Search results for: urban structural unit.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2664

Search results for: urban structural unit.

204 Evaluation of the Beach Erosion Process in Varadero, Matanzas, Cuba: Effects of Different Hurricane Trajectories

Authors: Ana Gabriela Diaz, Luis Fermín Córdova, Jr., Roberto Lamazares

Abstract:

The island of Cuba, the largest of the Greater Antilles, is located in the tropical North Atlantic. It is annually affected by numerous weather events, which have caused severe damage to our coastal areas. In the same way that many other coastlines around the world, the beautiful beaches of the Hicacos Peninsula also suffer from erosion. This leads to a structural regression of the coastline. If measures are not taken, the hotels will be exposed to the advance of the sea, and it will be a serious problem for the economy. With the aim of studying the intensity of this type of activity, specialists of group of coastal and marine engineering from CIH, in the framework of the research conducted within the project MEGACOSTAS 2, provide their research to simulate extreme events and assess their impact in coastal areas, mainly regarding the definition of flood volumes and morphodynamic changes in sandy beaches. The main objective of this work is the evaluation of the process of Varadero beach erosion (the coastal sector has an important impact in the country's economy) on the Hicacos Peninsula for different paths of hurricanes. The mathematical model XBeach, which was integrated into the Coastal engineering system introduced by the project of MEGACOSTA 2 to determine the area and the more critical profiles for the path of hurricanes under study, was applied. The results of this project have shown that Center area is the greatest dynamic area in the simulation of the three paths of hurricanes under study, showing high erosion volumes and the greatest average length of regression of the coastline, from 15- 22 m.

Keywords: Beach, erosion, mathematical model, coastal areas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
203 Spatial Planning as an Approach to Achieve Sustainable Development in Historic Cities

Authors: Mohammad Ali Abdi, Sima Mehdizadegan Namin

Abstract:

Sustainable development is a concept which was originated in Burtland commission in 1978. Although this concept was born with environmental aspects, it is penetrated in all areas rapidly, turning into a dominate view of planning. Concentrating on future generation issue, especially when talking about heritage has a long story. Each approach with all of its characteristics illustrates differences in planning, hence planning always reflects the dominate idea of its age. This paper studies sustainable development in planning for historical cities with the aim of finding ways to deal with heritage in planning for historical cities in Iran. Through this, it will be illustrated how challenges between sustainable concept and heritage could be concluded in planning. Consequently, the paper will emphasize on: Sustainable development in city planning Trends regarding heritage Challenges due to planning for historical cities in Iran For the first two issues, documentary method regarding the sustainable development and heritage literature is considered. As the next step focusing on Iranian historical cities require considering the urban planning and management structure and identifying the main challenges related to heritage, so analyzing challenges regarding heritage is considered. As the result it would be illustrated that key issue in such planning is active conservation to improve and use the potential of heritage while it's continues conservation is guaranteed. By emphasizing on the planning system in Iran it will be obvious that some reforms are needed in this system and its way of relating with heritage. The main weakness in planning for historical cities in Iran is the lack of independent city management. Without this factor achieving active conservation as the main factor of sustainable development would not be possible.

Keywords: Active conservation, city planning, heritage, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
202 Landfill Failure Mobility Analysis: A Probabilistic Approach

Authors: Ali Jahanfar, Brajesh Dubey, Bahram Gharabaghi, Saber Bayat Movahed

Abstract:

Ever increasing population growth of major urban centers and environmental challenges in siting new landfills have resulted in a growing trend in design of mega-landfills some with extraordinary heights and dangerously steep slopes. Landfill failure mobility risk analysis is one of the most uncertain types of dynamic rheology models due to very large inherent variabilities in the heterogeneous solid waste material shear strength properties. The waste flow of three historic dumpsite and two landfill failures were back-analyzed using run-out modeling with DAN-W model. The travel distances of the waste flow during landfill failures were calculated approach by taking into account variability in material shear strength properties. The probability distribution function for shear strength properties of the waste material were grouped into four major classed based on waste material compaction (landfills versus dumpsites) and composition (high versus low quantity) of high shear strength waste materials such as wood, metal, plastic, paper and cardboard in the waste. This paper presents a probabilistic method for estimation of the spatial extent of waste avalanches, after a potential landfill failure, to create maps of vulnerability scores to inform property owners and residents of the level of the risk.

