Search results for: resource discovery.
904 An Improved Resource Discovery Approach Using P2P Model for Condor: A Grid Middleware
Authors: Anju Sharma, Seema Bawa
Abstract:
Resource Discovery in Grids is critical for efficient resource allocation and management. Heterogeneous nature and dynamic availability of resources make resource discovery a challenging task. As numbers of nodes are increasing from tens to thousands, scalability is essentially desired. Peer-to-Peer (P2P) techniques, on the other hand, provide effective implementation of scalable services and applications. In this paper we propose a model for resource discovery in Condor Middleware by using the four axis framework defined in P2P approach. The proposed model enhances Condor to incorporate functionality of a P2P system, thus aim to make Condor more scalable, flexible, reliable and robust.Keywords: Condor Middleware, Grid Computing, P2P, Resource Discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738903 Resource Discovery in Web-Services Based Grids
Authors: Damandeep Kaur, Jyotsna Sengupta
Abstract:
A Web-services based grid infrastructure is evolving to be readily available in the near future. In this approach, the Web services are inherited (encapsulated or functioned) into the same existing Grid services class. In practice there is not much difference between the existing Web and grid infrastructure. Grid services emerged as stateful web services. In this paper, we present the key components of web-services based grid and also how the resource discovery is performed on web-services based grid considering resource discovery, as a critical service, to be provided by any type of grid.
Keywords: Web services, resource discovery, grid computing, OGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640902 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata
Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi
Abstract:
Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.
Keywords: Resource discovery, learning automata, neural network, economic policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454901 Fortification for P2P Grid Computing Used for Resource Discovery
Authors: Bhawneet Singh Marwah, Rishabh Rastogi, Shinon Kochar
Abstract:
Grid computing provides an effective infrastructure for massive computation among flexible and dynamic collection of individual system for resource discovery. The major challenge for grid computing is to prevent breaches and secure the data from trespassers. To overcome such conflicts a semantic approach can be designed which will filter the access requests of peers by checking the resource description specifying the data and the metadata as factual statements. Between every node in the grid a semantic firewall as a middleware will be present The intruder will be required to present an application specifying there needs to the firewall and hence accordingly the system will grant or deny the application request.
Keywords: Grid Computing, Metadata, Semantic, Peers, Resource Discovery, Firewall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566900 Goal-Based Request Cloud Resource Broker in Medical Application
Authors: Mohamad Izuddin Nordin, Azween Abdullah, Mahamat Issa Hassan
Abstract:
In this paper, cloud resource broker using goalbased request in medical application is proposed. To handle recent huge production of digital images and data in medical informatics application, the cloud resource broker could be used by medical practitioner for proper process in discovering and selecting correct information and application. This paper summarizes several reviewed articles to relate medical informatics application with current broker technology and presents a research work in applying goal-based request in cloud resource broker to optimize the use of resources in cloud environment. The objective of proposing a new kind of resource broker is to enhance the current resource scheduling, discovery, and selection procedures. We believed that it could help to maximize resources allocation in medical informatics application.Keywords: Broker, Cloud Computing, Medical Informatics, Resources Discovery, Resource Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059899 A Framework for Scalable Autonomous P2P Resource Discovery for the Grid Implementation
Authors: Hesham A. Ali, Mofreh M. Salem, Ahmed A. Hamza
Abstract:
Recently, there have been considerable efforts towards the convergence between P2P and Grid computing in order to reach a solution that takes the best of both worlds by exploiting the advantages that each offers. Augmenting the peer-to-peer model to the services of the Grid promises to eliminate bottlenecks and ensure greater scalability, availability, and fault-tolerance. The Grid Information Service (GIS) directly influences quality of service for grid platforms. Most of the proposed solutions for decentralizing the GIS are based on completely flat overlays. The main contributions for this paper are: the investigation of a novel resource discovery framework for Grid implementations based on a hierarchy of structured peer-to-peer overlay networks, and introducing a discovery algorithm utilizing the proposed framework. Validation of the framework-s performance is done via simulation. Experimental results show that the proposed organization has the advantage of being scalable while providing fault-isolation, effective bandwidth utilization, and hierarchical access control. In addition, it will lead to a reliable, guaranteed sub-linear search which returns results within a bounded interval of time and with a smaller amount of generated traffic within each domain.
