Search results for: membrane electrode assembly
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 588

Search results for: membrane electrode assembly

498 Synthesis and Electrochemical Characterization of Iron Oxide / Activated Carbon Composite Electrode for Symmetrical Supercapacitor

Authors: PoiSim Khiew, MuiYen Ho, ThianKhoonTan, WeeSiong Chiu, Roslinda Shamsudin, Muhammad Azmi Abd-Hamid, ChinHua Chia

Abstract:

In the present work, we have developed a symmetric electrochemical capacitor based on the nanostructured iron oxide (Fe3O4)-activated carbon (AC) nanocomposite materials. The physical properties of the nanocomposites were characterized by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The electrochemical performances of the composite electrode in 1.0 M Na2SO3 and 1.0 M Na2SO4 aqueous solutions were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The composite electrode with 4 wt% of iron oxide nanomaterials exhibits the highest capacitance of 86 F/g. The experimental results clearly indicate that the incorporation of iron oxide nanomaterials at low concentration to the composite can improve the capacitive performance, mainly attributed to the contribution of the pseudocapacitance charge storage mechanism and the enhancement on the effective surface area of the electrode. Nevertheless, there is an optimum threshold on the amount of iron oxide that needs to be incorporated into the composite system. When this optimum threshold is exceeded, the capacitive performance of the electrode starts to deteriorate, as a result of the undesired particle aggregation, which is clearly indicated in the SEM analysis. The electrochemical performance of the composite electrode is found to be superior when Na2SO3 is used as the electrolyte, if compared to the Na2SO4 solution. It is believed that Fe3O4 nanoparticles can provide favourable surface adsorption sites for sulphite (SO3 2-) anions which act as catalysts for subsequent redox and intercalation reactions.

Keywords: Metal oxide nanomaterials, Electrochemical Capacitor, Double Layer Capacitance, Pseduocapacitance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5585
497 Performance of Air Gap Membrane Distillation for Desalination of Ground Water and Seawater

Authors: Bhausaheb L. Pangarkar, M.G. Sane

Abstract:

Membrane distillation (MD) is a rising technology for seawater or brine desalination process. In this work, an air gap membrane distillation (AGMD) performance was investigated for aqueous NaCl solution along with natural ground water and seawater. In order to enhance the performance of the AGMD process in desalination, that is, to get more flux, it is necessary to study the effect of operating parameters on the yield of distillate water. The influence of operational parameters such as feed flow rate, feed temperature, feed salt concentration, coolant temperature and air gap thickness on the membrane distillation (MD) permeation flux have been investigated for low and high salt solution. the natural application of ground water and seawater over 90 h continuous operation, scale deposits observed on the membrane surface and reduction in flux represents 23% for ground water and 60% for seawater, in 90 h. This reduction was eliminated (less than 14 %) by acidification of feed water. Hence, promote the research attention in apply of AGMD for the ground water as well as seawater desalination over today-s conventional RO operation.

Keywords: MD, ground water, seawater, AGMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
496 Low cost Nano-membrane Fabrication and Electro-polishing System

Authors: Ajab Khan Kasi, Muhammad Waseem Ashraf, Jafar Khan Kasi, Shahzadi Tayyaba, NitinAfzulpurkar

Abstract:

This paper presents the development of low cost Nano membrane fabrication system. The system is specially designed for anodic aluminum oxide membrane. This system is capable to perform the processes such as anodization and electro-polishing. The designed machine was successfully tested for 'mild anodization' (MA) for 48 hours and 'hard anodization' (HA) for 3 hours at constant 0oC. The system is digitally controlled and guided for temperature maintenance during anodization and electro-polishing. The total cost of the developed machine is 20 times less than the multi-cooling systems available in the market which are generally used for this purpose.

