Search results for: soil temperature.
3337 Development of an Internet of Things System for Smart Crop Production
Authors: O. M. Olanrewaju, F. O. Echobu, A. G. Adesoji, E. D. Ajik, J. N. Ndabula, S. Luka
Abstract:
Nutrients are required for any soil with which plants thrive to improve efficient growth and productivity. Amongst these nutrients required for proper plant productivity are nitrogen, phosphorus and potassium (NPK). Due to factors like leaching, nutrient uptake by plants, soil erosion and evaporation, these elements tend to be in low quantity and the need to replenish them arises. However, this replenishment of soil nutrients cannot be done without a timely soil test to enable farmers to know the amount of each element in short quantity and evaluate the amount required to be added. Though wet soil analysis is good, it comes with a lot of challenges ranging from soil test gargets availability to the technical knowledge of how to conduct such soil tests by the common farmer. The Internet of Things test kit was developed to fill in the gaps created by wet soil analysis, as it can test for NPK, soil temperature and soil moisture in a given soil at the time of test. In this implementation, a sample test was carried out within 0.2 hectares of land divided into smaller plots. The kits performed adequately well, as the range of values obtained across the segments was within a very close range.
Keywords: Internet of things, soil nutrients, test kit, soil temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633336 Effect of Different Tillage Systems on Soil Properties and Production on Wheat, Maize and Soybean Crop
Authors: P. I. Moraru, T. Rusu
Abstract:
Soil tillage systems can be able to influence soil compaction, water dynamics, soil temperature and crop yield. These processes can be expressed as changes of soil microbiological activity, soil respiration and sustainability of agriculture. Objectives of this study were: 1 - to assess the effects of tillage systems (Conventional System (CS), Minimum Tillage (MT), No-Tillage (NT)) on soil compaction, soil temperature, soil moisture and soil respiration and 2- to establish the effect of the changes on the production of wheat, maize and soybean. Five treatments were installed: CS-plough; MT-paraplow, chisel, rotary grape; NT-direct sowing. The study was conducted on an Argic-Stagnic Faeoziom. The MT and NT applications reduce or completely eliminate the soil mobilization, due to this; soil is compacted in the first year of application. The degree of compaction is directly related to soil type and its state of degradation. The state of soil compaction diminished over time, tending toward a specific type of soil density. Soil moisture was higher in NT and MT at the time of sowing and in the early stages of vegetation and differences diminished over time. Moisture determinations showed statistically significant differences. The MT and NT applications reduced the thermal amplitude in the first 15cm of soil depth and increased the soil temperature by 0.5-2.20C. Water dynamics and soil temperature showed no differences on the effect of crop yields. The determinations confirm the effect of soil tillage system on soil respiration; the daily average was lower at NT (315-1914 mmoli m-2s-1) and followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Comparing with CS, all the four conservation tillage measures decreased soil respiration, with the best effects of no-tillage. Although wheat production at MT and NT applications, had no significant differences soybean production was significantly affected from MT and NT applications. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility.
Keywords: Soil tillage, soil properties, yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39143335 Simulating Climate Change (Temperature and Soil Moisture) in a Mixed-Deciduous Forest, Ontario, Canada
Authors: David Goldblum, Lesley S. Rigg
Abstract:
To simulate expected climate change, we implemented a two-factor (temperature and soil moisture) field design in a forest in Ontario, Canada. To manipulate moisture input, we erected rain-exclusion structures. Under each structure, plots were watered with one of three treatments and thermally controlled with three heat treatments to simulate changes in air temperature and rainfall based on the climate model (GCM) predictions for the study area. Environmental conditions (including untreated controls) were monitored tracking air temperature, soil temperature, soil moisture, and photosynthetically active radiation. We measured rainfall and relative humidity at the site outside the rain-exclusion structures. Analyses of environmental conditions demonstrates that the temperature manipulation was most effective at maintaining target temperature during the early part of the growing season, but it was more difficult to keep the warmest treatment at 5º C above ambient by late summer. Target moisture regimes were generally achieved however incoming solar radiation was slightly attenuated by the structures.
