Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 996

World Academy of Science, Engineering and Technology

[Mathematical and Computational Sciences]

Online ISSN : 1307-6892

996 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process

Authors: Mary Chriselda A

Abstract:

This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.

Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations

Procedia PDF Downloads 1
995 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava, Surabhi Nishad

Abstract:

The infusion of nanofluids has dramatically enhanced the heat-carrying capacity of the fluids, applicable to many engineering and medical process where the temperature below freezing is required. Cryosurgery is an efficient therapy for the treatment of cancer, but sometimes the excessive cooling may harm the nearby healthy cells. Efforts are therefore done to develop a model which can cause to generate the low temperature as required. In the present study, a mathematical model is developed based on the bioheat transfer equation to simulate the heat transfer from the probe on a tumor (with irregular domain) using the hybrid technique consisting of element free Galerkin method with αα-family of approximation. The probe is loaded will nano-particles. The effects of different nanoparticles, namely Al₂O₃, Fe₃O₄, Au on the heat-producing rate, is obtained. It is observed that the temperature can be brought to (60°C)-(-30°C) at a faster freezing rate on the infusion of different nanoparticles. Besides increasing the freezing rate, the volume of the nanoparticle can also control the size and growth of ice crystals formed during the freezing process. The study is also made to find the time required to achieve the desired temperature. The problem is further extended for multi tumors of different shapes and sizes. The irregular shape of the frozen domain and the direction of ice growth are very sensitive issues, posing a challenge for simulation. The Meshfree method has been one of the accurate methods in such problems as a domain is naturally irregular. The discretization is done using the nodes only. MLS approximation is taken in order to generate the shape functions. Sufficiently accurate results are obtained.

Keywords: cryosurgery, EFGM, hybrid, nanoparticles

Procedia PDF Downloads 1
994 A Study on Weddernburn – Artin Theorem for Rings

Authors: Fahad Suleiman, Sammani Abdullahi

Abstract:

The study depicts that a Wedderburn Artin – theorem for rings is considered to be a semisimple ring R which is isomorphic to a product of finitely many mi by mi matrix rings over division rings Di, for some integers n_i, both of which are uniquely determined up to permutation of the index i. It has been concluded that when R is simple the Wedderburn – Artin theorem is known as Wedderburn’s theorem.

Keywords: Commutativity, Wedderburn theorem, Semisimple ring, R module

Procedia PDF Downloads 1
993 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems

Authors: Adamu S. Salawu, Ibrahim O. Isah

Abstract:

Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.

Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation

Procedia PDF Downloads 1
992 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion

Authors: Prajamitra Bhuyan

Abstract:

Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.

Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome

Procedia PDF Downloads 1
991 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption

Authors: Ashish Ashish

Abstract:

In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.

Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption

Procedia PDF Downloads 1
990 Functionally Graded of Thermoelastic Materials with Power Law by Adomian's Decomposition Method

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper introduced an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, decomposition method, generalized thermoelasticity, algorithm

Procedia PDF Downloads 1
989 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems

Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber

Abstract:

Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.

Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement

Procedia PDF Downloads 1
988 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data

Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract:

This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.

Keywords: non-stationary, BINARMA(1, 1) model, Poisson innovations, conditional maximum likelihood, CML

Procedia PDF Downloads 1
987 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits

Authors: S. Ananthakrishnan, U. H. Acharya

Abstract:

Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.

Keywords: ANOVA, Corrugated box, DOE, Quartile

Procedia PDF Downloads 2
986 The Martingale Options Price Valuation for European Puts Using Stochastic Differential Equation Models

Authors: H. C. Chinwenyi, H. D. Ibrahim, F. A. Ahmed

Abstract:

In modern financial mathematics, valuing derivatives such as options is often a tedious task. This is simply because their fair and correct prices in the future are often probabilistic. This paper examines three different Stochastic Differential Equation (SDE) models in finance; the Constant Elasticity of Variance (CEV) model, the Balck-Karasinski model and the Heston model. The various Martingales option price valuation formulas for these three models were obtained using the replicating portfolio method. Also, the numerical solution of the derived Martingales options price valuation equations for the SDEs models was carried out using the Monte Carlo method, which was implemented using MATLAB. Furthermore, results from the numerical examples using published data from the Nigeria Stock Exchange (NSE) all share index data show the effect of an increase in the underlying asset value (stock price) on the value of the European Put Option for these models. The results obtained showed that an increase in the stock price yields a decrease in the value of the European put option price. Hence, this guides the option holder in making a quality decision by not exercising his right on the option.