Keywords: Anodic aluminum oxide, Nano-membrane, hardanodization, mild anodization, electro-polishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
495 Clarification of Synthetic Juice through Spiral Wound Ultrafiltration Module at Turbulent Flow Region and Cleaning Study

Authors: Vijay Singh, Chandan Das

Abstract:

Synthetic juice clarification was done through spiral wound ultrafiltration (UF) membrane module. Synthetic juice was clarified at two different operating conditions, such as, with and without permeates recycle at turbulent flow regime. The performance of spiral wound ultrafiltration membrane was analyzed during clarification of synthetic juice. Synthetic juice was the mixture of deionized water, sucrose and pectin molecule. The operating conditions are: feed flowrate of 10 lpm, pressure drop of 413.7 kPa and Reynolds no of 5000. Permeate sample was analyzed in terms of volume reduction factor (VRF), viscosity (Pa.s), ⁰Brix, TDS (mg/l), electrical conductivity (μS) and turbidity (NTU). It was observe that the permeate flux declined with operating time for both conditions of with and without permeate recycle due to increase of concentration polarization and increase of gel layer on membrane surface. For without permeate recycle, the membrane fouling rate was faster compared to with permeate recycle. For without permeate recycle, the VRF rose up to 5 and for with recycle permeate the VRF is 1.9. The VRF is higher due to adsorption of solute (pectin) molecule on membrane surface and resulting permeateflux declined with VRF. With permeate recycle, quality was within acceptable limit. Fouled membrane was cleaned by applying different processes (e.g., deionized water, SDS and EDTA solution). Membrane cleaning was analyzed in terms of permeability recovery.

Keywords: Synthetic juice, Spiral wound, ultrafiltration, Reynolds No, Volume reduction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
494 Edible Oil Industry Wastewater Treatment by Microfiltration with Ceramic Membrane

Authors: Zita Šereš, Dragana Šoronja Simović, Ljubica Dokić, Lidietta Giorno, Biljana Pajin, Cecilia Hodur, Nikola Maravić

Abstract:

Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present. The idea is that the waste stream from edible oil industry, after the separation of oil by using skimmers is subjected to microfiltration and the obtained permeate can be used again in the production process. The wastewater from edible oil industry was used for the microfiltration. For the microfiltration of this effluent a tubular membrane was used with a pore size of 200 nm at transmembrane pressure in range up to 3 bar and in range of flow rate up to 300 L/h. Box–Behnken design was selected for the experimental work and the responses considered were permeate flux and chemical oxygen demand (COD) reduction. The reduction of the permeate COD was in the range 40-60% according to the feed. The highest permeate flux achieved during the process of microfiltration was 160 L/m2h.

Keywords: Ceramic membrane, edible oil, microfiltration, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
493 The Effect of Ultrasound on Permeation Flux and Changes in Blocking Mechanisms during Dead-End Microfiltration of Carrot Juice

Authors: A. Hemmati, H. Mirsaeedghazi, M. Aboonajmi

Abstract:

Carrot juice is one of the most nutritious foods that are consumed around the world. Large particles in carrot juice causing turbid appearance make some problems in the concentration process such as off-flavor due to the large particles burnt on the walls of evaporators. Microfiltration (MF) is a pressure driven membrane separation method that can clarify fruit juices without enzymatic treatment. Fouling is the main problem in the membrane process causing reduction of permeate flux. Ultrasound as a cleaning technique was applied at 20 kHz to reduce fouling in membrane clarification of carrot juice using dead-end MF system with polyvinylidene fluoride (PVDF) membrane. Results showed that application of ultrasound waves reduce diphasic characteristic of carrot juice and permeate flux increased. Evaluation of different membrane fouling mechanisms showed that application of ultrasound waves changed creation time of each fouling mechanism. Also, its behavior was changed with varying transmembrane pressure.

Keywords: Carrot juice, dead end, microfiltration, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
492 Applying Branch-and-Bound and Petri Net Methods in Solving the Two-Sided Assembly Line Balancing Problem

Authors: Nai-Chieh Wei, I-Ming Chao, Chin-Jung Liuand, Hong Long Chen

Abstract:

This paper combines the branch-and-bound method and the petri net to solve the two-sided assembly line balancing problem, thus facilitating effective branching and pruning of tasks. By integrating features of the petri net, such as reachability graph and incidence matrix, the propose method can support the branch-and-bound to effectively reduce poor branches with systematic graphs. Test results suggest that using petri net in the branching process can effectively guide the system trigger process, and thus, lead to consistent results.