Keywords: Grid computing, grid information service, P2P, resource discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976898 Resource Matching and a Matchmaking Service for an Intelligent Grid
Authors: Xin Bai, Han Yu, Yongchang Ji, Dan C. Marinescu
Abstract:
We discuss the application of matching in the area of resource discovery and resource allocation in grid computing. We present a formal definition of matchmaking, overview algorithms to evaluate different matchmaking expressions, and develop a matchmaking service for an intelligent grid environment.Keywords: Grid, Matchmaking, Ontology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573897 Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application
Authors: Hamidah Jantan, Abdul Razak Hamdan, Zulaiha Ali Othman
Abstract:
Human Resource (HR) applications can be used to provide fair and consistent decisions, and to improve the effectiveness of decision making processes. Besides that, among the challenge for HR professionals is to manage organization talents, especially to ensure the right person for the right job at the right time. For that reason, in this article, we attempt to describe the potential to implement one of the talent management tasks i.e. identifying existing talent by predicting their performance as one of HR application for talent management. This study suggests the potential HR system architecture for talent forecasting by using past experience knowledge known as Knowledge Discovery in Database (KDD) or Data Mining. This article consists of three main parts; the first part deals with the overview of HR applications, the prediction techniques and application, the general view of Data mining and the basic concept of talent management in HRM. The second part is to understand the use of Data Mining technique in order to solve one of the talent management tasks, and the third part is to propose the potential HR system architecture for talent forecasting.Keywords: HR Application, Knowledge Discovery inDatabase (KDD), Talent Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4482896 Approximate Frequent Pattern Discovery Over Data Stream
Authors: Kittisak Kerdprasop, Nittaya Kerdprasop
Abstract:
Frequent pattern discovery over data stream is a hard problem because a continuously generated nature of stream does not allow a revisit on each data element. Furthermore, pattern discovery process must be fast to produce timely results. Based on these requirements, we propose an approximate approach to tackle the problem of discovering frequent patterns over continuous stream. Our approximation algorithm is intended to be applied to process a stream prior to the pattern discovery process. The results of approximate frequent pattern discovery have been reported in the paper.Keywords: Frequent pattern discovery, Approximate algorithm, Data stream analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343895 Personalisation of SOA Registry Query Results: Implementation, Performance Analysis and Scalability Evaluation
Authors: Kee-Leong Tan, Karyn Wei-Ju Khoo, Hui-Na Chua
Abstract:
Service discovery is a very important component of Service Oriented Architectures (SOA). This paper presents two alternative approaches to customise the query results of private service registry such as Universal Description, Discovery and Integration (UDDI). The customisation is performed based on some pre-defined and/or real-time changing parameters. This work identifies the requirements, designs and additional mechanisms that must be applied to UDDI in order to support this customisation capability. We also detail the implements of the approaches and examine its performance and scalability. Based on our experimental results, we conclude that both approaches can be used to customise registry query results, but by storing personalization parameters in external resource will yield better performance and but less scalable when size of query results increases. We believe these approaches when combined with semantics enabled service registry will enhance the service discovery methods within a private UDDI registry environment.
Keywords: Service Oriented Architecture (SOA), Web service, Service discovery, registry, UDDI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402894 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks
Authors: O. A. Rahmeh, P. Johnson, S. Lehmann
Abstract:
Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.