Keywords: Landfill failure, waste flow, Voellmy rheology, friction coefficient, waste compaction and type.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
201 Further Development in Predicting Post-Earthquake Fire Ignition Hazard

Authors: Pegah Farshadmanesh, Jamshid Mohammadi, Mehdi Modares

Abstract:

In nearly all earthquakes of the past century that resulted in moderate to significant damage, the occurrence of postearthquake fire ignition (PEFI) has imposed a serious hazard and caused severe damage, especially in urban areas. In order to reduce the loss of life and property caused by post-earthquake fires, there is a crucial need for predictive models to estimate the PEFI risk. The parameters affecting PEFI risk can be categorized as: 1) factors influencing fire ignition in normal (non-earthquake) condition, including floor area, building category, ignitability, type of appliance, and prevention devices, and 2) earthquake related factors contributing to the PEFI risk, including building vulnerability and earthquake characteristics such as intensity, peak ground acceleration, and peak ground velocity. State-of-the-art statistical PEFI risk models are solely based on limited available earthquake data, and therefore they cannot predict the PEFI risk for areas with insufficient earthquake records since such records are needed in estimating the PEFI model parameters. In this paper, the correlation between normal condition ignition risk, peak ground acceleration, and PEFI risk is examined in an effort to offer a means for predicting post-earthquake ignition events. An illustrative example is presented to demonstrate how such correlation can be employed in a seismic area to predict PEFI hazard.

Keywords: Fire risk, post-earthquake fire ignition (PEFI), risk management, seismicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
200 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion.

The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: Electric control unit, Energy, Mechanical KERS, Planetary Gear system, Power, Smart braking, Spiral Spring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8690
199 Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof

Authors: Marco Raciti Castelli, Alberto Castelli, Ernesto Benini

Abstract:

The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
198 Operation Planning of Concrete Box Girder Bridge by 4D CAD Visualization Techniques

Authors: Mohammad Rohani, Gholamali Shafabakhsh, Abdolhosein Haddad, Ehsan Asnaashari

Abstract:

Visual simulation has emerged as a key planning tool in built environment because it enables architects, engineers and project managers to visualize construction process evolution before the project actual commences. This provides an efficient technology for reducing time and cost through planning and controlling resources, machines and materials. With the development of infrastructure projects and the massive civil constructions such as bridges, urban tunnels and highways as well as sensitivity of their construction operations, it is very necessary to apply proper planning methods. Implementation of visual techniques into management of construction projects can provide a fundamental foundation for projects with massive activities and duplicate items. So, the purpose of this paper is to develop visual simulation management techniques for infrastructure projects such as highways bridges by the use of Four-Dimensional Computer-Aided design Models. This project simulates operational assembly-line for Box-Girder Concrete Bridges which it would be able to optimize the sequence and interaction of project activities and on the other hand, it would minimize any unintended conflicts prior to project start. In this paper, after introducing the various planning methods by building information model and concrete bridges in highways, an executive case study is demonstrated and then a visual technique (4D CAD) will be applied for the case. In the final step, the user feedback for interacting by this system evaluated according to six criteria.