 

Keywords: Branch-and-Bound Method, Petri Net, Two-Sided Assembly Line Balancing Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
491 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani

Abstract:

A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Keywords: Composite membrane, electrospinning, fuel cell, nanofibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
490 An Optimization Model for the Arrangement of Assembly Areas Considering Time Dynamic Area Requirements

Authors: Michael Zenker, Henrik Prinzhorn, Christian Böning, Tom Strating

Abstract:

Large-scale products are often assembled according to the job-site principle, meaning that during the assembly the product is located at a fixed position, while the area requirements are constantly changing. On one hand, the product itself is growing with each assembly step, whereas varying areas for storage, machines or working areas are temporarily required. This is an important factor when arranging products to be assembled within the factory. Currently, it is common to reserve a fixed area for each product to avoid overlaps or collisions with the other assemblies. Intending to be large enough to include the product and all adjacent areas, this reserved area corresponds to the superposition of the maximum extents of all required areas of the product. In this procedure, the reserved area is usually poorly utilized over the course of the entire assembly process; instead a large part of it remains unused. If the available area is a limited resource, a systematic arrangement of the products, which complies with the dynamic area requirements, will lead to an increased area utilization and productivity. This paper presents the results of a study on the arrangement of assembly objects assuming dynamic, competing area requirements. First, the problem situation is extensively explained, and existing research on associated topics is described and evaluated on the possibility of an adaptation. Then, a newly developed mathematical optimization model is introduced. This model allows an optimal arrangement of dynamic areas, considering logical and practical constraints. Finally, in order to quantify the potential of the developed method, some test series results are presented, showing the possible increase in area utilization.

Keywords: Dynamic area requirements, facility layout problem, optimization model, product assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1006
489 Electrolytic Dissolutions of UO2 and SIMFUEL in Carbonate Solutions at Several pHs

Authors: Kwang-Wook Kim, Geun-Il Park, Eil-Hee Lee, Kune-Woo Lee, Kee-Chan Song

Abstract:

Electrolytic dissolution characteristics of UO2 and SIMFUEL electrodes were studied at several potentials in carbonate solutions of a high concentration at several pHs. The electrolytic uranium dissolution was much affected by a corrosion product of UO2CO3 generated at the electrode during the dissolution in carbonate solution. The corrosion product distorted the voltammogram at UO2 and SIMFUEL electrodes in the potential region of oxygen evolution and increased the overpotential of oxygen evolution at the electrode. The effective dissolution in a carbonate solution could be obtained at an applied potential such as +4 V (vs SSE) or more which had an overpotential of oxygen evolution high enough to rupture the corrosion product on the electrode surface.

Keywords: Anodic, Electrolytic, Dissolution, SIMFUEL, Uranium dioxide, Carbonate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
488 Multi-Modal Visualization of Working Instructions for Assembly Operations

Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger

Abstract:

Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.

Keywords: Assembly, assistive technologies, augmented reality, manufacturing, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 872
487 Multi-fidelity Fluid-Structure Interaction Analysis of a Membrane Wing

Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger

Abstract:

In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the vortex panel method and the numerical solution of the Navier-Stokes equations. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.

Keywords: CFD, FSI, Membrane wing, Vortex panel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
486 Using Interval Constrained Petri Nets for the Fuzzy Regulation of Quality: Case of Assembly Process Mechanics

Authors: Nabli L., Dhouibi H., Collart Dutilleul S., Craye E.

Abstract:

The indistinctness of the manufacturing processes makes that a parts cannot be realized in an absolutely exact way towards the specifications on the dimensions. It is thus necessary to assume that the effectively realized product has to belong in a very strict way to compatible intervals with a correct functioning of the parts. In this paper we present an approach based on mixing tow different characteristics theories, the fuzzy system and Petri net system. This tool has been proposed to model and control the quality in an assembly system. A robust command of a mechanical assembly process is presented as an application. This command will then have to maintain the specifications interval of parts in front of the variations. It also illustrates how the technique reacts when the product quality is high, medium, or low.

Keywords: Petri nets, production rate, performance evaluation, tolerant system, fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
485 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample

Authors: Suwimon Saneewong Na Ayuttaya

Abstract:

This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.