Keywords: Complex networks, grid networks, load-balancing, random sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785893 Generic Workload Management System Using Condor-Based Pilot Factory in PanDA Framework
Authors: Po-Hsiang Chiu, Torre Wenaus
Abstract:
In the current Grid environment, efficient workload management presents a significant challenge, for which there are exorbitant de facto standards encompassing resource discovery, brokerage, and data transfer, among others. In addition, the real-time resource status, essential for an optimal resource allocation strategy, is often not readily accessible. To address these issues and provide a cleaner abstraction of the Grid with the potential of generalizing into arbitrary resource-sharing environment, this paper proposes a new Condor-based pilot mechanism applied in the PanDA architecture, PanDA-PF WMS, with the goal of providing a more generic yet efficient resource allocating strategy. In this architecture, the PanDA server primarily acts as a repository of user jobs, responding to pilot requests from distributed, remote resources. Scheduling decisions are subsequently made according to the real-time resource information reported by pilots. Pilot Factory is a Condor-inspired solution for a scalable pilot dissemination and effectively functions as a resource provisioning mechanism through which the user-job server, PanDA, reaches out to the candidate resources only on demand.Keywords: Condor, glidein, PanDA, Pilot, Pilot Factory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099892 Factors Influencing Knowledge Management Process Model: A Case Study of Manufacturing Industry in Thailand
Authors: Daranee Pimchangthong, Supaporn Tinprapa
Abstract:
The objectives of this research were to explore factors influencing knowledge management process in the manufacturing industry and develop a model to support knowledge management processes. The studied factors were technology infrastructure, human resource, knowledge sharing, and the culture of the organization. The knowledge management processes included discovery, capture, sharing, and application. Data were collected through questionnaires and analyzed using multiple linear regression and multiple correlation. The results found that technology infrastructure, human resource, knowledge sharing, and culture of the organization influenced the discovery and capture processes. However, knowledge sharing had no influence in sharing and application processes. A model to support knowledge management processes was developed, which indicated that sharing knowledge needed further improvement in the organization.Keywords: knowledge management, knowledge management process, tacit knowledge
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860891 Knowledge Discovery from Production Databases for Hierarchical Process Control
Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata
Abstract:
The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.
Keywords: Hierarchical process control, knowledge discovery from databases, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776890 Models to Customise Web Service Discovery Result using Static and Dynamic Parameters
Authors: Kee-Leong Tan, Cheng-Suan Lee, Hui-Na Chua
Abstract:
This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.Keywords: Web service, discovery, semantic, SOA, registry, UDDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487889 Genetic Programming Approach to Hierarchical Production Rule Discovery
Authors: Basheer M. Al-Maqaleh, Kamal K. Bharadwaj
Abstract:
Automated discovery of hierarchical structures in large data sets has been an active research area in the recent past. This paper focuses on the issue of mining generalized rules with crisp hierarchical structure using Genetic Programming (GP) approach to knowledge discovery. The post-processing scheme presented in this work uses flat rules as initial individuals of GP and discovers hierarchical structure. Suitable genetic operators are proposed for the suggested encoding. Based on the Subsumption Matrix(SM), an appropriate fitness function is suggested. Finally, Hierarchical Production Rules (HPRs) are generated from the discovered hierarchy. Experimental results are presented to demonstrate the performance of the proposed algorithm.Keywords: Genetic Programming, Hierarchy, Knowledge Discovery in Database, Subsumption Matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451888 Secure Resource Selection in Computational Grid Based on Quantitative Execution Trust
Authors: G.Kavitha, V.Sankaranarayanan
Abstract:
Grid computing provides a virtual framework for controlled sharing of resources across institutional boundaries. Recently, trust has been recognised as an important factor for selection of optimal resources in a grid. We introduce a new method that provides a quantitative trust value, based on the past interactions and present environment characteristics. This quantitative trust value is used to select a suitable resource for a job and eliminates run time failures arising from incompatible user-resource pairs. The proposed work will act as a tool to calculate the trust values of the various components of the grid and there by improves the success rate of the jobs submitted to the resource on the grid. The access to a resource not only depend on the identity and behaviour of the resource but also upon its context of transaction, time of transaction, connectivity bandwidth, availability of the resource and load on the resource. The quality of the recommender is also evaluated based on the accuracy of the feedback provided about a resource. The jobs are submitted for execution to the selected resource after finding the overall trust value of the resource. The overall trust value is computed with respect to the subjective and objective parameters.Keywords: access control, feedback, grid computing, reputation, security, trust, trust parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488887 Analyzing the Effects of Resource Relatedness on Strategic Alliances Performance
