World Academy of Science, Engineering and Technology
[Mathematical and Computational Sciences]
Online ISSN : 1307-6892
1439 Singularity Theory in Yakam Matrix by Multiparameter Bifurcation Interfacial in Coupled Problem in Artificial Intelligence
Authors: Leonard Kabeya Mukeba Yakasham
Abstract:
The theoretical machinery from singularity theory introduced by Glolubitsky, Stewart, and Schaeffer, to study equivariant bifurcation problem is completed and expanded wile generalized to the multiparameter context. In this setting the finite deterinancy theorem or normal forms, the stability of equivariant bifurcation problem, and the structural stability of universal unfolding are discussed. With Yakam Matrix the solutions are limited for some partial differential equations stochastic nonlinear of the open questions in singularity artificial intelligence for future.Keywords: equivariant bifurcation, symmetry singularity, equivariant jets and transversality, normal forms, universal unfolding instability, structural stability
Procedia PDF Downloads 01438 Spectral Quasi Linearization Techniques for the Solution of Time Fractional Diffusion Wave Equations in Boundary Value Problems
Authors: Kizito Ugochukwu Nwajeria
Abstract:
This paper presents a spectral quasi-linearization technique (SQLT) for solving time fractional diffusion wave equations in boundary value problems. The proposed method integrates spectral approximations for spatial derivatives with a quasi-linearization approach to address the nonlinearity introduced by fractional time derivatives. Time fractional differential equations typically formulated using Caputo or Riemann-Liouville derivatives, model complex phenomena such as anomalous diffusion and wave propagation, which are not captured by classical integer-order models. The SQLT method iteratively linearizes the nonlinear terms at each time step, transforming the original problem into a series of linear subproblems, which can be efficiently solved. Using high-order spectral methods such as Chebyshev or Legendre polynomials for spatial discretization, the technique achieves high accuracy in approximating the solution. A convergence analysis is provided, demonstrating the method's efficiency and establishing error bounds. Numerical experiments on a range of test problems confirm the effectiveness of SQLT in solving fractional diffusion wave equations with various boundary conditions. The method offers a robust framework for addressing time fractional differential equations in diverse fields, including materials science, bioengineering, and anomalous transport phenomena.Keywords: spectral methods, quasilinearization, time-fractional diffusion-wave equations, boundary value problems, fractional calculus
Procedia PDF Downloads 71437 Enhancement of Density-Based Spatial Clustering Algorithm with Noise for Fire Risk Assessment and Warning in Metro Manila
Authors: Pinky Mae O. De Leon, Franchezka S. P. Flores
Abstract:
This study focuses on applying an enhanced density-based spatial clustering algorithm with noise for fire risk assessments and warnings in Metro Manila. Unlike other clustering algorithms, DBSCAN is known for its ability to identify arbitrary-shaped clusters and its resistance to noise. However, its performance diminishes when handling high dimensional data, wherein it can read the noise points as relevant data points. Also, the algorithm is dependent on the parameters (eps & minPts) set by the user; choosing the wrong parameters can greatly affect its clustering result. To overcome these challenges, the study proposes three key enhancements: first is to utilize multiple MinHash and locality-sensitive hashing to decrease the dimensionality of the data set, second is to implement Jaccard Similarity before applying the parameter Epsilon to ensure that only similar data points are considered neighbors, and third is to use the concept of Jaccard Neighborhood along with the parameter MinPts to improve in classifying core points and identifying noise in the data set. The results show that the modified DBSCAN algorithm outperformed three other clustering methods, achieving fewer outliers, which facilitated a clearer identification of fire-prone areas, high Silhouette score, indicating well-separated clusters that distinctly identify areas with potential fire hazards and exceptionally achieved a low Davies-Bouldin Index and a high Calinski-Harabasz score, highlighting its ability to form compact and well-defined clusters, making it an effective tool for assessing fire hazard zones. This study is intended for assessing areas in Metro Manila that are most prone to fire risk.Keywords: DBSCAN, clustering, Jaccard similarity, MinHash LSH, fires
Procedia PDF Downloads 71436 Derivation of Trigonometric Identities and Solutions through Baudhayan Numbers
Authors: Rakesh Bhatia
Abstract:
Students often face significant challenges in understanding and applying trigonometric identities, primarily due to the overwhelming need to memorize numerous formulas. This often leads to confusion, frustration, and difficulty in effectively using these formulas across diverse types of problems. Traditional methods of learning trigonometry demand considerable time and effort, which can further hinder comprehension and application. Vedic Mathematics offers an innovative and simplified approach to overcoming these challenges. This paper explores how Baudhayan Numbers, can be used to derive trigonometric identities and simplify calculations related to height and distance. Unlike conventional approaches, this method minimizes the need for extensive paper-based calculations, promoting a conceptual understanding. Using Vedic Mathematics Sutras such as Anurupyena and Vilokanam, this approach enables the derivation of over 100 trigonometric identities through a single, unified approach. The simplicity and efficiency of this technique not only make learning trigonometry more accessible but also foster computational thinking. Beyond academics, the practical applications of this method extend to engineering fields such as bridge design and construction, where precise trigonometric calculations are critical. This exploration underscores the potential of Vedic Mathematics to revolutionize the learning and application of trigonometry by offering a streamlined, intuitive, and versatile framework.Keywords: baudhayan numbers, anurupyena, vilokanam, sutras
Procedia PDF Downloads 91435 Testing and Validation Stochastic Models in Epidemiology
Authors: Snigdha Sahai, Devaki Chikkavenkatappa Yellappa
Abstract:
This study outlines approaches for testing and validating stochastic models used in epidemiology, focusing on the integration and functional testing of simulation code. It details methods for combining simple functions into comprehensive simulations, distinguishing between deterministic and stochastic components, and applying tests to ensure robustness. Techniques include isolating stochastic elements, utilizing large sample sizes for validation, and handling special cases. Practical examples are provided using R code to demonstrate integration testing, handling of incorrect inputs, and special cases. The study emphasizes the importance of both functional and defensive programming to enhance code reliability and user-friendliness.Keywords: computational epidemiology, epidemiology, public health, infectious disease modeling, statistical analysis, health data analysis, disease transmission dynamics, predictive modeling in health, population health modeling, quantitative public health, random sampling simulations, randomized numerical analysis, simulation-based analysis, variance-based simulations, algorithmic disease simulation, computational public health strategies, epidemiological surveillance, disease pattern analysis, epidemic risk assessment, population-based health strategies, preventive healthcare models, infection dynamics in populations, contagion spread prediction models, survival analysis techniques, epidemiological data mining, host-pathogen interaction models, risk assessment algorithms for disease spread, decision-support systems in epidemiology, macro-level health impact simulations, socioeconomic determinants in disease spread, data-driven decision making in public health, quantitative impact assessment of health policies, biostatistical methods in population health, probability-driven health outcome predictions
Procedia PDF Downloads 81434 Impact of Mass Rape on HIV Incidence and Prevalence in Conflict Situations: Mathematical Analysis of the War in Tigray, Ethiopia
Authors: Abdelkadir Muzey Mohammed, Habtu Alemayehu Atsbaha, Yohannes Yirga Kefela, Woldegebriel Assefa Woldegerima, Kiros Tedla Gebrehiwot
Abstract:
The circumstances of war and conflict have long been associated with concerns about heightening HIV infection due to the use of sexual violence and rape as a weapon of war and lack of health services access to the patients with HIV as well as sexual violence and rape victims. This paper examines the impact of war related mass rape on HIV incidence and prevalence in the war ravaged Tigray, Ethiopia. Risk equation model and uncertainty analyses with sampled ranges of parameters were employed using data from WHO, Ethiopian Public Health Institute and Ethiopian Central Statistical Agency was used. Our analysis indicated that the mass rape committed in Tigray could cause an increase of incidence and prevalence by a median of 63.01% and 1.14% respectively. The significant increase in HIV incidence and prevalence due to mass rape demands a special attention including region wide improved surveillance and tracing of rape survivors. Furthermore, HIV prevention and treatment strategies such as delivery of emergency health service, providing pre and post exposure treatments on the basis of human rights should priority of governmental and nongovernmental organizations in a conflict situation.Keywords: conflict situation, mass rape, HIV, mathematical model, uncertainty analysis
Procedia PDF Downloads 161433 Digestion Optimization Algorithm: A Novel Bio-Inspired Intelligence for Global Optimization Problems