Keywords: Acer saccharum, climate change, forest, environmental manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17263334 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.
Keywords: Forest soil, mineralization rate, soil respiration rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14723333 The Automated Soil Erosion Monitoring System (ASEMS)
Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos
Abstract:
The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature, and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of a new innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholders and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.Keywords: Soil management, climate change, new technologies, conservation practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24673332 Effect of Zeolite on the Decomposition Resistance of Organic Matter in Tropical Soils under Global Warming
Authors: Mai Thanh Truc, Masao Yoshida
Abstract:
Global temperature had increased by about 0.5oC over the past century, increasing temperature leads to a loss or a decrease of soil organic matter (SOM). Whereas soil organic matter in many tropical soils is less stable than that of temperate soils, and it will be easily affected by climate change. Therefore, conservation of soil organic matter is urgent issue nowadays. This paper presents the effect of different doses (5%, 15%) of Ca-type zeolite in conjunction with organic manure, applied to soil samples from Philippines, Paraguay and Japan, on the decomposition resistance of soil organic matter under high temperature. Results showed that a remain or slightly increase the C/N ratio of soil. There are an increase in percent of humic acid (PQ) that extracted with Na4P2O7. A decrease of percent of free humus (fH) after incubation was determined. A larger the relative color intensity (RF) value and a lower the color coefficient (6logK) value following increasing zeolite rates leading to a higher degrees of humification. The increase in the aromatic condensation of humic acid (HA) after incubation, as indicates by the decrease of H/C and O/C ratios of HA. This finding indicates that the use of zeolite could be beneficial with respect to SOM conservation under global warming condition.Keywords: Global warming, Humic substances, Soil organicmatter, Zeolite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22063331 Preliminary Design of Frozen Soil Simulation System Based on Finite Element Simulation
Authors: Wenyu Song, Bingxi Li, Zhongbin Fu, Baocheng Jiang
Abstract:
Full - Scale Accelerated Loading System, one part of “the Eleventh - Five - Year National Grand Technology Infrastructure Program" is a facility to evaluate the performance and service life of different kinds of pavements subjected to traffic loading under full - controlled environment. While simulating the environments of frigid zone and permafrost zone, the accurate control of air temperature, road temperature and roadbed temperature are the key points and also aporias for the designment. In this paper, numerical simulations are used to determine the design parameters of the frozen soil simulation system. At first, a brief introduction of the Full - Scale Accelerate Loading System was given. Then, the temperature control method of frozen soil simulation system was proposed. Finally, by using finite element simulations, the optimal design of frozen soil simulation system was obtained. This proposed design, which was obtained by finite element simulations, provided significant referents to the ultimate design of the environment simulation system.Keywords: China, finite element simulation, frozen soilsimulation system, preliminary design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15823330 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes
Authors: S. Niksarlioglu, F. Kulahci
Abstract:
Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.
Keywords: Earthquake, Modeling, Prediction, Radon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30123329 Degradation of Endosulfan in Different Soils by Indigenous and Adapted Microorganisms
Authors: A. Özyer, N. G. Turan, Y. Ardalı
Abstract:
The environmental fate of organic contaminants in soils is influenced significantly by the pH, texture of soil, water content and also presence of organic matter. In this study, biodegradation of endosulfan isomers was studied in two different soils (Soil A and Soil B) that have contrasting properties in terms of their texture, pH, organic content, etc. Two Nocardia sp., which were isolated from soil, were used for degradation of endosulfan. Soils were contaminated with commercial endosulfan. Six sets were maintained from two different soils, contaminated with different endosulfan concentrations for degradation experiments. Inoculated and uninoculated mineral media with Nocardia isolates were added to the soils and mixed. Soils were incubated at a certain temperature (30 °C) during ten weeks. Residue endosulfan and its metabolites’ concentrations were determined weekly during the incubation period. The changes of the soil microorganisms were investigated weekly.