Abstract:
Very few studies have examined performance implications of strategic alliance announcements in the information technologies industry from a resource-based view. Furthermore, none of these studies have investigated resource congruence and alliance motive as potential sources of abnormal firm performance. This paper extends upon current resource-based literature to discover and explore linkages between these concepts and the practical performance of strategic alliances. This study finds that strategic alliance announcements have provided overall abnormal positive returns, and that marketing alliances with marketing resource incongruence have also contributed to significant firm performance.Keywords: Event study methodology, resource-based theory, resource relatedness, strategic alliance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644886 Discovery of Production Rules with Fuzzy Hierarchy
Authors: Fadl M. Ba-Alwi, Kamal K. Bharadwaj
Abstract:
In this paper a novel algorithm is proposed that integrates the process of fuzzy hierarchy generation and rule discovery for automated discovery of Production Rules with Fuzzy Hierarchy (PRFH) in large databases.A concept of frequency matrix (Freq) introduced to summarize large database that helps in minimizing the number of database accesses, identification and removal of irrelevant attribute values and weak classes during the fuzzy hierarchy generation.Experimental results have established the effectiveness of the proposed algorithm.Keywords: Data Mining, Degree of subsumption, Freq matrix, Fuzzy hierarchy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312885 Learning Undergraduate Mathematics in a Discovery-Enriched Approach
Authors: Kam-moon Liu, Kwok-chi Chim, Kwok-wai Chung, Daniel Wing-cheong Ho
Abstract:
Students often adopt routine practicing as learning strategy for mathematics. The reason is they are often bound and trained to solving conventional-typed questions in Mathematics in high school. This will be problematic if students further consolidate this practice in university. Therefore, the Department of Mathematics emphasized and integrated the Discovery-enriched approach in the undergraduate curriculum. This paper presents the details of implementing the Discovery-enriched Curriculum by providing adequate platform for project-learning, expertise for guidance and internship opportunities for students majoring in Mathematics. The Department also provided project-learning opportunities to mathematics courses targeted for students majoring in other science or engineering disciplines. The outcome is promising: the research ability and problem solving skills of students are enhanced.Keywords: Discovery-enriched curriculum, higher education, mathematics education, project learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826884 Discovery and Capture of Organizational Knowledge from Unstructured Information
Authors: J. Gu, W.B. Lee, C.F. Cheung, E. Tsui, W.M. Wang
Abstract:
Knowledge of an organization does not merely reside in structured form of information and data; it is also embedded in unstructured form. The discovery of such knowledge is particularly difficult as the characteristic is dynamic, scattered, massive and multiplying at high speed. Conventional methods of managing unstructured information are considered too resource demanding and time consuming to cope with the rapid information growth. In this paper, a Multi-faceted and Automatic Knowledge Elicitation System (MAKES) is introduced for the purpose of discovery and capture of organizational knowledge. A trial implementation has been conducted in a public organization to achieve the objective of decision capture and navigation from a number of meeting minutes which are autonomously organized, classified and presented in a multi-faceted taxonomy map in both document and content level. Key concepts such as critical decision made, key knowledge workers, knowledge flow and the relationship among them are elicited and displayed in predefined knowledge model and maps. Hence, the structured knowledge can be retained, shared and reused. Conducting Knowledge Management with MAKES reduces work in searching and retrieving the target decision, saves a great deal of time and manpower, and also enables an organization to keep pace with the knowledge life cycle. This is particularly important when the amount of unstructured information and data grows extremely quickly. This system approach of knowledge management can accelerate value extraction and creation cycles of organizations.Keywords: Knowledge-Based System, Knowledge Elicitation, Knowledge Management, Taxonomy, Unstructured Information Management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841883 Information Resource Management Maturity Model
Authors: Afshari H., Khosravi Sh.
