDF Downloads 4394736 Heat Waves Effect on Stock Return and Volatility: Evidence from Stock Market and Selected Industries in Pakistan
Authors: Sayed Kifayat Shah, Tang Zhongjun, Arfa Tanveer
Abstract:
This study explores the significant heatwave effect on stock return and volatility. Using an ARCH/GARCH approach, it examines the relationship between the heatwave of Karachi, Islamabad, and Lahore on the KSE-100 index. It also explores the impact of heatwave on returns of the pharmaceutical and electronics industries. The empirical results confirm that that stock return is positively related to the heat waves of Karachi, negatively related to that of Islamabad, and is not affected by the heatwave of Lahore. Similarly, pharmaceutical and electronics indices are also positively related to heatwaves. These differences in results can be ascribed to the change in the behavior of the residents of that city. The outcomes are useful for understanding an investor's behavior reacting to weather and fluxes in stock price related to heatwave severity levels. The results can support investors in fixing biases in behavior.Keywords: ARCH/GARCH model, heat wave, KSE-100 index, stock market return
Procedia PDF Downloads 1574735 Risk Management of Natural Disasters on Insurance Stock Market
Authors: Tarah Bouaricha
Abstract:
The impact of worst natural disasters is analysed in terms of insured losses which happened between 2010 and 2014 on S&P insurance index. Event study analysis is used to test whether natural disasters impact insurance index stock market price. There is no negative impact on insurance stock market price around the disasters event. To analyse the reaction of insurance stock market, normal returns (NR), abnormal returns (AR), cumulative abnormal returns (CAR), cumulative average abnormal returns (CAAR) and a parametric test on AR and on CAR are used.Keywords: study event, natural disasters, insurance, reinsurance, stock market
Procedia PDF Downloads 3964734 Financial Literacy and Stock Market Participation: Does Gender Matter?
Authors: Irfan Ullah Munir, Shen Yue, Muhammad Shahzad Ijaz, Saad Hussain, Syeda Yumna Zaidi
Abstract:
Financial literacy is fundamental to every decision-making process and has received attention from researchers, regulatory bodies and policy makers in the recent past. This study is an attempt to evaluate financial literacy in an emerging economy, particularly Pakistan, and its influence on people's stock market participation. Data of this study was collected through a structured questionnaire from a sample of 300 respondents. EFA is used to check the convergent and discriminant validity. Data is analyzed using Hayes (2013) approach. A set of demographic control variables that have passed the mean difference test is used. We demonstrate that participants with financial literacy tend to invest more in the stock market. We also find that association among financial literacy and participation in stock market gets moderated by gender.Keywords: Financial literacy, Stock market participation, Gender, PSX
Procedia PDF Downloads 2014733 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1314732 The Effect of COVID-19 Transmission, Lockdown Measures, and Vaccination on Stock Market Returns
Authors: Belhouchet Selma, Ben Amar Anis
Abstract:
We examine the impact of COVID-19 transmission, containment measures, and vaccination growth on daily stock market returns for the G7 countries (Canada, France, Germany, Italy, Japan, the United Kingdom, and the United States) from January 22, 2020, to August 31, 2021, more than a year and a half after COVID-19. For this objective, we use panel pooled ordinary least squares regressions. Our findings indicate that the spread of the pandemic has a negative impact on the daily performance of the world's seven main stock markets. Government measures to improve stock market returns are no longer successful. Furthermore, our findings demonstrate that immunization efforts in G7 nations do not increase stock market performance in these countries. A variety of robustness tests back up our conclusions. Our findings have far-reaching implications for investors, governments, and regulators not only in the G7 countries but also in all developed countries and all countries globally.Keywords: COVID-19, G7 stock market, containment measures, vaccination
Procedia PDF Downloads 1004731 Combined Effect of Heat Stimulation and Delay Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Antoni Wibowo, Harry Pujianto, Dewi Retno Sari Saputro
Abstract:
The stock market can provide huge profits in a relatively short time in financial sector; however, it also has a high risk for investors and traders if they are not careful to look the factors that affect the stock market. Therefore, they should give attention to the dynamic fluctuations and movements of the stock market to optimize profits from their investment. In this paper, we present a nonlinear autoregressive exogenous model (NARX) to predict the movements of stock market; especially, the movements of the closing price index. As case study, we consider to predict the movement of the closing price in Indonesia composite index (IHSG) and choose the best structures of NARX for IHSG’s prediction.Keywords: NARX (Nonlinear Autoregressive Exogenous Model), prediction, stock market, time series
Procedia PDF Downloads 2444730 Structural Breaks, Asymmetric Effects and Long Memory in the Volatility of Turkey Stock Market
Authors: Serpil Türkyılmaz, Mesut Balıbey
Abstract:
In this study, long memory properties in volatility of Turkey Stock Market are being examined through the FIGARCH, FIEGARCH and FIAPARCH models under different distribution assumptions as normal and skewed student-t distributions. Furthermore, structural changes in volatility of Turkey Stock Market are investigated. The results display long memory property and the presence of asymmetric effects of shocks in volatility of Turkey Stock Market.Keywords: FIAPARCH model, FIEGARCH model, FIGARCH model, structural break
Procedia PDF Downloads 2914729 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1584728 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 4204727 Foreign Exchange Volatilities and Stock Prices: Evidence from London Stock Exchange
Authors: Mahdi Karazmodeh, Pooyan Jafari
Abstract:
One of the most interesting topics in finance is the relation between stock prices and exchange rates. During the past decades different stock markets in different countries have been the subject of study for researches. The volatilities of exchange rates and its effect on stock prices during the past 10 years have continued to be an attractive research topic. The subject of this study is one of the most important indices, FTSE 100. 20 firms with the highest market capitalization in 5 different industries are chosen. Firms are included in oil and gas, mining, pharmaceuticals, banking and food related industries. 5 different criteria have been introduced to evaluate the relationship between stock markets and exchange rates. Return of market portfolio, returns on broad index of Sterling are also introduced. The results state that not all firms are sensitive to changes in exchange rates. Furthermore, a Granger Causality test has been run to observe the route of changes between stock prices and foreign exchange rates. The results are consistent, to some level, with the previous studies. However, since the number of firms is not large, it is suggested that a larger number of firms being used to achieve the best results. However results showed that not all firms are affected by foreign exchange rates changes. After testing Granger Causality, this study found out that in some industries (oil and gas, pharmaceuticals), changes in foreign exchange rate will not cause any changes in stock prices (or vice versa), however, in banking sector the situation was different. This industry showed more reaction to these changes. The results are similar to the ones with Richards and Noel, where a variety of firms in different industries were evaluated.Keywords: stock prices, foreign exchange rate, exchange rate exposure, Granger Causality
Procedia PDF Downloads 4464726 Recent Developments in the Application of Deep Learning to Stock Market Prediction
Authors: Shraddha Jain Sharma, Ratnalata Gupta
Abstract:
Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume
Procedia PDF Downloads 924725 Assessing the Influence of Chinese Stock Market on Indian Stock Market
Authors: Somnath Mukhuti, Prem Kumar Ghosh
Abstract:
Background and significance of the study Indian stock market has undergone sudden changes after the current China crisis in terms of turnover, market capitalization, share prices, etc. The average returns on equity investment in both markets have more than three and half times after global financial crisis owing to the development of industrial activity, corporate sectors development, enhancement in global consumption, change of global financial association and fewer imports from developed countries. But the economic policies of both the economies are far different, that is to say, where Indian economy maintaining a conservative policy, Chinese economy maintaining an aggressive policy. Besides this, Chinese economy recently lowering its currency for increasing mysterious growth but Indian does not. But on August 24, 2015 Indian stock market and world stock markets were fall down due to the reason of Chinese stock market. Keeping in view of the above, this study seeks to examine the influence of Chinese stock on Indian stock market. Methodology This research work is based on daily time series data obtained from yahoo finance database between 2009 (April 1) to 2015 (September 28). This study is based on two important stock markets, that is, Indian stock market (Bombay Stock Exchange) and Chinese stock market (Shanghai Stock Exchange). In the course of analysis, the daily raw data were converted into natural logarithm for minimizing the problem of heteroskedasticity. While tackling the issue, correlation statistics, ADF and PP unit root test, bivariate cointegration test and causality test were used. Major findings Correlation statistics show that both stock markets are associated positively. Both ADF and PP unit root test results demonstrate that the time series data were not normal and were not stationary at level however stationary at 1st difference. The bivariate cointegration test results indicate that the Indian stock market was associated with Chinese stock market in the long-run. The Granger causality test illustrates there was a unidirectional causality between Indian stock market and Chinese stock market. Concluding statement The empirical results recommend that India’s stock market was not very much dependent on Chinese stock market because of Indian economic conservative policies. Nevertheless, Indian stock market might be sturdy if Indian economic policies are changed slightly and if increases the portfolio investment with Chinese economy. Indian economy might be a third largest economy in 2030 if India increases its portfolio investment and trade relations with both Chinese economy and US economy.Keywords: Indian stock market, China stock market, bivariate cointegration, causality test
Procedia PDF Downloads 379