Keywords: Endosulfan, biodegradation, Nocardia sp., soil, organochlorine pesticide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14073328 A Review on Geomembrane Characteristics and Application in Geotechnical Engineering
Authors: Sandra Ghavam Shirazi, Komeil Valipourian, Mohammad Reza Golhashem
Abstract:
This paper represents the basic idea and mechanisms associated with the durability of geomembranes and discusses the factors influencing the service life and temperature of geomembrane liners. Geomembrane durability is stated as field performance and laboratory test outcomes under various conditions. Due to the high demand of geomembranes as landfill barriers and their crucial role in sensitive projects, sufficient service life of geomembranes is very important, therefore in this paper, the durability, the effect of temperature on geomembrane and the role of this type of reinforcement in different types of soil will be discussed. Also, the role of geomembrane in the earthquake will be considered in the last part of the paper.
Keywords: Geomembrane, durability temperature soil mechanic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9313327 An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement
Authors: Wei-Soon Ng, Min-Lee Lee, Siew-Ling Hii
Abstract:
Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.Keywords: Bacteria, biocementation, bioclogging, calcite precipitation, soil improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59503326 Effect of Temperature on the Water Retention Capacity of Liner Materials
Authors: Ahmed M. Al-Mahbashi, Mosleh A. Al-Shamrani, Muawia Dafalla
Abstract:
Mixtures of sand and clay are frequently used to serve for specific purposes in several engineering practices. In environmental engineering, liner layers and cover layers are common for controlling waste disposal facilities. These layers are exposed to moisture and temperature fluctuation specially when existing in unsaturated condition. The relationship between soil suction and water content for these materials is essential for understanding their unsaturated behavior and properties such as retention capacity and unsaturated follow (hydraulic conductivity). This study is aimed at investigating retention capacity for two sand-natural expansive clay mixtures (15% (C15) and 30% (C30) expansive clay) at two ambient temperatures within the range of 5 -50 °C. Soil water retention curves (SWRC) for these materials were determined at these two ambient temperatures using different salt solutions for a wide range of suction (up to 200MPa). The results indicate that retention capacity of C15 mixture underwent significant changes due to temperature variations. This effect tends to be less visible when the clay fraction is doubled (C30). In addition, the overall volume change is marginally affected by high temperature within the range considered in this study.
Keywords: Soil water retention curve, sand-expansive clay mixture, suction, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6403325 Soil Moisture Content in Hill-Filed Side Slope
Authors: A. Aboufayed
Abstract:
The soil moisture content is an important property of the soil. The results of mean weekly gravimetric soil moisture content, measured for the three soil layers within the A horizon, showed that it was higher for the top 5 cm over the whole period of monitoring (15/7/2004 up to 10/11/05) with the variation becoming greater during winter time. This reflects the pattern of rainfall in Ireland which is spread over the whole year and shows that light rainfall events during summer time were compensated by loss through evapotranspiration, but only in the top 5 cm of soil. This layer had the highest porosity and highest moisture holding capacity due to the high content of organic matter. The gravimetric soil moisture contents of the top 5 cm and the underlying 5-15 and 15-25 cm layers show that bottom site of the Hill Field had higher soil moisture content than the middle and top sites during the whole period of monitoring.Keywords: Soil, Soil moisture, Gravimetric soil moisture content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23723324 Computational Model for Prediction of Soil-Gas Radon-222 Concentration in Soil-Depths and Soil Grain Size Particles
Authors: I. M. Yusuff, O. M. Oni, A. A. Aremu
Abstract:
Percentage of soil-gas radon-222 concentration (222Rn) from soil-depths contributing to outdoor radon atmospheric level depends largely on some physical parameters of the soil. To determine its dependency in soil-depths, survey tests were carried out on soil depths and grain size particles using in-situ measurement method of soil-gas radon-222 concentration at different soil depths. The measurements were carried out with an electronic active radon detector (RAD-7) manufactured by Durridge Company USA. Radon-222 concentrations (222Rn) in soil-gas were measured at four different soil depths of 20, 40, 60 and 100 cm in five feasible locations. At each soil depth, soil samples were collected for grain size particle analysis using soil grasp sampler. The result showed that highest value of radon-222 concentration (24,680 ± 1960 Bqm-3) was measured at 100 cm depth with utmost grain size particle of 17.64% while the lowest concentration (7370 ± 1139 Bqm-3) was measured at 100 cm depth with least grain size particle of 10.75% respectively. A computational model was derived using SPSS regression package. This model could be a yardstick for prediction on soil gas radon concentration reference to soil grain size particle at different soil-depths.