Abstract:
Nowadays there are more than thirty maturity models in different knowledge areas. Maturity model is an area of interest that contributes organizations to find out where they are in a specific knowledge area and how to improve it. As Information Resource Management (IRM) is the concept that information is a major corporate resource and must be managed using the same basic principles used to manage other assets, assessment of the current IRM status and reveal the improvement points can play a critical role in developing an appropriate information structure in organizations. In this paper we proposed a framework for information resource management maturity model (IRM3) that includes ten best practices for the maturity assessment of the organizations' IRM.Keywords: Information resource management (IRM), information resource management maturity model (IRM3), maturity model, best practice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385882 A Hybrid Approach for Quantification of Novelty in Rule Discovery
Authors: Vasudha Bhatnagar, Ahmed Sultan Al-Hegami, Naveen Kumar
Abstract:
Rule Discovery is an important technique for mining knowledge from large databases. Use of objective measures for discovering interesting rules lead to another data mining problem, although of reduced complexity. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules to ultimately improve the overall efficiency of KDD process. In this paper we study novelty of the discovered rules as a subjective measure of interestingness. We propose a hybrid approach that uses objective and subjective measures to quantify novelty of the discovered rules in terms of their deviations from the known rules. We analyze the types of deviation that can arise between two rules and categorize the discovered rules according to the user specified threshold. We implement the proposed framework and experiment with some public datasets. The experimental results are quite promising.
Keywords: Knowledge Discovery in Databases (KDD), Data Mining, Rule Discovery, Interestingness, Subjective Measures, Novelty Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354881 Human Resource Development Strategy in Automotive Industry (Eco-Car) for ASEAN Hub
Authors: Phichak Phutrakhul
Abstract:
The purposes of this research were to study concepts and strategies of human resource development in the automotive manufacturers and to articulate the proposals against the government about the human resource development for automotive industry. In the present study, qualitative study was an in-depth interview in which the qualitative data were collected from the executive or the executive of human resource division from five automotive companies - Toyota Motor (Thailand) Co., Ltd., Nissan Motor (Thailand) Co., Ltd., Mitsubishi Motors (Thailand) Co., Ltd., Honda Automobile (Thailand) Co., Ltd., and Suzuki Motor (Thailand) Co., Ltd. Qualitative data analysis was performed by using inter-coder agreement technique. The research findings were as follows: The external factors included the current conditions of the automotive industry, government’s policy related to the automotive industry, technology, labor market and human resource development systems of the country. The internal factors included management, productive management, organizational strategies, leadership, organizational culture and philosophy of human resource development. These factors were affected to the different concept of human resources development -the traditional human resource development and the strategies of human resource development. The organization focuses on human resources as intellectual capital and uses the strategies of human resource development in all development processes. The strategies of human resource development will enhance the ability of human resources in the organization and the country.