Keywords: 4D application area, Box-Girder concrete bridges, CAD model, visual planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
197 An Acerbate Psychotics Symptoms, Social Support, Stressful Life Events, Medication Use Self-Efficacy Impact on Social Dysfunction: A Cross Sectional Self-Rated Study of Persons with Schizophrenia Patient and Misusing Methamphetamines

Authors: Ek-Uma Imkome, Jintana Yunibhand, Waraporn Chaiyawat

Abstract:

Background: Persons with schizophrenia patient and misusing methamphetamines suffering from social dysfunction that impact on their quality of life. Knowledge of factors related to social dysfunction will guide the effective intervention. Objectives: To determine the direct effect, indirect effect and total effect of an acerbate Psychotics’ Symptoms, Social Support, Stressful life events, Medication use self-efficacy impact on social dysfunction in Thai schizophrenic patient and methamphetamine misuse. Methods: Data were collected from schizophrenic and methamphetamine misuse patient by self report. A linear structural relationship was used to test the hypothesized path model. Results: The hypothesized model was found to fit the empirical data and explained 54% of the variance of the psychotic symptoms (X2 = 114.35, df = 92, p-value = 0.05, X2 /df = 1.24, GFI = 0.96, AGFI = 0.92, CFI = 1.00, NFI = 0.99, NNFI = 0.99, RMSEA = 0.02). The highest total effect on social dysfunction was psychotic symptoms (0.67, p<0.05). Medication use self-efficacy had a direct effect on psychotic symptoms (-0.25, p<0.01), and social support had direct effect on medication use self efficacy (0.36, p <0.01). Conclusions: Psychotic symptoms and stressful life events were the significance factors that influenced direct on social dysfunctioning. Therefore, interventions that are designed to manage these factors are crucial in order to enhance social functioning in this population.

Keywords: Psychotic symptoms, methamphetamine, schizophrenia, stressful life events, social dysfunction, social support, medication use self-efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
196 Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Authors: Mehrnaz Aminitabar, Moghan Amirhosseinian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: Antibacterial activity, bioactive glass, sol-gel, strontium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 785
195 Reliability-Based Maintenance Management Methodology to Minimise Life Cycle Cost of Water Supply Networks

Authors: Mojtaba Mahmoodian, Joshua Phelan, Mehdi Shahparvari

Abstract:

With a large percentage of countries’ total infrastructure expenditure attributed to water network maintenance, it is essential to optimise maintenance strategies to rehabilitate or replace underground pipes before failure occurs. The aim of this paper is to provide water utility managers with a maintenance management approach for underground water pipes, subject to external loading and material corrosion, to give the lowest life cycle cost over a predetermined time period. This reliability-based maintenance management methodology details the optimal years for intervention, the ideal number of maintenance activities to perform before replacement and specifies feasible renewal options and intervention prioritisation to minimise the life cycle cost. The study was then extended to include feasible renewal methods by determining the structural condition index and potential for soil loss, then obtaining the failure impact rating to assist in prioritising pipe replacement. A case study on optimisation of maintenance plans for the Melbourne water pipe network is considered in this paper to evaluate the practicality of the proposed methodology. The results confirm that the suggested methodology can provide water utility managers with a reliable systematic approach to determining optimum maintenance plans for pipe networks.

Keywords: Water pipe networks, maintenance management, reliability analysis, optimum maintenance plan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
194 The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention

Authors: Paula A. Cruise, Carvell McLeary

Abstract:

Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.

Keywords: Context-specific organizational trust, cross-cultural psychology, theory of planned behavior, employee turnover intention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
193 Organoclay of Cetyl Trimethyl Ammonium- Montmorillonite: Preparation and Study in Adsorption of Benzene-Toluene-2-Chlorophenol

Authors: Is Fatimah, Winda Novita, Yopi Andika, Imam Sahroni, Basitoh Djaelani, Yuyun Yunani N.