Authors: Akintayo E. Akinsunmade
Abstract:
The digestion optimization algorithm is a novel biological-inspired metaheuristic method for solving complex optimization problems. The algorithm development was inspired by studying the human digestive system. The algorithm mimics the process of food ingestion, breakdown, absorption, and elimination to effectively and efficiently search for optimal solutions. This algorithm was tested for optimal solutions on seven different types of optimization benchmark functions. The algorithm produced optimal solutions with standard errors, which were compared with the exact solution of the test functions.Keywords: bio-inspired algorithm, benchmark optimization functions, digestive system in human, algorithm development
Procedia PDF Downloads 141432 The Essential Spectra of Some Weighted Composition Operators on the Disk Algebra
Authors: Arkady Kitover
Abstract:
We obtain a complete description of semi-Fredholm spectra of operators of the form (T f)(z) = w(z)f(B(z) acting on the disk algebra in the case when B is either elliptic or double parabolic finite Blaschke product and w has no zeros on the unit circle. Actually, in this case the lower semi-Fredholm spectrum is a disk, and the upper semi-Fredholm spectrum is a circle. We consider some examples and discuss some unsolved problems Our results hint on the possibility of interesting connections between the spectral properties of weighted composition operators and complex dynamics.Keywords: weighted composition operators, essential spectra, Blaschke products, Julia set
Procedia PDF Downloads 11431 Navigating the Nexus of HIV/AIDS Care: Leveraging Statistical Insight to Transform Clinical Practice and Patient Outcomes
Authors: Nahashon Mwirigi
Abstract:
The management of HIV/AIDS is a global challenge, demanding precise tools to predict disease progression and guide tailored treatment. CD4 cell count dynamics, a crucial immune function indicator, play an essential role in understanding HIV/AIDS progression and enhancing patient care through effective modeling. While several models assess disease progression, existing methods often fall short in capturing the complex, non-linear nature of HIV/AIDS, especially across diverse demographics. A need exists for models that balance predictive accuracy with clinical applicability, enabling individualized care strategies based on patient-specific progression rates. This study utilizes patient data from Kenyatta National Hospital (2003–2014) to model HIV/AIDS progression across six CD4-defined states. The Exponential, 2-Parameter Weibull, and 3-Parameter Weibull models are employed to analyze failure rates and explore progression patterns by age and gender. Model selection is based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to identify models best representing disease progression variability across demographic groups. The 3-Parameter Weibull model emerges as the most effective, accurately capturing HIV/AIDS progression dynamics, particularly by incorporating delayed progression effects. This model reflects age and gender-specific variations, offering refined insights into patient trajectories and facilitating targeted interventions. One key finding is that older patients progress more slowly through CD4-defined stages, with a delayed onset of advanced stages. This suggests that older patients may benefit from extended monitoring intervals, allowing providers to optimize resources while maintaining consistent care. Recognizing slower progression in this demographic helps clinicians reduce unnecessary interventions, prioritizing care for faster-progressing groups. Gender-based analysis reveals that female patients exhibit more consistent progression, while male patients show greater variability. This highlights the need for gender-specific treatment approaches, as men may require more frequent assessments and adaptive treatment plans to address their variable progression. Tailoring treatment by gender can improve outcomes by addressing distinct risk patterns in each group. The model’s ability to account for both accelerated and delayed progression equips clinicians with a robust tool for estimating the duration of each disease stage. This supports individualized treatment planning, allowing clinicians to optimize antiretroviral therapy (ART) regimens based on demographic factors and expected disease trajectories. Aligning ART timing with specific progression patterns can enhance treatment efficacy and adherence. The model also has significant implications for healthcare systems, as its predictive accuracy enables proactive patient management, reducing the frequency of advanced-stage complications. For resource limited providers, this capability facilitates strategic intervention timing, ensuring that high-risk patients receive timely care while resources are allocated efficiently. Anticipating progression stages enhances both patient care and resource management, reinforcing the model’s value in supporting sustainable HIV/AIDS healthcare strategies. This study underscores the importance of models that capture the complexities of HIV/AIDS progression, offering insights to guide personalized, data-informed care. The 3-Parameter Weibull model’s ability to accurately reflect delayed progression and demographic risk variations presents a valuable tool for clinicians, supporting the development of targeted interventions and resource optimization in HIV/AIDS management.Keywords: HIV/AIDS progression, 3-parameter Weibull model, CD4 cell count stages, antiretroviral therapy, demographic-specific modeling