Keywords: equivalent martingale measure, European put option, girsanov theorem, martingales, monte carlo method, option price valuation formula

Procedia PDF Downloads 1
985 Modeling the Compound Interest Dynamics Using Fractional Differential Equations

Authors: Muath Awadalla, Maen Awadallah

Abstract:

Banking sector covers different activities including lending money to customers. However, it is commonly known that customers pay money they have borrowed including an added amount called interest. Compound interest rate is an approach used in determining the interest to be paid. The instant compounded amount to be paid by a debtor is obtained through a differential equation whose main parameters are the rate and the time. The rate used by banks in a country is often defined by the government of the said country. In Switzerland, for instance, a negative rate was once applied. In this work, a new approach of modeling the compound interest is proposed using Hadamard fractional derivative. As a result, it appears that depending on the fraction value used in derivative the amount to be paid by a debtor might either be higher or lesser than the amount determined using the classical approach.

Keywords: compound interest, fractional differential equation, hadamard fractional derivative, optimization

Procedia PDF Downloads 4
984 Role of Additional Food Resources in an Ecosystem with Two Discrete Delays

Authors: Ankit Kumar, Balram Dubey

Abstract:

This study proposes a three dimensional prey-predator model with additional food, provided to predator individuals, including gestation delay in predators and delay in supplying the additional food to predators. It is assumed that the interaction between prey and predator is followed by Holling type-II functional response. We discussed the steady states and their local and global asymptotic behavior for the non-delayed system. Hopf-bifurcation phenomenon with respect to different parameters has also been studied. We obtained a range of predator’s tendency factor on provided additional food, in which the periodic solutions occur in the system. We have shown that oscillations can be controlled from the system by increasing the tendency factor. Moreover, the existence of periodic solutions via Hopf-bifurcation is shown with respect to both the delays. Our analysis shows that both delays play an important role in governing the dynamics of the system. It changes the stability behavior into instability behavior. The direction and stability of Hopf-bifurcation are also investigated through the normal form theory and the center manifold theorem. Lastly, some numerical simulations and graphical illustrations have been carried out to validate our analytical findings.

Keywords: additional food, gestation delay, Hopf-bifurcation, prey-predator

Procedia PDF Downloads 3
983 Stochastic Matrices and Lp Norms for Ill-Conditioned Linear Systems

Authors: Riadh Zorgati, Thomas Triboulet

Abstract:

In quite diverse application areas such as astronomy, medical imaging, geophysics or nondestructive evaluation, many problems related to calibration, fitting or estimation of a large number of input parameters of a model from a small amount of output noisy data, can be cast as inverse problems. Due to noisy data corruption, insufficient data and model errors, most inverse problems are ill-posed in a Hadamard sense, i.e. existence, uniqueness and stability of the solution are not guaranteed. A wide class of inverse problems in physics relates to the Fredholm equation of the first kind. The ill-posedness of such inverse problem results, after discretization, in a very ill-conditioned linear system of equations, the condition number of the associated matrix can typically range from 109 to 1018. This condition number plays the role of an amplifier of uncertainties on data during inversion and then, renders the inverse problem difficult to handle numerically. Similar problems appear in other areas such as numerical optimization when using interior points algorithms for solving linear programs leads to face ill-conditioned systems of linear equations. Devising efficient solution approaches for such system of equations is therefore of great practical interest. Efficient iterative algorithms are proposed for solving a system of linear equations. The approach is based on a preconditioning of the initial matrix of the system with an approximation of a generalized inverse leading to a stochastic preconditioned matrix. This approach, valid for non-negative matrices, is first extended to hermitian, semi-definite positive matrices and then generalized to any complex rectangular matrices. The main results obtained are as follows: 1) We are able to build a generalized inverse of any complex rectangular matrix which satisfies the convergence condition requested in iterative algorithms for solving a system of linear equations. This completes the (short) list of generalized inverse having this property, after Kaczmarz and Cimmino matrices. Theoretical results on both the characterization of the type of generalized inverse obtained and the convergence are derived. 2) Thanks to its properties, this matrix can be efficiently used in different solving schemes as Richardson-Tanabe or preconditioned conjugate gradients. 3) By using Lp norms, we propose generalized Kaczmarz’s type matrices. We also show how Cimmino's matrix can be considered as a particular case consisting in choosing the Euclidian norm in an asymmetrical structure. 4) Regarding numerical results obtained on some pathological well-known test-cases (Hilbert, Nakasaka, …), some of the proposed algorithms are empirically shown to be more efficient on ill-conditioned problems and more robust to error propagation than the known classical techniques we have tested (Gauss, Moore-Penrose inverse, minimum residue, conjugate gradients, Kaczmarz, Cimmino). We end on a very early prospective application of our approach based on stochastic matrices aiming at computing some parameters (such as the extreme values, the mean, the variance, …) of the solution of a linear system prior to its resolution. Such an approach, if it were to be efficient, would be a source of information on the solution of a system of linear equations.