Abstract:

Contamination of aromatic compounds in water can cause severe long-lasting effects not only for biotic organism but also on human health. Several alternative technologies for remediation of polluted water have been attempted. One of these is adsorption process of aromatic compounds by using organic modified clay mineral. Porous structure of clay is potential properties for molecular adsorptivity and it can be increased by immobilizing hydrophobic structure to attract organic compounds. In this work natural montmorillonite were modified with cetyltrimethylammonium (CTMA+) and was evaluated for use as adsorbents of aromatic compounds: benzene, toluene, and 2-chloro phenol in its single and multicomponent solution by ethanol:water solvent. Preparation of CTMA-montmorillonite was conducted by simple ion exchange procedure and characterization was conducted by using x-day diffraction (XRD), Fourier-transform infra red (FTIR) and gas sorption analysis. The influence of structural modification of montmorillonite on its adsorption capacity and adsorption affinity of organic compound were studied. It was shown that adsorptivity of montmorillonite was increased by modification associated with arrangements of CTMA+ in the structure even the specific surface area of modified montmorillonite was lower than raw montmorillonite. Adsorption rate indicated that material has affinity to adsorb compound by following order: benzene> toluene > 2-chloro phenol. The adsorption isotherms of benzene and toluene showed 1st order adsorption kinetic indicating a partition phenomenon of compounds between the aqueous and organophilic CTMAmontmorillonite.

Keywords: Adsorption, Desorption, Montmorillonite, Organoclay, Surfactant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
192 Investigating the Formation of Nano-Hydroxyapatite on a Biocompatible and Antibacterial Cu/Mg-Substituted Bioglass

Authors: Elhamalsadat Ghaffari, Moghan Amirhosseinian, Amir Khaleghipour

Abstract:

Multifunctional bioactive glasses (BGs) are designed with a focus on the provision of bactericidal and biological properties desired for angiogenesis, osteogenesis, and ultimately potential applications in bone tissue engineering. To achieve these, six sol-gel copper/magnesium substituted derivatives of 58S-BG, i.e. a mol% series of 60SiO2-4P2O5-5CuO-(31-x) CaO/xMgO (where x=0, 1, 3, 5, 8, and 10), were synthesized. Afterwards, the effect of MgO/CaO substitution on the in vitro formation of nano-hydroxyapatite (HA), osteoblast-like cell responses and BGs antibacterial performance were studied. During the BGs synthesis, the elimination of nitrates was achieved at 700 °C that prevented the BGs crystallization and stabilized the obtained dried gels. The structural and morphological evaluations were performed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These characterizations revealed that Cu-substituted 58S-BG consisting of 5 mol% MgO (BG-5/5) slightly had retarded the formation of HA. In addition, Cu-substituted 58S-BGs consisting 8 mol% and 10 mol% MgO (BG-5/8 and BG-5/10) displayed lower bioactivity probably due to the lower ion release rate of Ca–Si into the simulated body fluid (SBF). The determination of 3-(4, 5 dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and alkaline phosphate (ALP) activities proved that the highest values of both differentiation and proliferation of MC3T3-E1 cells can be obtained from a 5 mol% MgO substituted BG, while the over addition of MgO (8 mol% and 10 mol%) decreased the bioactivity. Furthermore, these novel Cu/Mg-substituted 58S-BGs displayed antibacterial effect against methicillin-resistant Staphylococcus aureus bacteria. Taken together, the results suggest the equally-substituted BG-5/5 (i.e. the one consists of 5 mol% of both CuO and MgO) as a promising candidate for bone tissue engineering, among all newly designed BGs in this work, owing to its desirable cell proliferation, ALP activity and antibacterial properties.

Keywords: Apatite, bioactivity, biomedical applications sol-gel processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
191 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: Bridge structures, passive control, seismic, semi-active control, viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
190 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning

Authors: Guang Zou, Kian Banisoleiman, Arturo González

Abstract:

Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.

Keywords: Crack initiation, fatigue reliability, inspection planning, welded joints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
189 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module

Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey

Abstract:

This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.

Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108
188 Creep Behaviour of Heterogeneous Timber-UHPFRC Beams Assembled by Bonding: Experimental and Analytical Investigation

Authors: K. Kong, E. Ferrier, L. Michel

Abstract:

The purpose of this research was to investigate the creep behaviour of the heterogeneous Timber-UHPFRC beams. New developments have been done to further improve the structural performance, such as strengthening of the timber (glulam) beam by bonding composite material combine with an ultra-high performance fibre reinforced concrete (UHPFRC) internally reinforced with or without carbon fibre reinforced polymer (CFRP) bars. However, in the design of wooden structures, in addition to the criteria of strengthening and stiffness, deformability due to the creep of wood, especially in horizontal elements, is also a design criterion. Glulam, UHPFRC and CFRP may be an interesting composite mix to respond to the issue of creep behaviour of composite structures made of different materials with different rheological properties. In this paper, we describe an experimental and analytical investigation of the creep performance of the glulam-UHPFRC-CFRP beams assembled by bonding. The experimental investigations creep behaviour was conducted for different environments: in- and outside under constant loading for approximately a year. The measured results are compared with numerical ones obtained by an analytical model. This model was developed to predict the creep response of the glulam-UHPFRCCFRP beams based on the creep characteristics of the individual components. The results show that heterogeneous glulam-UHPFRC beams provide an improvement in both the strengthening and stiffness, and can also effectively reduce the creep deflection of wooden beams.

Keywords: Carbon fibre-reinforced polymer (CFRP) bars, creep behaviour, glulam, ultra-high performance fibre reinforced concrete (UHPFRC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
187 Emergence of New Capitalist Class and Issues of Market, Merit and Social Justice: The Business and Economics of Higher Education in India

Authors: Subramaniam Chandran

Abstract:

This paper analyses the structural changes in education sector since the introduction of liberalization policy in India. This paper explains how the so-called non-profit trusts and societies appropriated the liberalization policy and enhanced themselves as new capitalist class in higher education sector. Over the decades, the policy witnessed the role of private sector in terms of maintaining market equilibrium. The state also witnessed the incompatibility of the private sector in inculcating the values of social justice. The most important consequence of the policy is to witness the rise of new capitalist class and academic capitalism. When the state came to realize that it no longer cope up with market demands, it opens the entry of private sector in higher education. Concessions and tax exemptions were provided to the trusts and societies to establish higher education institutions. There is a basic difference between western countries and India in providing higher education by the trusts and societies. In western countries the big business houses contributed their surplus revenues to promote higher education and research as a complementary service to society and nation. In India, several entrepreneurs came up with business motive using education sector. Over the period, they accumulated wealth at the cost of students and concessions from the government. Four major results can now be identified: production of manpower in view of market demands; reduction of standards in higher education; bypassing the values of social justice; and the rise of new capitalist class from the business of education. This paper tries to substantiate these issues with the inputs from case studies.

Keywords: New capitalism, market, social justice, higher education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
186 Energy Recovery Potential from Food Waste and Yard Waste in New York and Montréal

Authors: T. Malmir, U. Eicker

Abstract:

Landfilling of organic waste is still the predominant waste management method in the USA and Canada. Strategic plans for waste diversion from landfills are needed to increase material recovery and energy generation from waste. In this paper, we carried out a statistical survey on waste flow in the two cities New York and Montréal and estimated the energy recovery potential for each case. Data collection and analysis of the organic waste (food waste, yard waste, etc.), paper and cardboard, metal, glass, plastic, carton, textile, electronic products and other materials were done based on the reports published by the Department of Sanitation in New York and Service de l'Environnement in Montréal. In order to calculate the gas generation potential of organic waste, Buswell equation was used in which the molar mass of the elements was calculated based on their atomic weight and the amount of organic waste in New York and Montréal. Also, the higher and lower calorific value of the organic waste (solid base) and biogas (gas base) were calculated. According to the results, only 19% (598 kt) and 45% (415 kt) of New York and Montréal waste were diverted from landfills in 2017, respectively. The biogas generation potential of the generated food waste and yard waste amounted to 631 million m3 in New York and 173 million m3 in Montréal. The higher and lower calorific value of food waste were 3482 and 2792 GWh in New York and 441 and 354 GWh in Montréal, respectively. In case of yard waste, they were 816 and 681 GWh in New York and 636 and 531 GWh in Montréal, respectively. Considering the higher calorific value, this amount would mean a contribution of around 2.5% energy in these cities.