Procedia PDF Downloads 101430 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach
Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf
Abstract:
Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.Keywords: classification, defect, surface, detection, hole
Procedia PDF Downloads 171429 Constant Dimension Codes via Generalized Coset Construction
Authors: Kanchan Singh, Sheo Kumar Singh
Abstract:
The fundamental problem of subspace coding is to explore the maximum possible cardinality Aq(n, d, k) of a set of k-dimensional subspaces of an n-dimensional vector space over Fq such that the subspace distance satisfies ds(W1, W2) ≥ d for any two distinct subspaces W1, W2 in this set. In this paper, we construct a new class of constant dimension codes (CDCs) by generalizing the coset construction and combining it with CDCs derived from parallel linkage construction and coset construction with an aim to improve the new lower bounds of Aq(n, d, k). We found a remarkable improvement in some of the lower bounds of Aq(n, d, k).Keywords: constant dimension codes, rank metric codes, coset construction, parallel linkage construction
Procedia PDF Downloads 221428 Incorporating Cultural Assets in Yucatec Maya Mathematics Classrooms.
Authors: Felicia Darling
Abstract:
In Yucatec Maya middle schools in the Yucatán, mathematics scores are low and high school dropout rates are high. While addressing larger social and economic causes is crucial, improving mathematics instruction is a feasible approach. This paper draws from a six-month ethnographic, mixed-method study documenting two cultural approaches to problem solving. It explores the extent to which middle school mathematics instruction capitalizes upon these cultural assets and pilots two real-life mathematics tasks that incorporate them. Findings add details to the school/community culture gap around mathematics knowledge and have implications for mathematics education for marginalized students in México and the US.Keywords: math education, indigenous, Maya, cultural assets, secondary school, teacher education
Procedia PDF Downloads 191427 Exploring the Applications of Modular Forms in Cryptography
Authors: Berhane Tewelday Weldhiwot
Abstract:
This research investigates the pivotal role of modular forms in modern cryptographic systems, particularly focusing on their applications in secure communications and data integrity. Modular forms, which are complex analytic functions with rich arithmetic properties, have gained prominence due to their connections to number theory and algebraic geometry. This study begins by outlining the fundamental concepts of modular forms and their historical development, followed by a detailed examination of their applications in cryptographic protocols such as elliptic curve cryptography and zero-knowledge proofs. By employing techniques from analytic number theory, the research delves into how modular forms can enhance the efficiency and security of cryptographic algorithms. The findings suggest that leveraging modular forms not only improves computational performance but also fortifies security measures against emerging threats in digital communication. This work aims to contribute to the ongoing discourse on integrating advanced mathematical theories into practical applications, ultimately fostering innovation in cryptographic methodologies.Keywords: modular forms, cryptography, elliptic curves, applications, mathematical theory
Procedia PDF Downloads 201426 Introducing Quantum-Weijsberg Algebras by Redefining Quantum-MV Algebras: Characterization, Properties, and Other Important Results
Authors: Lavinia Ciungu
Abstract:
In the last decades, developing algebras related to the logical foundations of quantum mechanics became a central topic of research. Generally known as quantum structures, these algebras serve as models for the formalism of quantum mechanics. In this work, we introduce the notion of quantum-Wajsberg algebras by redefining the quantum-MV algebras starting from involutive BE algebras. We give a characterization of quantum-Wajsberg algebras, investigate their properties, and show that, in general, quantum-Wajsberg algebras are not (commutative) quantum-B algebras. We also define the ∨-commutative quantum-Wajsberg algebras and study their properties. Furthermore, we prove that any Wajsberg algebra (bounded ∨-commutative BCK algebra) is a quantum-Wajsberg algebra, and we give a condition for a quantum-Wajsberg algebra to be a Wajsberg algebra. We prove that Wajsberg algebras are both quantum-Wajsberg algebras and commutative quantum-B algebras. We establish the connection between quantum-Wajsberg algebras and quantum-MV algebras, proving that the quantum-Wajsberg algebras are term equivalent to quantum-MV algebras. We show that, in general, the quantum-Wajsberg algebras are not commutative quantum-B algebras and if a quantum-Wajsberg algebra is self-distributive, then the corresponding quantum-MV algebra is an MV algebra. Our study could be a starting point for the development of other implicative counterparts of certain existing algebraic quantum structures.Keywords: quantum-Wajsberg algebra, quantum-MV algebra, MV algebra, Wajsberg algebra, BE algebra, quantum-B algebra