Keywords: conditioning, generalized inverse, linear system, norms, stochastic matrix

Procedia PDF Downloads 1
982 Nonparametric Quantile Regression for Multivariate Spatial Data

Authors: S. H. Arnaud Kanga, O. Hili, S. Dabo-Niang

Abstract:

Spatial prediction is an issue appealing and attracting several fields such as agriculture, environmental sciences, ecology, econometrics, and many others. Although multiple non-parametric prediction methods exist for spatial data, those are based on the conditional expectation. This paper took a different approach by examining a non-parametric spatial predictor of the conditional quantile. The study especially observes the stationary multidimensional spatial process over a rectangular domain. Indeed, the proposed quantile is obtained by inverting the conditional distribution function. Furthermore, the proposed estimator of the conditional distribution function depends on three kernels, where one of them controls the distance between spatial locations, while the other two control the distance between observations. In addition, the almost complete convergence and the convergence in mean order q of the kernel predictor are obtained when the sample considered is alpha-mixing. Such approach of the prediction method gives the advantage of accuracy as it overcomes sensitivity to extreme and outliers values.

Keywords: conditional quantile, kernel, nonparametric, stationary

Procedia PDF Downloads 3
981 Co-Integration Model for Predicting Inflation Movement in Nigeria

Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi

Abstract:

The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).

Keywords: economic, inflation, model, series

Procedia PDF Downloads 5
980 Investigating the Flow Physics within Vortex-Shockwave Interactions

Authors: Frederick Ferguson, Dehua Feng, Yang Gao

Abstract:

No doubt, current CFD tools have a great many technical limitations, and active research is being done to overcome these limitations. Current areas of limitations include vortex-dominated flows, separated flows, and turbulent flows. In general, turbulent flows are unsteady solutions to the fluid dynamic equations, and instances of these solutions can be computed directly from the equations. One of the approaches commonly implemented is known as the ‘direct numerical simulation’, DNS. This approach requires a spatial grid that is fine enough to capture the smallest length scale of the turbulent fluid motion. This approach is called the ‘Kolmogorov scale’ model. It is of interest to note that the Kolmogorov scale model must be captured throughout the domain of interest and at a correspondingly small-time step. In typical problems of industrial interest, the ratio of the length scale of the domain to the Kolmogorov length scale is so great that the required grid set becomes prohibitively large. As a result, the available computational resources are usually inadequate for DNS related tasks. At this time in its development, DNS is not applicable to industrial problems. In this research, an attempt is made to develop a numerical technique that is capable of delivering DNS quality solutions at the scale required by the industry. To date, this technique has delivered preliminary results for both steady and unsteady, viscous and inviscid, compressible and incompressible, and for both high and low Reynolds number flow fields that are very accurate. Herein, it is proposed that the Integro-Differential Scheme (IDS) be applied to a set of vortex-shockwave interaction problems with the goal of investigating the nonstationary physics within the resulting interaction regions. In the proposed paper, the IDS formulation and its numerical error capability will be described. Further, the IDS will be used to solve the inviscid and viscous Burgers equation, with the goal of analyzing their solutions over a considerable length of time, thus demonstrating the unsteady capabilities of the IDS. Finally, the IDS will be used to solve a set of fluid dynamic problems related to flow that involves highly vortex interactions. Plans are to solve the following problems: the travelling wave and vortex problems over considerable lengths of time, the normal shockwave–vortex interaction problem for low supersonic conditions and the reflected oblique shock–vortex interaction problem. The IDS solutions obtained in each of these solutions will be explored further in efforts to determine the distributed density gradients and vorticity, as well as the Q-criterion. Parametric studies will be conducted to determine the effects of the Mach number on the intensity of vortex-shockwave interactions.