Keywords: Energy recovery, organic waste, urban energy modelling with INSEL, waste flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
185 Multi-Agent Systems Applied in the Modeling and Simulation of Biological Problems: A Case Study in Protein Folding

Authors: Pedro Pablo González Pérez, Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo EduardoSánchez Gutiérrez

Abstract:

Multi-agent system approach has proven to be an effective and appropriate abstraction level to construct whole models of a diversity of biological problems, integrating aspects which can be found both in "micro" and "macro" approaches when modeling this type of phenomena. Taking into account these considerations, this paper presents the important computational characteristics to be gathered into a novel bioinformatics framework built upon a multiagent architecture. The version of the tool presented herein allows studying and exploring complex problems belonging principally to structural biology, such as protein folding. The bioinformatics framework is used as a virtual laboratory to explore a minimalist model of protein folding as a test case. In order to show the laboratory concept of the platform as well as its flexibility and adaptability, we studied the folding of two particular sequences, one of 45-mer and another of 64-mer, both described by an HP model (only hydrophobic and polar residues) and coarse grained 2D-square lattice. According to the discussion section of this piece of work, these two sequences were chosen as breaking points towards the platform, in order to determine the tools to be created or improved in such a way to overcome the needs of a particular computation and analysis of a given tough sequence. The backwards philosophy herein is that the continuous studying of sequences provides itself important points to be added into the platform, to any time improve its efficiency, as is demonstrated herein.

Keywords: multi-agent systems, blackboard-based agent architecture, bioinformatics framework, virtual laboratory, protein folding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
184 Mixed Convection in a Vertical Heated Channel: Influence of the Aspect Ratio

Authors: Ameni Mokni , Hatem Mhiri , Georges Le Palec , Philippe Bournot

Abstract:

In mechanical and environmental engineering, mixed convection is a frequently encountered thermal fluid phenomenon which exists in atmospheric environment, urban canopy flows, ocean currents, gas turbines, heat exchangers, and computer chip cooling systems etc... . This paper deals with a numerical investigation of mixed convection in a vertical heated channel. This flow results from the mixing of the up-going fluid along walls of the channel with the one issued from a flat nozzle located in its entry section. The fluiddynamic and heat-transfer characteristics of vented vertical channels are investigated for constant heat-flux boundary conditions, a Rayleigh number equal to 2.57 1010, for two jet Reynolds number Re=3 103 and 2104 and the aspect ratio in the 8-20 range. The system of governing equations is solved with a finite volumes method and an implicit scheme. The obtained results show that the turbulence and the jet-wall interaction activate the heat transfer, as does the drive of ambient air by the jet. For low Reynolds number Re=3 103, the increase of the aspect Ratio enhances the heat transfer of about 3%, however; for Re=2 104, the heat transfer enhancement is of about 12%. The numerical velocity, pressure and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and average Nusselt number, in terms of Rayleigh, Reynolds numbers and dimensionless geometric parameters are presented.

Keywords: Aspect Ratio, Channel, Jet, Mixed convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
183 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghodsi, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software meanwhile some people are unable to monitor their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. In this research, we present a device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. The various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data are collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud and stores it there; the processed digital data are then instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors, and other health staff can collect these data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate these data for awareness of the patient's current health status. Moreover, the system is connected to a GPS module. In emergencies, the concerned team can be positioning the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the Remote Health Monitoring System (RHMS) is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system 11×10×10 cm3 with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured for 100 GBP (British Pound Sterling), and can facilitate the communication between patients and health systems, but also it can be employed for numerous other uses including communication sectors in the aerospace and transportation systems.