Procedia PDF Downloads 171425 Prime Graphs of Polynomials and Power Series Over Non-Commutative Rings
Authors: Walaa Obaidallah Alqarafi, Wafaa Mohammed Fakieh, Alaa Abdallah Altassan
Abstract:
Algebraic graph theory is defined as a bridge between algebraic structures and graphs. It has several uses in many fields, including chemistry, physics, and computer science. The prime graph is a type of graph associated with a ring R, where the vertex set is the whole ring R, and two vertices x and y are adjacent if either xRy=0 or yRx=0. However, the investigation of the prime graph over rings remains relatively limited. The behavior of this graph in extended rings, like R[x] and R[[x]], where R is a non-commutative ring, deserves more attention because of the wider applicability in algebra and other mathematical fields. To study the prime graphs over polynomials and power series rings, we used a combination of ring-theoretic and graph-theoretic techniques. This paper focuses on two invariants: the diameter and the girth of these graphs. Furthermore, the work discusses how the graph structures change when passing from R to R[x] and R[[x]]. In our study, we found that the set of strong zero-divisors of ring R represents the set of vertices in prime graphs. Based on this discovery, we redefined the vertices of prime graphs using the definition of strong zero divisors. Additionally, our results show that although the prime graphs of R[x] and R[[x]] are comparable to the graph of R, they have different combinatorial characteristics since these extensions contain new strong zero-divisors. In particular, we find conditions in which the diameter and girth of the graphs, as they expand from R to R[x] and R[[x]], do not change or do change. In conclusion, this study shows how extending a non-commutative ring R to R[x] and R[[x]] affects the structure of their prime graphs, particularly in terms of diameter and girth. These findings enhance the understanding of the relationship between ring extensions and graph properties.Keywords: prime graph, diameter, girth, polynomial ring, power series ring
Procedia PDF Downloads 181424 Exploring the Intersection of Categorification and Computation in Algebraic Combinatorial Structures
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study explores the intersection of categorification and computation within algebraic combinatorial structures, aiming to deepen the understanding of how categorical frameworks can enhance computational methods. We investigate the role of higher-dimensional categories in organizing and analyzing combinatorial data, revealing how these structures can lead to new computational techniques for solving complex problems in algebraic combinatory. By examining examples such as species, posets, and operads, we illustrate the transformative potential of categorification in generating new algorithms and optimizing existing ones. Our findings suggest that integrating categorical insights with computational approaches not only enriches the theoretical landscape but also provides practical tools for tackling intricate combinatorial challenges, ultimately paving the way for future research in both fields.Keywords: categorification, computation, algebraic structures, combinatorics
Procedia PDF Downloads 171423 Derivatives Formulas Involving I-Functions of Two Variables and Generalized M-Series
Authors: Gebreegziabher Hailu Gebrecherkos
Abstract:
This study explores the derivatives of functions defined by I-functions of two variables and their connections to generalized M-series. We begin by defining I-functions, which are generalized functions that encompass various special functions, and analyze their properties. By employing advanced calculus techniques, we derive new formulas for the first and higher-order derivatives of I-functions with respect to their variables; we establish some derivative formulae of the I-function of two variables involving generalized M-series. The special cases of our derivatives yield interesting results.Keywords: I-function, Mellin-Barners control integral, generalized M-series, higher order derivative
Procedia PDF Downloads 181422 Marriage Domination and Divorce Domination in Graphs
Authors: Mark L. Caay, Rodolfo E. Maza
Abstract:
In this paper, the authors define two new variants of domination in graphs: the marriage and the divorce domination. A subset S ⊆ V (G) is said to be a marriage dominating set of G if for every e ∈ E(G), there exists a u ∈ V (G) such that u is one of the end vertex of e. A marriage dominating set S ⊆ V (G) is said to be a divorce dominating set of G if G\S is a disconnected graph. In this study, the authors present conditions of graphs for which the marriage and the divorce domination will take place and for which the two sets will coincide. Furthermore, the author gives the necessary and sufficient conditions for marriage domination to avoid divorce.Keywords: domination, decomposition, marriage domination, divorce domination, marriage theorem
Procedia PDF Downloads 191421 Riesz Mixture Model for Brain Tumor Detection
Authors: Mouna Zitouni, Mariem Tounsi
Abstract:
This research introduces an application of the Riesz mixture model for medical image segmentation for accurate diagnosis and treatment of brain tumors. We propose a pixel classification technique based on the Riesz distribution, derived from an extended Bartlett decomposition. To our knowledge, this is the first study addressing this approach. The Expectation-Maximization algorithm is implemented for parameter estimation. A comparative analysis, using both synthetic and real brain images, demonstrates the superiority of the Riesz model over a recent method based on the Wishart distribution.Keywords: EM algorithm, segmentation, Riesz probability distribution, Wishart probability distribution
Procedia PDF Downloads 191420 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 251419 Modelling the Dynamics and Optimal Control Strategies of Terrorism within the Southern Borno State Nigeria
Authors: Lubem Matthew Kwaghkor
Abstract:
Terrorism, which remains one of the largest threats faced by various nations and communities around the world, including Nigeria, is the calculated use of violence to create a general climate of fear in a population to attain particular goals that might be political, religious, or economical. Several terrorist groups are currently active in Nigeria, leading to attacks on both civil and military targets. Among these groups, Boko Haram is the deadliest terrorist group operating majorly in Borno State. The southern part of Borno State in North-Eastern Nigeria has been plagued by terrorism, insurgency, and conflict for several years. Understanding the dynamics of terrorism is crucial for developing effective strategies to mitigate its impact on communities and to facilitate peace-building efforts. This research aims to develop a mathematical model that captures the dynamics of terrorism within the southern part of Borno State, Nigeria, capturing both government and local community intervention strategies as control measures in combating terrorism. A compartmental model of five nonlinear differential equations is formulated. The model analyses show that a feasible solution set of the model exists and is bounded. Stability analyses show that both the terrorism free equilibrium and the terrorism endermic equilibrium are asymptotically stable, making the model to have biological meaning. Optimal control theory will be employed to identify the most effective strategy to prevent or minimize acts of terrorism. The research outcomes are expected to contribute towards enhancing security and stability in Southern Borno State while providing valuable insights for policymakers, security agencies, and researchers. This is an ongoing research.Keywords: modelling, terrorism, optimal control, susceptible, non-susceptible, community intervention
Procedia PDF Downloads 251418 Bioeconomic Modeling for the Sustainable Exploitation of Three Key Marine Species in Morocco
Authors: I .Ait El Harch, K. Outaaoui, Y. El Foutayeni
Abstract:
This study aims to deepen the understanding and optimize fishing activity in Morocco by holistically integrating biological and economic aspects. We develop a biological equilibrium model in which these competing species present their natural growth by logistic equations, taking into account density and competition between them. The integration of human intervention adds a realistic dimension to our model. A company specifically targets the three species, thus influencing population dynamics according to their fishing activities. The aim of this work is to determine the fishing effort that maximizes the company’s profit, taking into account the constraints associated with conserving ecosystem equilibrium.Keywords: bioeconomical modeling, optimization techniques, linear complementarity problem LCP, biological equilibrium, maximizing profits
Procedia PDF Downloads 271417 Unraveling the Complexity of Hyperacusis: A Metric Dimension of a Graph Concept
Authors: Hassan Ibrahim
Abstract:
The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. it constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.Keywords: auditory condition, connected graph, hyperacusis, metric dimension