Keywords: vortex dominated flows, shockwave interactions, high Reynolds number, integro-differential scheme

Procedia PDF Downloads 2
979 Subclass of Close-To-Convex Harmonic Mappings

Authors: Jugal K. Prajapat, Manivannan M.

Abstract:

In this article we have studied a class of sense preserving harmonic mappings in the unit disk D. Let B⁰H (α, β) denote the class of sense-preserving harmonic mappings f=h+g ̅ in the open unit disk D and satisfying the condition |z h״(z)+α (h׳(z)-1) | ≤ β - |z g″(z)+α g′(z)| (α > -1, β > 0). We have proved that B⁰H (α, β) is close-to-convex in D. We also prove that the functions in B⁰H (α, β) are stable harmonic univalent, stable harmonic starlike and stable harmonic convex in D for different values of its parameters. Further, the coefficient estimates, growth results, area theorem, boundary behavior, convolution and convex combination properties of the class B⁰H (α, β) of harmonic mapping are obtained.

Keywords: analytic, univalent, starlike, convex and close-to-convex

Procedia PDF Downloads 6
978 Analysis of the Unreliable M/G/1 Retrial Queue with Impatient Customers and Server Vacation

Authors: Fazia Rahmoune, Sofiane Ziani

Abstract:

Retrial queueing systems have been extensively used to stochastically model many problems arising in computer networks, telecommunication, telephone systems, among others. In this work, we consider a $M/G/1$ retrial queue with an unreliable server with random vacations and two types of primary customers, persistent and impatient. This model involves the unreliability of the server, which can be subject to physical breakdowns and takes into account the correctives maintenances for restoring the service when a failure occurs. On the other hand, we consider random vacations, which can model the preventives maintenances for improving system performances and preventing breakdowns. We give the necessary and sufficient stability condition of the system. Then, we obtain the joint probability distribution of the server state and the number of customers in orbit and derive the more useful performance measures analytically. Moreover, we also analyze the busy period of the system. Finally, we derive the stability condition and the generating function of the stationary distribution of the number of customers in the system when there is no vacations and impatient customers, and when there is no vacations, server failures and impatient customers.

Keywords: modeling, retrial queue, unreliable server, vacation, stochastic analysis

Procedia PDF Downloads 5
977 Optimal Tetra-Allele Cross Designs Including Specific Combining Ability Effects

Authors: Mohd Harun, Cini Varghese, Eldho Varghese, Seema Jaggi

Abstract:

Hybridization crosses find a vital role in breeding experiments to evaluate the combining abilities of individual parental lines or crosses for creation of lines with desirable qualities. There are various ways of obtaining progenies and further studying the combining ability effects of the lines taken in a breeding programme. Some of the most common methods are diallel or two-way cross, triallel or three-way cross, tetra-allele or four-way cross. These techniques help the breeders to improve the quantitative traits which are of economical as well as nutritional importance in crops and animals. Amongst these methods, tetra-allele cross provides extra information in terms of the higher specific combining ability (sca) effects and the hybrids thus produced exhibit individual as well as population buffering mechanism because of the broad genetic base. Most of the common commercial hybrids in corn are either three-way or four-way cross hybrids. Tetra-allele cross came out as the most practical and acceptable scheme for the production of slaughter pigs having fast growth rate, good feed efficiency, and carcass quality. Tetra-allele crosses are mostly used for exploitation of heterosis in case of commercial silkworm production. Experimental designs involving tetra-allele crosses have been studied extensively in literature. Optimality of designs has also been considered as a researchable issue. In practical situations, it is advisable to include sca effects in the model as this information is needed by the breeder to improve economically and nutritionally important quantitative traits. Thus, a model that provides information regarding the specific traits by utilizing sca effects along with general combining ability (gca) effects may help the breeders to deal with the problem of various stresses. In this paper, a model for experimental designs involving tetra-allele crosses that incorporates both gca and sca has been defined. Optimality aspects of such designs have been discussed incorporating sca effects in the model. Orthogonality conditions have been derived for block designs ensuring estimation of contrasts among the gca effects, after eliminating the nuisance factors, independently from sca effects. User friendly SAS macro and web solution (webPTC) have been developed for the generation and analysis of such designs.