Keywords: Concentration, radon, porosity, diffusion, colorectal, emanation, yardstick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7143323 Soil Compaction in Tropical Organic Farming Systems and Its Impact on Natural Soil-Borne Disease Suppression: Challenges for Management
Authors: Ishak, L., McHenry, M. T., Brown, P. H.
Abstract:
Organic farming systems still depend on intensive, mechanical soil tillage. Frequent passes by machinery traffic cause substantial soil compaction that threatens soil health. Adopting practices as reduced tillage and organic matter retention on the soil surface are considered effective ways to control soil compaction. In tropical regions, however, the acceleration of soil organic matter decomposition and soil carbon turnover on the topsoil layer is influenced more rapidly by the oscillation process of drying and wetting. It is hypothesized therefore, that rapid reduction in soil organic matter hastens the potential for compaction to occur in organic farming systems. Compaction changes soil physical properties and as a consequence it has been implicated as a causal agent in the inhibition of natural disease suppression in soils. Here we describe relationships between soil management in organic vegetable systems, soil compaction, and declining soil capacity to suppress pathogenic microorganisms.
Keywords: Organic farming systems, soil compaction, soil disease suppression, tropical regions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21663322 Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil
Authors: Moez Selmi, Mariem Kacem, Mehrez Jamei, Philippe Dubujet
Abstract:
Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil.Keywords: EPB, clay soils, foam agent, hydro-mechanical properties, degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15793321 Stabilization of Clay Soil Using A-3 Soil
Authors: Mohammed Mustapha Alhaji, Salawu Sadiku
Abstract:
A clay soil classified as A-7-6 and CH soil according to AASHTO and unified soil classification system respectively, was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20%, to 100% A-3 soil, compacted at both British Standard Light (BSL) and British Standard Heavy (BSH) compaction energy levels and using Unconfined Compressive Strength (UCS) as evaluation criteria. The Maximum Dry Density (MDD) of the treated soils at both the BSL and BSH compaction energy levels showed increase from 0% to 40% A-3 soil replacement after which the values reduced to 100% replacement. The trend of the Optimum Moisture Content (OMC) with varied A-3 soil replacement was similar to that of MDD but in a reversed order. The OMC reduced from 0% to 40% A-3 soil replacement after which the values increased to 100% replacement. This trend was attributed to the observed reduction in void ratio from 0% to 40% replacement after which the void ratio increased to 100% replacement. The maximum UCS for the soil at varied A-3 soil replacement increased from 272 and 770 kN/m2 for BSL and BSH compaction energy level at 0% replacement to 295 and 795 kN/m2 for BSL and BSH compaction energy level respectively at 10% replacement after which the values reduced to 22 and 60 kN/m2 for BSL and BSH compaction energy level respectively at 70% replacement. Beyond 70% replacement, the mixtures could not be moulded for UCS test.Keywords: A-3 soil, clay soil, pozzolanic action, stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24023320 Two-Dimensional Modeling of Seasonal Freeze and Thaw in an Idealized River Bank
Authors: Jiajia Pan, Hung Tao Shen
Abstract:
Freeze and thaw occurs seasonally in river banks in northern countries. Little is known on how the riverbank soil temperature responds to air temperature changes and how freeze and thaw develops in a river bank seasonally. This study presents a two-dimensional heat conduction model for numerical investigations of seasonal freeze and thaw processes in an idealized river bank. The model uses the finite difference method and it is convenient for applications. The model is validated with an analytical solution and a field case with soil temperature distributions. It is then applied to the idealized river bank in terms of partially and fully saturated conditions with or without ice cover influence. Simulated results illustrate the response processes of the river bank to seasonal air temperature variations. It promotes the understanding of freeze and thaw processes in river banks and prepares for further investigation of frost and thaw impacts on riverbank stability.Keywords: Freeze and thaw, river banks, 2D model, heat conduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4113319 The Study of Groundcover for Heat Reduction