Keywords: Human Resource Development Strategy, Automotive industry, Eco-Cars, ASEAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7720880 Cost-Effective Private Grid Using Object-based Grid Architecture
Authors: M. Victor Jose, V. Seenivasagam
Abstract:
This paper proposes a cost-effective private grid using Object-based Grid Architecture (OGA). In OGA, the data process privacy and inter communication are increased through an object- oriented concept. The limitation of the existing grid is that the user can enter or leave the grid at any time without schedule and dedicated resource. To overcome these limitations, cost-effective private grid and appropriate algorithms are proposed. In this, each system contains two platforms such as grid and local platforms. The grid manager service running in local personal computer can act as grid resource. When the system is on, it is intimated to the Monitoring and Information System (MIS) and details are maintained in Resource Object Table (ROT). The MIS is responsible to select the resource where the file or the replica should be stored. The resource storage is done within virtual single private grid nodes using random object addressing to prevent stolen attack. If any grid resource goes down, then the resource ID will be removed from the ROT, and resource recovery is efficiently managed by the replicas. This random addressing technique makes the grid storage a single storage and the user views the entire grid network as a single system.Keywords: Object Grid Architecture, Grid Manager Service, Resource Object table, Random object addressing, Object storage, Dynamic Object Update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032879 Intrapreneurship Discovery: Standard Strategy to Boost Innovation inside Companies
Authors: Chiara Mansanta, Daniela Sani
Abstract:
This paper studies the concept of intrapreneurship discovery for innovation and technology development related to the manufacturing industries set up in the center of Italy, in Marche Region. The study underlined the key drivers of the innovation process and the main factors that influence innovation. Starting from a literature study on open innovation, this paper examines the role of human capital to support company’s development. The empirical part of the study is based on a survey to 151 manufacturing companies that represent the 34% of that universe at the regional level. The survey underlined the main KPI’s that influence companies in their decision processes; then tools for these decision processes are presented.
Keywords: Business model, decision making, intrapreneurship discovery, open innovation, standard methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954878 Minimizing the Broadcast Traffic in the Jordanian Discovery Schools Network using PPPoE
Authors: Sameh H. Ghwanmeh
Abstract:
Discovery schools in Jordan are connected in one flat ATM bridge network. All Schools connected to the network will hear broadcast traffic. High percentage of unwanted traffic such as broadcast, consumes the bandwidth between schools and QRC. Routers in QRC have high CPU utilization. The number of connections on the router is very high, and may exceed recommend manufacturing specifications. One way to minimize number of connections to the routers in QRC, and minimize broadcast traffic is to use PPPoE. In this study, a PPPoE solution has been presented which shows high performance for the clients when accessing the school server resources. Despite the large number of the discovery schools at MoE, the experimental results show that the PPPoE solution is able to yield a satisfactory performance for each client at the school and noticeably reduce the traffic broadcast to the QRC.Keywords: Education, networking, performance, e-content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641877 An Intelligent Approach of Rough Set in Knowledge Discovery Databases
Authors: Hrudaya Ku. Tripathy, B. K. Tripathy, Pradip K. Das
Abstract:
Knowledge Discovery in Databases (KDD) has evolved into an important and active area of research because of theoretical challenges and practical applications associated with the problem of discovering (or extracting) interesting and previously unknown knowledge from very large real-world databases. Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. In this paper we presented the current status of research on applying rough set theory to KDD, which will be helpful for handle the characteristics of real-world databases. The main aim is to show how rough set and rough set analysis can be effectively used to extract knowledge from large databases.Keywords: Data mining, Data tables, Knowledge discovery in database (KDD), Rough sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336876 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547875 An Agent Based Dynamic Resource Scheduling Model with FCFS-Job Grouping Strategy in Grid Computing
Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan, Utpal Chandra Dey
Abstract:
Grid computing is a group of clusters connected over high-speed networks that involves coordinating and sharing computational power, data storage and network resources operating across dynamic and geographically dispersed locations. Resource management and job scheduling are critical tasks in grid computing. Resource selection becomes challenging due to heterogeneity and dynamic availability of resources. Job scheduling is a NP-complete problem and different heuristics may be used to reach an optimal or near optimal solution. This paper proposes a model for resource and job scheduling in dynamic grid environment. The main focus is to maximize the resource utilization and minimize processing time of jobs. Grid resource selection strategy is based on Max Heap Tree (MHT) that best suits for large scale application and root node of MHT is selected for job submission. Job grouping concept is used to maximize resource utilization for scheduling of jobs in grid computing. Proposed resource selection model and job grouping concept are used to enhance scalability, robustness, efficiency and load balancing ability of the grid.Keywords: Agent, Grid Computing, Job Grouping, Max Heap Tree (MHT), Resource Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091