Keywords: general combining ability, optimality, specific combining ability, tetra-allele cross, webPTC

Procedia PDF Downloads 6
976 Analysis of Chatterjea Type F-Contraction in F-Metric Space and Application

Authors: Awais Asif

Abstract:

This article investigates fixed point theorems of Chatterjea type F-contraction in the setting of F-metric space. We relax the conditions of F-contraction and define modified F-contraction for two mappings. The study provides fixed point results for both single-valued and multivalued mappings. The results are further extended to common fixed point theorems for two mappings. Moreover, to discuss the applicability of our results, an application is provided, which shows the role of our results in finding the solution to functional equations in dynamic programming. Our results generalize and extend the existing results in the literature.

Keywords: Chatterjea type F-contraction, F-cauchy sequence, F-convergent, multi valued mappings

Procedia PDF Downloads 8
975 Several Spectrally Non-Arbitrary Ray Patterns of Order 4

Authors: Ling Zhang, Feng Liu

Abstract:

An (n x n) matrix is called a ray pattern if its entries are either 0 or reᶦθ, r > 0. A ray pattern A of order n is called spectrally arbitrary if the complex matrices in the ray pattern class of A give rise to all possible nth degree complex polynomial f(x). Otherwise, it is said to be spectrally non-arbitrary ray patterns. A ray pattern A of order n. We call a spectrally arbitrary ray pattern A of order n is minimally spectrally arbitrary if any nonzero entry of A is replaced, then A is not spectrally arbitrary. L. Corpuz and J.J. McDonald proposed the existence of spectrally arbitrary sign patterns and gave the nilpotent-Jacobi method which is used to verify a sign pattern and all its super patterns that are spectrally arbitrary sign patterns. Recently, McDonald and Stuart generalized this method for sign patterns to ray patterns. In this paper, they defined the n x n ray sign patterns Aₙ and proved that the pattern is spectrally arbitrary for n ≥ 4 Unfortunately, we find that Aₙ is not spectrally arbitrary when n = 4 for any θ with 0 ≤ θ ≤ 2π. In this article, we give several ray patterns A₄(θ) that are not spectrally arbitrary for some 0 ≤ θ ≤ 2π by using the nilpotent-Jacobi method. One example is given in our paper. some 0 ≤ θ ≤ 2π. One example is given in our paper.

Keywords: spectrally arbitrary, nilpotent matrix , ray patterns, sign patterns

Procedia PDF Downloads 2
974 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection

Authors: Jiaqi Huang, Yuheng Wang

Abstract:

Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.

Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning

Procedia PDF Downloads 11
973 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 5
972 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

Authors: Nureni O. Adeboye, Dawud A. Agunbiade

Abstract:

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Keywords: audit fee lagrange multiplier test, heteroscedasticity, lagrange multiplier test, Monte-Carlo scheme, periodicity

Procedia PDF Downloads 12
971 Rank of Semigroup: Generating Sets and Cases Revealing Limitations of the Concept of Independence

Authors: Zsolt Lipcsey, Sampson Marshal Imeh

Abstract:

We investigate a certain characterisation for rank of a semigroup by Howie and Ribeiro (1999), to ascertain the relevance of the concept of independence. There are cases where the concept of independence fails to be useful for this purpose. One would expect the basic element to be the maximal independent subset of a given semigroup. However, we construct examples for semigroups where finite basis exist and the basis is larger than the number of independent elements.