Authors: Winai Mankhatitham
Abstract:
This research investigated groundcover on the roof (green roof) which can reduce the temperature and carbon monoxide. This study is divided into 3 main aspects: 1. Types of groundcover affecting heat reduction 2. The efficiency on heat reduction of 3 types of groundcover, i.e. lawn, arachis pintoi, and purslane 3. Database for designing green roof. This study has been designed as an experimental research by simulating the 3 types of groundcover in 3 trays placed in the green house for recording the temperature change for 24 hours. The results showed that the groundcover with the highest heat reduction efficiency was lawn. The dense of the lawn can protect the heat transfer to the soil. For the further study, there should be a comparative study of the thickness and the types of soil to get more information for the suitable types of groundcover and the soil for designing the energy saving green roof.
Keywords: Groundcover, Green Roof, Heat Reduction, Energy Saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15023318 The Effects of Soil Chemical Characteristics on Accumulation of Native Selenium by Zea mays Grains in Maize Belt in Kenya
Authors: S. B. Otieno, T. S. Jayne, M. Muyanga
Abstract:
Selenium is an-antioxidant which is important for human health enters food chain through crops. In Kenya Zea mays is consumed by 96% of population hence is a cheap and convenient method to provide selenium to large number of population. Several soil factors are known to have antagonistic effects on selenium speciation hence the uptake by Zea mays. There are no studies in Kenya that has been done to determine the effects of soil characteristics (pH, Tcarbon, CEC, Eh) affect accumulation of selenium in Zea mays grains in Maize Belt in Kenya. About 100 Zea mays grain samples together with 100 soil samples were collected from the study site put in separate labeled Ziplocs and were transported to laboratories at room temperature for analysis. Maize grains were analyzed for selenium while soil samples were analyzed for pH, Cat Ion Exchange Capacity, total carbon, and electrical conductivity. The mean selenium in Zea mays grains varied from 1.82 ± 0.76 mg/Kg to 11±0.86 mg/Kg. There was no significant difference between selenium levels between different grain batches {χ (Df =76) = 26.04 P= 1.00} The pH levels varied from 5.43± 0.58 to 5.85± 0.32. No significant correlations between selenium in grains and soil pH (Pearson’s correlations = - 0.143), and between selenium levels in grains and the four (pH, Tcarbon, CEC, Eh) soil chemical characteristics {F (4,91) = 0.721 p = 0.579} was observed. It can be concluded that the soil chemical characteristics in the study site did not significantly affect the accumulation of native selenium in Zea mays grains.Keywords: Maize, native, soil, selenium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20393317 A Risk Assessment for the Small Hive Beetle Based on Meteorological Standard Measurements
Authors: J. Junk, M. Eickermann
Abstract:
The Small Hive Beetle, Aethina tumida (Coleoptera: Nitidulidae) is a parasite for honey bee colonies, Apis mellifera, and was recently introduced to the European continent, accidentally. Based on the literature, a model was developed by using regional meteorological variables (daily values of minimum, maximum and mean air temperature as well as mean soil temperature at 50 mm depth) to calculate the time-point of hive invasion by A. tumida in springtime, the development duration of pupae as well as the number of generations of A. tumida per year. Luxembourg was used as a test region for our model for 2005 to 2013. The model output indicates a successful surviving of the Small Hive Beetle in Luxembourg with two up to three generations per year. Additionally, based on our meteorological data sets a first migration of SHB to apiaries can be expected from mid of March up to April. Our approach can be transferred easily to other countries to estimate the risk potential for a successful introduction and spreading of A. tumida in Western Europe.
