Search results for: Fuzzy set theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5319

Search results for: Fuzzy set theory

5319 Sensitivity Analysis in Fuzzy Linear Programming Problems

Authors: S. H. Nasseri, A. Ebrahimnejad

Abstract:

Fuzzy set theory has been applied to many fields, such as operations research, control theory, and management sciences. In this paper, we consider two classes of fuzzy linear programming (FLP) problems: Fuzzy number linear programming and linear programming with trapezoidal fuzzy variables problems. We state our recently established results and develop fuzzy primal simplex algorithms for solving these problems. Finally, we give illustrative examples.

Keywords: fuzzy linear programming, fuzzy numbers, duality, sensitivity analysis

Procedia PDF Downloads 565
5318 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method

Authors: P. W. Tsai, J. W. Chen, C. W. Chen, C. Y. Chen

Abstract:

In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.

Keywords: half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method

Procedia PDF Downloads 685
5317 2D Structured Non-Cyclic Fuzzy Graphs

Authors: T. Pathinathan, M. Peter

Abstract:

Fuzzy graphs incorporate concepts from graph theory with fuzzy principles. In this paper, we make a study on the properties of fuzzy graphs which are non-cyclic and are of two-dimensional in structure. In particular, this paper presents 2D structure or the structure of double layer for a non-cyclic fuzzy graph whose underlying crisp graph is non-cyclic. In any graph structure, introducing 2D structure may lead to an inherent cycle. We propose relevant conditions for 2D structured non-cyclic fuzzy graphs. These conditions are extended even to fuzzy graphs of the 3D structure. General theoretical properties that are studied for any fuzzy graph are verified to 2D structured or double layered fuzzy graphs. Concepts like Order, Degree, Strong and Size for a fuzzy graph are studied for 2D structured or double layered non-cyclic fuzzy graphs. Using different types of fuzzy graphs, the proposed concepts relating to 2D structured fuzzy graphs are verified.

Keywords: double layered fuzzy graph, double layered non–cyclic fuzzy graph, order, degree and size

Procedia PDF Downloads 400
5316 Fuzzy Ideal Topological Spaces

Authors: Ali Koam, Ismail Ibedou, S. E. Abbas

Abstract:

In this paper, it is introduced the notion of r-fuzzy ideal separation axioms Tᵢi = 0; 1; 2 based on a fuzzy ideal I on a fuzzy topological space (X; τ). An r-fuzzy ideal connectedness related to the fuzzy ideal I is introduced which has relations with a previous r-fuzzy fuzzy connectedness. An r-fuzzy ideal compactness related to Ι is introduced which has also relations with many other types of fuzzy compactness.

Keywords: fuzzy ideal, fuzzy separation axioms, fuzzy compactness, fuzzy connectedness

Procedia PDF Downloads 266
5315 Application of Interval Valued Picture Fuzzy Set in Medical Diagnosis

Authors: Palash Dutta

Abstract:

More frequently uncertainties are encountered in medical diagnosis and therefore it is the most important and interesting area of applications of fuzzy set theory. In this present study, an attempt has been made to extend Sanchez’s approach for medical diagnosis via interval valued picture fuzzy sets and exhibit the technique with suitable case studies. In this article, it is observed that a refusal can be expressed in the databases concerning the examined objects. The technique is performing diagnosis on the basis of distance measures and as a result, this approach makes it possible to introduce weights of all symptoms and consequently patient can be diagnosed directly.

Keywords: medical diagnosis, uncertainty, fuzzy set, picture fuzzy set, interval valued picture fuzzy set

Procedia PDF Downloads 378
5314 The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection

Authors: Jinming Ma, Tianbing Xia, Janusz Getta

Abstract:

This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable.

Keywords: mobile internet, advertisement, anti-fraud, fuzzy set theory

Procedia PDF Downloads 181
5313 Fuzzy Total Factor Productivity by Credibility Theory

Authors: Shivi Agarwal, Trilok Mathur

Abstract:

This paper proposes the method to measure the total factor productivity (TFP) change by credibility theory for fuzzy input and output variables. Total factor productivity change has been widely studied with crisp input and output variables, however, in some cases, input and output data of decision-making units (DMUs) can be measured with uncertainty. These data can be represented as linguistic variable characterized by fuzzy numbers. Malmquist productivity index (MPI) is widely used to estimate the TFP change by calculating the total factor productivity of a DMU for different time periods using data envelopment analysis (DEA). The fuzzy DEA (FDEA) model is solved using the credibility theory. The results of FDEA is used to measure the TFP change for fuzzy input and output variables. Finally, numerical examples are presented to illustrate the proposed method to measure the TFP change input and output variables. The suggested methodology can be utilized for performance evaluation of DMUs and help to assess the level of integration. The methodology can also apply to rank the DMUs and can find out the DMUs that are lagging behind and make recommendations as to how they can improve their performance to bring them at par with other DMUs.