Keywords: Embedded Technology, Telemonitoring system, Microcontroller, Arduino UNO, Cloud storage, GPS, RHMS, Remote Health Monitoring System, Alert system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199
182 Estimation of Time Loss and Costs of Traffic Congestion: The Contingent Valuation Method

Authors: Amira Mabrouk, Chokri Abdennadher

Abstract:

The reduction of road congestion which is inherent to the use of vehicles is an obvious priority to public authority. Therefore, assessing the willingness to pay of an individual in order to save trip-time is akin to estimating the change in price which was the result of setting up a new transport policy to increase the networks fluidity and improving the level of social welfare. This study holds an innovative perspective. In fact, it initiates an economic calculation that has the objective of giving an estimation of the monetized time value during the trips made in Sfax. This research is founded on a double-objective approach. The aim of this study is to i) give an estimation of the monetized value of time; an hour dedicated to trips, ii) determine whether or not the consumer considers the environmental variables to be significant, iii) analyze the impact of applying a public management of the congestion via imposing taxation of city tolls on urban dwellers. This article is built upon a rich field survey led in the city of Sfax. With the use of the contingent valuation method, we analyze the “declared time preferences” of 450 drivers during rush hours. Based on the fond consideration of attributed bias of the applied method, we bring to light the delicacy of this approach with regards to the revelation mode and the interrogative techniques by following the NOAA panel recommendations bearing the exception of the valorization point and other similar studies about the estimation of transportation externality.

Keywords: Willingness to pay, value of time, contingent valuation, time value, city toll, transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
181 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: Steel plate shear wall, Abacus software, finite element method, boundary element, seismic structural improvement, Von misses Stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
180 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: Building structure, seismic waves, spectral analysis, structural response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5240
179 Protective Effect of Saponin Extract from the Root of Garcinia kola (Bitter kola) against Paracetamol- Induced Hepatotoxicity in Albino Rats

Authors: Yemisi Rufina Alli Smith, Isaac Gbadura Adanlawo

Abstract:

Liver disorders are one of the major problems of the world. Despite its frequent occurrence, high morbidity and high mortality, its medical management is currently inadequate. This study was designed to evaluate the hepatoprotective effect of saponin extract of the root of Garcinia kola on the integrity of the liver of paracetamol induced wistar albino rats. Twenty five (25) male adult wistar albino rats were divided into five (5) groups. Group I was the Control group that received distilled water only, group II was the negative control that received 2 g/kg of paracetamol on the 13th day, and group III, IV and V were pre-treated with 100, 200 and 400mg/kg of the saponin extract before inducing the liver damage on the 13th day with 2 g/kg of paracetamol. Twenty four (24) h after administration, the rats were sacrificed and blood samples were collected. The serum Alanine Transaminase (ALT), Aspartate Transaminase (AST), Alkaline Phosphatase (ALP) activities, Bilirubin and conjugated bilirubin, glucose and protein concentrations were evaluated. The liver was fixed immediately in Formalin and was processed and stained in Haematoxylin and Eosin (H&E). Administration of saponin extract from the root of Garcinia kola significantly decreased paracetamol induced elevated enzymes in the test group. Also histological observations showed that saponin extract of the root of Garcinia kola exhibited a significant liver protection against the toxicant as evident by the cells trying to return to normal. Saponin extract from the root of Garcinia kola indicated a protection of structural integrity of the hepatocytic cell membrane and regeneration of the damaged liver.