Keywords: Electrohydrodynamics, swirling flow, convective heat transfer, solid sample.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
484 Resilient Manufacturing: Use of Augmented Reality to Advance Training and Operating Practices in Manual Assembly

Authors: L. C. Moreira, M. Kauffman

Abstract:

This paper outlines the results of an experimental research on deploying an emerging augmented reality (AR) system for real-time task assistance (or work instructions) of highly customised and high-risk manual operations. The focus is on human operators’ training effectiveness and performance and the aim is to test if such technologies can support enhancing the knowledge retention levels and accuracy of task execution to improve health and safety (H&S). An AR enhanced assembly method is proposed and experimentally tested using a real industrial process as case study for electric vehicles’ (EV) battery module assembly. The experimental results revealed that the proposed method improved the training practices and performance through increases in the knowledge retention levels from 40% to 84%, and accuracy of task execution from 20% to 71%, when compared to the traditional paper-based method. The results of this research validate and demonstrate how emerging technologies are advancing the choice for manual, hybrid or fully automated processes by promoting the XR-assisted processes, and the connected worker (a vision for Industry 4 and 5.0), and supporting manufacturing become more resilient in times of constant market changes.

Keywords: Augmented reality, extended reality, connected worker, XR-assisted operator, manual assembly 4.0, industry 5.0, smart training, battery assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326
483 A Convenient Part Library Based On SolidWorks Platform

Authors: Wei Liu, Xionghui Zhou, Qiang Niu, Yunhao Ni

Abstract:

3D part library is an ideal approach to reuse the existing design and thus facilitates the modeling process, which will enhance the efficiency. In this paper, we implemented the thought on the SolidWorks platform. The system supports the functions of type and parameter selection, 3D template driving and part assembly. Finally, BOM is exported in Excel format. Experiment shows that our method can satisfy the requirement of die and mold designers.

Keywords: Intelligent, SolidWorks, automatic assembly, part library.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
482 Microfiltration of the Sugar Refinery Wastewater Using Ceramic Membrane with Kenics Static Mixer

Authors: Zita Šereš, Ljubica Dokić, Nikola Maravić, Dragana Šoronja–Simović, Cecilia Hodur, Ivana Nikolić, Biljana Pajin

Abstract:

New environmental regulations and the increasing market preference for companies that respect the ecosystem had encouraged the industry to look after new treatments for its effluents. The sugar industry, one of the largest emitter of environmental pollutants, follows this tendency. Membrane technology is convenient for separation of suspended solids, colloids and high molecular weight materials that are present in a wastewater from sugar industry. The idea is to microfilter the wastewater, where the permeate passes through the membrane and becomes available for recycle and re-use in the sugar manufacturing process. For microfiltration of this effluent a tubular ceramic membrane was used with a pore size of 200 nm at transmembrane pressure in range of 1–3 bars and in range of flow rate of 50–150 l/h. Kenics static mixer was used for permeate flux enhancement. Turbidity and suspended solids were removed and the permeate flux was continuously monitored during the microfiltration process. The flux achieved after 90 minutes of microfiltration was in a range of 50–70 l/m2h. The obtained turbidity decrease was in the range of 50-99 % and total amount of suspended solids was removed.

Keywords: Ceramic membrane, microfiltration, sugar industry, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
481 Proton-conducting PVA/PMA Hybrid Membranes for Fuel Cell Applications

Authors: Uma Thanganathan

Abstract:

The hybrid membranes containing inorganic materials in polymer matrix are identified as a remarkable family of proton conducting hybrid electrolytes. In this work, the proton conducting inorganic/organic hybrid membranes for proton exchange membrane fuel cells (PEMFCs) were prepared using polyvinyl alcohol (PVA), tetraethoxyorthosilane (TEOS) and heteropolyacid (HPA). The synthesized hybrid membranes were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD), Scanning electron microscopy (SEM) and Thermogravimetry analysis (TGA). The effects of heteropolyacid incorporation on membrane properties, including morphology and thermal stability were extensively investigated.

Keywords: PEMFC, Hybrid membrane, FTIR, TGA, Phosphomolybdic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
480 Study on Scheduling of the Planning Method Using the Web-based Visualization System in a Shipbuilding Block Assembly Shop

Authors: A. Eui Koog Ahn, B. Gi-Nam Wang, C. Sang C. Park

Abstract:

Higher productivity and less cost in the ship manufacturing process are required to maintain the international competitiveness of morden manufacturing industries. In shipbuilding, however, the Engineering To Order (ETO) production method and production process is very difficult. Thus, designs change frequently. In accordance with production, planning should be set up according to scene changes. Therefore, fixed production planning is very difficult. Thus, a scheduler must first make sketchy plans, then change the plans based on the work progress and modifications. Thus, data sharing in a shipbuilding block assembly shop is very important. In this paper, we proposed to scheduling method applicable to the shipbuilding industry and decision making support system through web based visualization system.