Procedia PDF Downloads 271416 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 281415 Finch-Skea Stellar Structures in F(R, ϕ, X) Theory of Gravity Using Bardeen Geometry
Authors: Aqsa Asharaf
Abstract:
The current study aims to examine the physical characteristics of charge compact spheres employing anisotropic fluid under f(R, ϕ, X) modified gravity approach, exploring how this theoretical context influences their attributes and behavior. To accomplish our goal, we adopt the Spherically Symmetric (SS) space-time and, additionally, employ a specific Adler-based mode for the metric potential (gtt), which yields a broader class of solutions, Then, by making use of the Karmarkar condition, we successfully derive the other metric potential. A primary component of our current analysis is utilizing the Bardeen geometry as extrinsic space-time to determine the constant parameters of intrinsic space-time. Further, to validate the existence of Bardeen stellar spheres, we debate the behavior of physical properties and parameters such as components of pressure, energy density, anisotropy, parameters of EoS, stability and dynamical equilibrium, energy bounds, mass function, adiabatic index, compactness factor, and surface redshift. Conclusively, all the obtained results show that the system under consideration is physically stable, free from singularity, and viable models.Keywords: cosmology, GR, Bardeen BH, modified gravities
Procedia PDF Downloads 311414 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker
Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation
Procedia PDF Downloads 251413 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 331412 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning
Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene
Procedia PDF Downloads 251411 Modeling Corruption Dynamics Within Bono and Ahafo Police Service in Ghana
Authors: Adam Ahmed Hosney
Abstract:
The existence of a culture of corruption within an institution, such as the police, could be a sign of failure from various angles. There is a general perception among Ghanaians that the most corrupt institution is the police service. The purpose of this study is to formulate and analyze a nonlinear mathematical model to investigate corruption as an epidemic within the Ghana police service, this study revealed the basic reproduction number for corruption extinction and corruption survival. The threshold conditions for all kinds of equilibrium points are obtained using linearization methods and Lyapunov functional methods, and they demonstrate local asymptotic stability for both corrupt endemic and corrupt free equilibrium states. The model was analyzed qualitatively, and the solution was derived. The model appears to be positively invariant and attractive. Therefore, the region exhibits positive invariance. Thus, it is adequate to think about the dynamics of the model. For the purpose of illustrating the solution, the graphic result was presented and discussed. Results show that corruption will die out within the police service if the government shows no tolerance for those involved in corrupt practices. Study findings indicate that leaders should be trustworthy, demonstrate a complete and viable commitment to addressing corruption, and make it a priority to provide mass education to all citizens as well as using religious leaders to fight corruption since most Ghanaians are religious and trust their leaders.Keywords: mathematical model, differential equation, dynamical system, simulation
Procedia PDF Downloads 281410 Measuring Sustainability Risk in the Construction Industry of Saudi Arabia
Authors: Mohammed Alquraish
Abstract:
Saudi Arabia and other emerging nations have faced significant challenges in the sustainable construction industry. This paper presents a quantitative approach to assessing sustainability risk in the Saudi Arabian construction industry and offers insights into holistic sustainability design in industry operations. The implementation of sustainable construction industry practices in the manufacturing sector has been susceptible to several risk factors that need to be identified. In order to successfully execute sustainable building projects, decision makers in the fields of construction and industry can benefit greatly from the advice this study offers by promoting the elements that motivate sustainability implementation. Sustainability risk can be measured from combining failure probability with cumulative effects from sustainability factors: social, environmental, and economic; that affect the integrity of the construction industry. The cumulative effects of sustainability risk are measured by classifying the outcomes resulting from these consequences. Operators of industrial construction can strategically manage and minimize potential disruptions affecting long-term sustainability incentives by measuring sustainability risk. Thus, the suggested strategy greatly reinforces the crucial role of the construction industry.Keywords: sustainability, risk, construction industry, Saudi Arabia
Procedia PDF Downloads 40