Keywords: generating sets, independent set, rank, cyclic semigroup, basis, commutative

Procedia PDF Downloads 11
970 Monotonicity of the Jensen Functional for f-Divergences via the Zipf-Mandelbrot Law

Authors: Neda Lovričević, Đilda Pečarić, Josip Pečarić

Abstract:

The Jensen functional in its discrete form is brought in relation to the Csiszar divergence functional, this time via its monotonicity property. This approach presents a generalization of the previously obtained results that made use of interpolating Jensen-type inequalities. Thus the monotonicity property is integrated with the Zipf-Mandelbrot law and applied to f-divergences for probability distributions that originate from the Csiszar divergence functional: Kullback-Leibler divergence, Hellinger distance, Bhattacharyya distance, chi-square divergence, total variation distance. The Zipf-Mandelbrot and the Zipf law are widely used in various scientific fields and interdisciplinary and here the focus is on the aspect of the mathematical inequalities.

Keywords: Jensen functional, monotonicity, Csiszar divergence functional, f-divergences, Zipf-Mandelbrot law

Procedia PDF Downloads 11
969 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.

Keywords: integer programming, mixed integer programming, multi-objective optimization, Reliability Redundancy Allocation

Procedia PDF Downloads 13
968 Causal Estimation for the Left-Truncation Adjusted Time-Varying Covariates under the Semiparametric Transformation Models of a Survival Time

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

In biomedical researches and randomized clinical trials, the most commonly interested outcomes are time-to-event so-called survival data. The importance of robust models in this context is to compare the effect of randomly controlled experimental groups that have a sense of causality. Causal estimation is the scientific concept of comparing the pragmatic effect of treatments conditional to the given covariates rather than assessing the simple association of response and predictors. Hence, the causal effect based semiparametric transformation model was proposed to estimate the effect of treatment with the presence of possibly time-varying covariates. Due to its high flexibility and robustness, the semiparametric transformation model which shall be applied in this paper has been given much more attention for estimation of a causal effect in modeling left-truncated and right censored survival data. Despite its wide applications and popularity in estimating unknown parameters, the maximum likelihood estimation technique is quite complex and burdensome in estimating unknown parameters and unspecified transformation function in the presence of possibly time-varying covariates. Thus, to ease the complexity we proposed the modified estimating equations. After intuitive estimation procedures, the consistency and asymptotic properties of the estimators were derived and the characteristics of the estimators in the finite sample performance of the proposed model were illustrated via simulation studies and Stanford heart transplant real data example. To sum up the study, the bias of covariates was adjusted via estimating the density function for truncation variable which was also incorporated in the model as a covariate in order to relax the independence assumption of failure time and truncation time. Moreover, the expectation-maximization (EM) algorithm was described for the estimation of iterative unknown parameters and unspecified transformation function. In addition, the causal effect was derived by the ratio of the cumulative hazard function of active and passive experiments after adjusting for bias raised in the model due to the truncation variable.

Keywords: causal estimation, EM algorithm, semiparametric transformation models, time-to-event outcomes, time-varying covariate

Procedia PDF Downloads 13
967 An Estimating Equation for Survival Data with a Possibly Time-Varying Covariates under a Semiparametric Transformation Models

Authors: Yemane Hailu Fissuh, Zhongzhan Zhang

Abstract:

An estimating equation technique is an alternative method of the widely used maximum likelihood methods, which enables us to ease some complexity due to the complex characteristics of time-varying covariates. In the situations, when both the time-varying covariates and left-truncation are considered in the model, the maximum likelihood estimation procedures become much more burdensome and complex. To ease the complexity, in this study, the modified estimating equations those have been given high attention and considerations in many researchers under semiparametric transformation model was proposed. The purpose of this article was to develop the modified estimating equation under flexible and general class of semiparametric transformation models for left-truncated and right censored survival data with time-varying covariates. Besides the commonly applied Cox proportional hazards model, such kind of problems can be also analyzed with a general class of semiparametric transformation models to estimate the effect of treatment given possibly time-varying covariates on the survival time. The consistency and asymptotic properties of the estimators were intuitively derived via the expectation-maximization (EM) algorithm. The characteristics of the estimators in the finite sample performance for the proposed model were illustrated via simulation studies and Stanford heart transplant real data examples. To sum up the study, the bias for covariates has been adjusted by estimating density function for the truncation time variable. Then the effect of possibly time-varying covariates was evaluated in some special semiparametric transformation models.

Keywords: EM algorithm, estimating equation, semiparametric transformation models, time-to-event outcomes, time varying covariate

Procedia PDF Downloads 24