Keywords: chance-constrained programming, credibility theory, data envelopment analysis, fuzzy data, Malmquist productivity index

Procedia PDF Downloads 365
5312 Derivation of BCK\BCI-Algebras

Authors: Tumadhir Fahim M Alsulami

Abstract:

The concept of this paper builds on connecting between two important notions, fuzzy ideals of BCK-algebras and derivation of BCI-algebras. The result we got is a new concept called derivation fuzzy ideals of BCI-algebras. Followed by various results and important theorems on different types of ideals. In chapter 1: We presented the basic and fundamental concepts of BCK\ BCI- algebras as follows: BCK/BCI-algebras, BCK sub-algebras, bounded BCK-algebras, positive implicative BCK-algebras, commutative BCK-algebras, implicative BCK- algebras. Moreover, we discussed ideals of BCK-algebras, positive implicative ideals, implicative ideals and commutative ideals. In the last section of chapter 1 we proposed the notion of derivation of BCI-algebras, regular derivation of BCI-algebras and basic definitions and properties. In chapter 2: It includes 3 sections as follows: Section 1 contains elementary concepts of fuzzy sets and fuzzy set operations. Section 2 shows O. G. Xi idea, where he applies fuzzy sets concept to BCK-algebras and we studied fuzzy sub-algebras as well. Section 3 contains fuzzy ideals of BCK-algebras basic definitions, closed fuzzy ideals, fuzzy commutative ideals, fuzzy positive implicative ideals, fuzzy implicative ideals, fuzzy H-ideals and fuzzy p-ideals. Moreover, we investigated their concepts in diverse theorems and propositions. In chapter 3: The main concept of our thesis on derivation fuzzy ideals of BCI- algebras is introduced. Chapter 3 splits into 4 sections. We start with General definitions and important theorems on derivation fuzzy ideal theory in section 1. Section 2 and 3 contain derivations fuzzy p-ideals and derivations fuzzy H-ideals of BCI- algebras, several important theorems and propositions were introduced. The last section studied derivations fuzzy implicative ideals of BCI-algebras and it includes new theorems and results. Furthermore, we presented a new theorem that associate derivations fuzzy implicative ideals, derivations fuzzy positive implicative ideals and derivations fuzzy commutative ideals. These concepts and the new results were obtained and introduced in chapter 3 were submitted in two separated articles and accepted for publication.

Keywords: BCK, BCI, algebras, derivation

Procedia PDF Downloads 124
5311 Some New Hesitant Fuzzy Sets Operator

Authors: G. S. Thakur

Abstract:

In this paper, four new operators (O1, O2, O3, O4) are proposed, defined and considered to study the new properties and identities on hesitant fuzzy sets. These operators are useful for different operation on hesitant fuzzy sets. The various theorems are proved using the new operators. The study of the proposed new operators has opened a new area of research and applications.

Keywords: vague sets, hesitant fuzzy sets, intuitionistic fuzzy set, fuzzy sets, fuzzy multisets

Procedia PDF Downloads 285
5310 A Study on Ideals and Prime Ideals of Sub-Distributive Semirings and Its Applications to Symmetric Fuzzy Numbers

Authors: Rosy Joseph

Abstract:

From an algebraic point of view, Semirings provide the most natural generalization of group theory and ring theory. In the absence of additive inverse in a semiring, one had to impose a weaker condition on the semiring, i.e., the additive cancellative law to study interesting structural properties. In many practical situations, fuzzy numbers are used to model imprecise observations derived from uncertain measurements or linguistic assessments. In this connection, a special class of fuzzy numbers whose shape is symmetric with respect to a vertical line called the symmetric fuzzy numbers i.e., for α ∈ (0, 1] the α − cuts will have a constant mid-point and the upper end of the interval will be a non-increasing function of α, the lower end will be the image of this function, is suitable. Based on this description, arithmetic operations and a ranking technique to order the symmetric fuzzy numbers were dealt with in detail. Wherein it was observed that the structure of the class of symmetric fuzzy numbers forms a commutative semigroup with cancellative property. Also, it forms a multiplicative monoid satisfying sub-distributive property.In this paper, we introduce the algebraic structure, sub-distributive semiring and discuss its various properties viz., ideals and prime ideals of sub-distributive semiring, sub-distributive ring of difference etc. in detail. Symmetric fuzzy numbers are visualized as an illustration.