Keywords: Garcinia kola, Hepatoprotective, paracetamol, Saponin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897
178 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 496
177 Compressed Adobe Technology Analyses as Local Sustainable Materials for Retrofitting against Earthquake Approaching India Experiences

Authors: Leila Kazemi, Akram Pourmohammad, Zargham OstadiAsl, Maryam Jahandideh, Ahadollah Azami

Abstract:

Due to its geographical location, Iran is considered one of the earthquake-prone areas where the best way to decrease earthquake effects is supposed to be strengthening the buildings. Even though, one idea suggests that the use of adobe in constructing buildings be prohibited for its weak function especially in earthquake-prone areas, however, regarding ecological considerations, sustainability and other local skills, another idea pays special attention to adobe as one of the construction technologies which is popular among people. From the architectural and technological point of view, as strong sustainable building construction materials, compressed adobe construction materials make most of the construction in urban or rural areas ranging from small to big industrial buildings used to replace common earth blocks in traditional systems and strengthen traditional adobe buildings especially against earthquake. Mentioning efficient construction using compressed adobe system as a reliable replacement for traditional soil construction materials , this article focuses on the experiences of India in the fields of sustainable development of compressed adobe systems in the form of system in which the compressed soil is combined with cement, load bearing building with brick/solid concrete block system, brick system using rat trap bond, metal system with adobe infill and finally emphasizes on the use of these systems in the earthquake-struck city of Bam in Iran.

Keywords: Local Materials, Compressed Earth Blocks, Sustainable Construction, Retrofitting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
176 Developing a Model for the Relation between Heritage and Place Identity

Authors: A. Arjomand Kermani, N. Charbgoo, M. Alalhesabi

Abstract:

In the situation of great acceleration of changes and the need for new developments in the cities on one hand and conservation and regeneration approaches on the other hand, place identity and its relation with heritage context have taken on new importance. This relation is generally mutual and complex one. The significant point in this relation is that the process of identifying something as heritage rather than just historical  phenomena, brings that which may be inherited into the realm of identity. In planning and urban design as well as environmental psychology and phenomenology domain, place identity and its attributes and components were studied and discussed. However, the relation between physical environment (especially heritage) and identity has been neglected in the planning literature. This article aims to review the knowledge on this field and develop a model on the influence and relation of these two major concepts (heritage and identity). To build this conceptual model, we draw on available literature in environmental psychology as well as planning on place identity and heritage environment using a descriptive-analytical methodology to understand how they can inform the planning strategies and governance policies. A cross-disciplinary analysis is essential to understand the nature of place identity and heritage context and develop a more holistic model of their relationship in order to be employed in planning process and decision making. Moreover, this broader and more holistic perspective would enable both social scientists and planners to learn from one another’s expertise for a fuller understanding of community dynamics. The result indicates that a combination of these perspectives can provide a richer understanding—not only of how planning impacts our experience of place, but also how place identity can impact community planning and development.

Keywords: heritage, Inter-disciplinary study, Place identity, planning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
175 Nonlinear Finite Element Analysis of Optimally Designed Steel Angelina™ Beams

Authors: Ferhat Erdal, Osman Tunca, Serkan Tas, Serdar Carbas

Abstract:

Web-expanded steel beams provide an easy and economical solution for the systems having longer structural members. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. Until recently, there were two common types of open web-expanded beams: with hexagonal openings, also called castellated beams, and beams with circular openings referred to as cellular beams, until the generation of sinusoidal web-expanded beams. In the present research, the optimum design of a new generation beams, namely sinusoidal web-expanded beams, will be carried out and the design results will be compared with castellated and cellular beam solutions. Thanks to a reduced fabrication process and substantial material savings, the web-expanded beam with sinusoidal holes (Angelina™ Beam) meets the economic requirements of steel design problems while ensuring optimum safety. The objective of this research is to carry out non-linear finite element analysis (FEA) of the web-expanded beam with sinusoidal holes. The FE method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify of test results and to investigate the non-linear behavior of failure modes such as web-post buckling, shear buckling and vierendeel bending of beams.

Keywords: Steel structures, web-expanded beams, Angelina™ beam, optimum design, failure modes, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450