Keywords: Aethina tumida, air temperature, larval development, soil temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7533316 Intelligent Irrigation Control System Using Wireless Sensors and Android Application
Authors: Rajeshwari Madli, Santhosh Hebbar, Vishwanath Heddoori, G. V. Prasad
Abstract:
Agriculture is the major occupation in India and forms the backbone of Indian economy in which irrigation plays a crucial role for increasing the quality and quantity of crop yield. In spite of many revolutionary advancements in agriculture, there has not been a dramatic increase in agricultural performance. Lack of irrigation infrastructure and agricultural knowledge are the critical factors influencing agricultural performance. However, by using advanced agricultural equipment, the effect of these factors can be curtailed. The presented system aims at increasing the yield of crops by using an intelligent irrigation controller that makes use of wireless sensors. Sensors are used to monitor primary parameters such as soil moisture, soil pH, temperature and humidity. Irrigation decisions are taken based on the sensed data and the type of crop being grown. The system provides a mobile application in which farmers can remotely monitor and control the irrigation system. Also, the water pump is protected against damages due to voltage variations and dry running.Keywords: Android application, Bluetooth, humidity, irrigation, soil moisture, soil pH, temperature, wireless sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29973315 The Use of Microorganisms in the Bioleaching of Soils Polluted with Heavy Metals
Authors: I. M. Sur, A. M. Chirila-Babau, T. Gabor, V. Micle
Abstract:
This paper shows researches in order to extract Cr, Cu and Ni from the polluted soils. Research is based on preliminary studies regarding the usage of Thiobacillus ferrooxidans bacterium (9K medium) for bioleaching of soil polluted with heavy metal (Cu, Cr and Ni). The microorganisms (Thiobacillus ferooxidans) selected directly from polluted soil samples were used in this experimental work. Soil samples used in the experimental research were taken from an area polluted with heavy metals from Romania. The soil samples are subjected to the cleaning process using the 9K medium solution (20 mL and 40 mL, respectively), stirred 200 rpm for 20 hours at a controlled temperature (30 ˚C). During the experiment (0, 2, 4, 8 and 20 h), liquid samples have been extracted and analyzed using the Atomic Absorption Spectrophotometer AA-6800 (AAS) in order to determine the Cr, Cu and Ni concentration. Experiments led to the conclusion that these soils can be depolluted by bioleaching, being a biological treatment method involving the use of microorganisms to favor the extraction of Cr, Cu and Ni from polluted soils.
Keywords: Bioleaching, extraction, microorganisms, polluted soil, Thiobacillus ferooxidans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9693314 The Effect of Raindrop Kinetic Energy on Soil Erodibility
Authors: A. Moussouni, L. Mouzai, M. Bouhadef
Abstract:
Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.
Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41053313 Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement
Authors: Ramli Nazir, Hossein Moayedi
Abstract:
Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope.
Keywords: Erosion control, Soil confinement, Soil erosion, Slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18623312 Factors Affecting Current Ratings for Underground and Air Cables
Authors: S. H. Alwan, J. Jasni, M. Z. A. Ab Kadir, N. Aziz
Abstract:
The aim of this paper is to present a parametric study to determine the major factors that influence the calculations of current rating for both air and underground cables. The current carrying capability of the power cables rely largely on the installation conditions and material properties. In this work, the influences on ampacity of conductor size, soil thermal resistivity and ambient soil temperature for underground installations are shown. The influences on the current-carrying capacity of solar heating (time of day effects and intensity of solar radiation), ambient air temperature and cable size for cables air are also presented. IEC and IEEE standards are taken as reference.