Keywords: semirings, subdistributive ring of difference, subdistributive semiring, symmetric fuzzy numbers

Procedia PDF Downloads 212
5309 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment

Authors: Bezhan Ghvaberidze

Abstract:

A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.

Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory

Procedia PDF Downloads 119
5308 An Axiomatic Approach to Constructing an Applied Theory of Possibility

Authors: Oleksii Bychkov

Abstract:

The fundamental difference between randomness and vagueness is that the former requires statistical research. These issues were studied by Zadeh L, Dubois D., Prad A. The theory of possibility works with expert assessments, hypotheses, etc. gives an idea of the characteristics of the problem situation, the nature of the goals and real limitations. Possibility theory examines experiments that are not repeated. The article discusses issues related to the formalization of a fuzzy, uncertain idea of reality. The author proposes to expand the classical model of the theory of possibilities by introducing a measure of necessity. The proposed model of the theory of possibilities allows us to extend the measures of possibility and necessity onto a Boolean while preserving the properties of the measure. Thus, upper and lower estimates are obtained to describe the fact that the event will occur. Knowledge of the patterns that govern mass random, uncertain, fuzzy events allows us to predict how these events will proceed. The article proposed for publication quite fully reveals the essence of the construction and use of the theory of probability and the theory of possibility.

Keywords: possibility, artificial, modeling, axiomatics, intellectual approach

Procedia PDF Downloads 32
5307 A Comparison between Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process for Rationality Evaluation of Land Use Planning Locations in Vietnam

Authors: X. L. Nguyen, T. Y. Chou, F. Y. Min, F. C. Lin, T. V. Hoang, Y. M. Huang

Abstract:

In Vietnam, land use planning is utilized as an efficient tool for the local government to adjust land use. However, planned locations are facing disapproval from people who live near these planned sites because of environmental problems. The selection of these locations is normally based on the subjective opinion of decision-makers and is not supported by any scientific methods. Many researchers have applied Multi-Criteria Analysis (MCA) methods in which Analytic Hierarchy Process (AHP) is the most popular techniques in combination with Fuzzy set theory for the subject of rationality assessment of land use planning locations. In this research, the Fuzzy set theory and Analytic Network Process (ANP) multi-criteria-based technique were used for the assessment process. The Fuzzy Analytic Hierarchy Process was also utilized, and the output results from two methods were compared to extract the differences. The 20 planned landfills in Hung Ha district, Thai Binh province, Vietnam was selected as a case study. The comparison results indicate that there are different between weights computed by AHP and ANP methods and the assessment outputs produced from these two methods also slight differences. After evaluation of existing planned sites, some potential locations were suggested to the local government for possibility of land use planning adjusts.

Keywords: Analytic Hierarchy Process, Analytic Network Process, Fuzzy set theory, land use planning

Procedia PDF Downloads 421
5306 Decision Making Approach through Generalized Fuzzy Entropy Measure

Authors: H. D. Arora, Anjali Dhiman

Abstract:

Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.

Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making

Procedia PDF Downloads 448
5305 Interactive Solutions for the Multi-Objective Capacitated Transportation Problem with Mixed Constraints under Fuzziness

Authors: Aquil Ahmed, Srikant Gupta, Irfan Ali

Abstract:

In this paper, we study a multi-objective capacitated transportation problem (MOCTP) with mixed constraints. This paper is comprised of the modelling and optimisation of an MOCTP in a fuzzy environment in which some goals are fractional and some are linear. In real life application of the fuzzy goal programming (FGP) problem with multiple objectives, it is difficult for the decision maker(s) to determine the goal value of each objective precisely as the goal values are imprecise or uncertain. Also, we developed the concept of linearization of fractional goal for solving the MOCTP. In this paper, imprecision of the parameter is handled by the concept of fuzzy set theory by considering these parameters as a trapezoidal fuzzy number. α-cut approach is used to get the crisp value of the parameters. Numerical examples are used to illustrate the method for solving MOCTP.

Keywords: capacitated transportation problem, multi objective linear programming, multi-objective fractional programming, fuzzy goal programming, fuzzy sets, trapezoidal fuzzy number

Procedia PDF Downloads 434
5304 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables

Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi

Abstract:

In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.

Keywords: fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem

Procedia PDF Downloads 383
5303 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: rough set theory, attribute reduction, fuzzy logic, memetic algorithms, record to record algorithm, great deluge algorithm

Procedia PDF Downloads 454
5302 Complex Fuzzy Evolution Equation with Nonlocal Conditions

Authors: Abdelati El Allaoui, Said Melliani, Lalla Saadia Chadli

Abstract:

The objective of this paper is to study the existence and uniqueness of Mild solutions for a complex fuzzy evolution equation with nonlocal conditions that accommodates the notion of fuzzy sets defined by complex-valued membership functions. We first propose definition of complex fuzzy strongly continuous semigroups. We then give existence and uniqueness result relevant to the complex fuzzy evolution equation.