Keywords: Shipbuilding, Monitoring, Block assembly shop, Visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
479 Fabrication of a High-Performance Polyetherimide Membrane for Helium Separation

Authors: Y. Alqaheem, A. Alomair, F. Altarkait, F. Alswaileh, Nusrat Tanoli

Abstract:

Helium market is continuously growing due to its essential uses in the electronic and healthcare sectors. Currently, helium is produced by cryogenic distillation but the process is uneconomical especially for low production volumes. On the other hand, polymeric membranes can provide a cost-effective solution for helium purification due to their low operating energy. However, the preparation of membranes involves the use of very toxic solvents such as chloroform. In this work, polyetherimide membranes were prepared using a less toxic solvent, n-methylpyrrolidone with a polymer-to-solvent ratio of 27 wt%. The developed membrane showed a superior helium permeability of 15.9 Barrer that surpassed the permeability of membranes made by chloroform.

Keywords: Helium separation, polyetherimide, dense membrane, gas permeability, solvent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
478 Improving Gas Separation Performance of Poly(Vinylidene Fluoride) Based Membranes Containing Ionic Liquid

Authors: S. Al-Enezi, J. Samuel, A. Al-Banna

Abstract:

Polymer based membranes are one of the low-cost technologies available for the gas separation. Three major elements required for a commercial gas separating membrane are high permeability, high selectivity, and good mechanical strength. Poly(vinylidene fluoride) (PVDF) is a commercially available fluoropolymer and a widely used membrane material in gas separation devices since it possesses remarkable thermal, chemical stability, and excellent mechanical strength. The PVDF membrane was chemically modified by soaking in different ionic liquids and dried. The thermal behavior of modified membranes was investigated by differential scanning calorimetry (DSC), and thermogravimetry (TGA), and the results clearly show the best affinity between the ionic liquid and the polymer support. The porous structure of the PVDF membranes was clearly seen in the scanning electron microscopy (SEM) images. The CO₂ permeability of blended membranes was explored in comparison with the unmodified matrix. The ionic liquid immobilized in the hydrophobic PVDF support exhibited good performance for separations of CO₂/N₂. The improved permeability of modified membrane (PVDF-IL) is attributed to the high concentration of nitrogen rich imidazolium moieties.

Keywords: PVDF, gas permeability, polymer membrane, ionic liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
477 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation

Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina

Abstract:

An unconventional composite inorganic ceramic membrane capable of enhancing carbon dioxide emission decline was fabricated and tested at laboratory scale in conformism to various environmental guidelines and also to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms is presented. Single gas permeation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous support was carried out to investigate individual gas permeation behaviours at different pressures at room temperature. Membrane fabrication was achieved using after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However above a pressure of 3bar, CO2 permeability ratio to that of the other gases indicated control of a more selective surface adsorptive transport mechanism.

Keywords: Carbon dioxide composite inorganic membranes, permeability, transport mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
476 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
475 A CFD Analysis of Hydraulic Characteristics of the Rod Bundles in the BREST-OD-300 Wire-Spaced Fuel Assemblies

Authors: Dmitry V. Fomichev, Vladimir I. Solonin

Abstract:

This paper presents the findings from a numerical simulation of the flow in 37-rod fuel assembly models spaced by a double-wire trapezoidal wrapping as applied to the BREST-OD-300 experimental nuclear reactor. Data on a high static pressure distribution within the models, and equations for determining the fuel bundle flow friction factors have been obtained. Recommendations are provided on using the closing turbulence models available in the ANSYS Fluent. A comparative analysis has been performed against the existing empirical equations for determining the flow friction factors. The calculated and experimental data fit has been shown.

An analysis into the experimental data and results of the numerical simulation of the BREST-OD-300 fuel rod assembly hydrodynamic performance are presented.