Keywords: Cable ampacity, underground cable, IEC standard, air cables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66523311 Contaminated Soil Remediation with Hydrogen Peroxide Oxidation
Authors: A. Goi, M. Trapido, N. Kulik
Abstract:
The hydrogen peroxide treatment was able to remediate chlorophenols, polycyclic aromatic hydrocarbons, diesel and transformer oil contaminated soil. Chemical treatment of contaminants adsorbed in peat resulted in lower contaminants- removal and required higher addition of chemicals than the treatment of contaminants in sand. The hydrogen peroxide treatment was found to be feasible for soil remediation at natural soil pH. Contaminants in soil could degrade with the addition of hydrogen peroxide only indicating the ability of transition metals ions and minerals of these metals presented in soil to catalyse the reaction of hydrogen peroxide decomposition.Keywords: Hydrogen peroxide, oxidation, soil treatment, decontamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43913310 Effect of Crude Oil on Soil-Water Characteristic Curve of Clayey Soil
Authors: Seyed Abolhasan Naeini, Seyed Mohammad Reza Hosseini
Abstract:
The measured soil suction values when related to water content is called suction-water content relationship (SWR) or soil-water characteristic curve (SWCC) and forms the basis of unsaturated soil behavior assessment. The SWCC can be measured or predicted based on soil index properties such as grain-size distribution and plasticity index. In this paper, the SWCC of clean and contaminated clayey soil classified as clay with low plasticity (CL) are presented. Laboratory studies were conducted on virgin (disturbed-uncontaminated soil collected from vicinity of Tehran oil refinery) soil and soil samples simulated to varying degrees of contamination with crude oil (i.e., 3, 6, and 9% by dry weight of soil) to compare the results before and after contamination. Laboratory tests were conducted using a device which is capable of measuring volume change and pore pressures. The soil matric suction at the ends of samples controlled by using the axis translation technique. The results show that contamination with crude oil facilitates the movement of water and reduces the soil suction.Keywords: Axis translation technique, clayey soil, contamination, crude oil, soil-water characteristic curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18583309 Gypseous Soil Improvement using Fuel Oil
Authors: Hussein Yousif Aziz, Jianlin Ma
Abstract:
This research investigates the suitability of fuel oil in improving gypseous soil. A detailed laboratory tests were carried-out on two soils (soil I with 51.6% gypsum content, and soil II with 26.55%), where the two soils were obtained from Al-Therthar site (Al-Anbar Province-Iraq). This study examines the improvement of soil properties using the gypsum material which is locally available with low cost to minimize the effect of moisture on these soils by using the fuel oil. This study was conducted on two models of the soil gypsum, from the Tharthar area. The first model was sandy soil with Gypsum content of (51.6%) and the second is clayey soil and the content of Gypsum is (26.55%). The program included tests measuring the permeability and compressibility of the soil and their collapse properties. The shear strength of the soil and the amounts of weight loss of fuel oil due to drying had been found. These tests have been conducted on the treated and untreated soils to observe the effect of soil treatment on the engineering properties when mixed with varying degrees of fuel oil with the equivalent of the water content. The results showed that fuel oil is a good material to modify the basic properties of the gypseous soil of collapsibility and permeability, which are the main problems of this soil and retained the soil by an appropriate amount of the cohesion suitable for carrying the loads from the structure.Keywords: Collapsibility, Enhancement of Gypseous Soils, Geotechnical Engineering, Gypseous soil, Shear Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26303308 Heavy Metal Reduction in Plant Using Soil Amendment
Authors: C. Chaiyaraksa, T. Khamko
Abstract:
This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.Keywords: Heavy metals, limestone, sepiolite, soil, soybean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739