Keywords: Complex fuzzy evolution equations, nonlocal conditions, mild solution, complex fuzzy semigroups

Procedia PDF Downloads 281
5301 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Authors: Jolly Puri, Shiv Prasad Yadav

Abstract:

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.

Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)

Procedia PDF Downloads 407
5300 A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets

Authors: O. Poleshchuk, E. Komarov

Abstract:

This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions.

Keywords: interval type-2 fuzzy sets, fuzzy regression, weighted interval

Procedia PDF Downloads 373
5299 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling

Procedia PDF Downloads 338
5298 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation

Authors: Sachin Kumar

Abstract:

Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.

Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method

Procedia PDF Downloads 201
5297 Fuzzy Vehicle Routing Problem for Extreme Environment

Authors: G. Sirbiladze, B. Ghvaberidze, B. Matsaberidze

Abstract:

A fuzzy vehicle routing problem is considered in the possibilistic environment. A new criterion, maximization of expectation of reliability for movement on closed routes is constructed. The objective of the research is to implement a two-stage scheme for solution of this problem. Based on the algorithm of preferences on the first stage, the sample of so-called “promising” routes will be selected. On the second stage, for the selected promising routes new bi-criteria problem will be solved - minimization of total traveled distance and maximization of reliability of routes. The problem will be stated as a fuzzy-partitioning problem. Two possible solutions of this scheme are considered.

Keywords: vehicle routing problem, fuzzy partitioning problem, multiple-criteria optimization, possibility theory

Procedia PDF Downloads 547
5296 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application

Authors: K. M. Alsager, N. O. Alshehri

Abstract:

In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.

Keywords: single valued neutrosophic fuzzy set, single valued neutrosophic fuzzy hesitant set, rough set, single valued neutrosophic hesitant fuzzy rough set

Procedia PDF Downloads 271
5295 Seamless Mobility in Heterogeneous Mobile Networks

Authors: Mohab Magdy Mostafa Mohamed

Abstract:

The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.

Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load

Procedia PDF Downloads 352
5294 Fuzzy Control and Pertinence Functions

Authors: Luiz F. J. Maia

Abstract:

This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance.

Keywords: control surface, fuzzy control, Inverted pendulum, pertinence functions

Procedia PDF Downloads 449
5293 A Fuzzy Kernel K-Medoids Algorithm for Clustering Uncertain Data Objects

Authors: Behnam Tavakkol

Abstract:

Uncertain data mining algorithms use different ways to consider uncertainty in data such as by representing a data object as a sample of points or a probability distribution. Fuzzy methods have long been used for clustering traditional (certain) data objects. They are used to produce non-crisp cluster labels. For uncertain data, however, besides some uncertain fuzzy k-medoids algorithms, not many other fuzzy clustering methods have been developed. In this work, we develop a fuzzy kernel k-medoids algorithm for clustering uncertain data objects. The developed fuzzy kernel k-medoids algorithm is superior to existing fuzzy k-medoids algorithms in clustering data sets with non-linearly separable clusters.

Keywords: clustering algorithm, fuzzy methods, kernel k-medoids, uncertain data

Procedia PDF Downloads 215
5292 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment

Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali

Abstract:

This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.

Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets

Procedia PDF Downloads 213
5291 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 438
5290 Construction Time - Cost Trade-Off Analysis Using Fuzzy Set Theory

Authors: V. S. S. Kumar, B. Vikram, G. C. S. Reddy

Abstract:

Time and cost are the two critical objectives of construction project management and are not independent but intricately related. Trade-off between project duration and cost are extensively discussed during project scheduling because of practical relevance. Generally when the project duration is compressed, the project calls for an increase in labor and more productive equipments, which increases the cost. Thus, the construction time-cost optimization is defined as a process to identify suitable construction activities for speeding up to attain the best possible savings in both time and cost. As there is hidden tradeoff relationship between project time and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of compressing the schedule. Different combinations of duration and cost for the activities associated with the project determine the best set in the time-cost optimization. Therefore, the contractors need to select the best combination of time and cost to perform each activity, all of which will ultimately determine the project duration and cost. In this paper, the fuzzy set theory is used to model the uncertainties in the project environment for time-cost trade off analysis.

Keywords: fuzzy sets, uncertainty, qualitative factors, decision making

Procedia PDF Downloads 652