Keywords: BREST-OD-300, ware-spaces, fuel assembly, computation fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
474 Response Surface Modeling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design

Authors: A. Thakur, P. S. Panesar, M. S. Saini

Abstract:

Extraction of lactic acid by emulsion liquid membrane technology (ELM) using n-trioctyl amine (TOA) in n-heptane as carrier within the organic membrane along with sodium carbonate as acceptor phase was optimized by using response surface methodology (RSM). A three level Box-Behnken design was employed for experimental design, analysis of the results and to depict the combined effect of five independent variables, vizlactic acid concentration in aqueous phase (cl), sodium carbonate concentration in stripping phase (cs), carrier concentration in membrane phase (ψ), treat ratio, and batch extraction time (τ)  with equal volume of organic and external aqueous phase on lactic acid extraction efficiency. The maximum lactic acid extraction efficiency (ηext) of 98.21%from aqueous phase in a batch reactor using ELM was found at the optimized values for test variables, cl, cs, ψ, and τ as 0.06 [M], 0.18 [M], 4.72 (%,v/v), 1.98 (v/v) and 13.36 min respectively. 

Keywords: Emulsion liquid membrane, extraction, lactic acid, n-trioctylamine, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
473 Application of Ti/RuO2-SnO2-Sb2O5 Anode for Degradation of Reactive Black-5 Dye

Authors: Jayesh P. Ruparelia, Bhavna D. Soni

Abstract:

Electrochemical-oxidation of Reactive Black-5 (RB- 5) was conducted for degradation using DSA type Ti/RuO2-SnO2- Sb2O5 electrode. In the study, for electro-oxidation, electrode was indigenously fabricated in laboratory using titanium as substrate. This substrate was coated using different metal oxides RuO2, Sb2O5 and SnO2 by thermal decomposition method. Laboratory scale batch reactor was used for degradation and decolorization studies at pH 2, 7 and 11. Current density (50mA/cm2) and distance between electrodes (8mm) were kept constant for all experiments. Under identical conditions, removal of color, COD and TOC at initial pH 2 was 99.40%, 55% and 37% respectively for initial concentration of 100 mg/L RB-5. Surface morphology and composition of the fabricated electrode coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) respectively. Coating microstructure was analyzed by X-ray diffraction (XRD). Results of this study further revealed that almost 90% of oxidation occurred within 5-10 minutes.

Keywords: Electrochemical-oxidation, RB- dye, Decolorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
472 Genetic Algorithm Application in a Dynamic PCB Assembly with Carryover Sequence- Dependent Setups

Authors: M. T. Yazdani Sabouni, Rasaratnam Logendran

Abstract:

We consider a typical problem in the assembly of printed circuit boards (PCBs) in a two-machine flow shop system to simultaneously minimize the weighted sum of weighted tardiness and weighted flow time. The investigated problem is a group scheduling problem in which PCBs are assembled in groups and the interest is to find the best sequence of groups as well as the boards within each group to minimize the objective function value. The type of setup operation between any two board groups is characterized as carryover sequence-dependent setup time, which exactly matches with the real application of this problem. As a technical constraint, all of the boards must be kitted before the assembly operation starts (kitting operation) and by kitting staff. The main idea developed in this paper is to completely eliminate the role of kitting staff by assigning the task of kitting to the machine operator during the time he is idle which is referred to as integration of internal (machine) and external (kitting) setup times. Performing the kitting operation, which is a preparation process of the next set of boards while the other boards are currently being assembled, results in the boards to continuously enter the system or have dynamic arrival times. Consequently, a dynamic PCB assembly system is introduced for the first time in the assembly of PCBs, which also has characteristics similar to that of just-in-time manufacturing. The problem investigated is computationally very complex, meaning that finding the optimal solutions especially when the problem size gets larger is impossible. Thus, a heuristic based on Genetic Algorithm (GA) is employed. An example problem on the application of the GA developed is demonstrated and also numerical results of applying the GA on solving several instances are provided.

Keywords: Genetic algorithm, Dynamic PCB assembly, Carryover sequence-dependent setup times, Multi-objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
471 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line

Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez

Abstract:

Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.

Keywords: Deep-learning, image classification, image identification, industrial engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667
470 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
469 Effect of Leaks in Solid Oxide Electrolysis Cells Tested for Durability under Co-Electrolysis Conditions

Authors: Megha Rao, Søren H. Jensen, Xiufu Sun, Anke Hagen, Mogens B. Mogensen

Abstract:

Solid oxide electrolysis cells have an immense potential in converting CO2 and H2O into syngas during co-electrolysis operation. The produced syngas can be further converted into hydrocarbons. This kind of technology is called power-to-gas or power-to-liquid. To produce hydrocarbons via this route, durability of the cells is still a challenge, which needs to be further investigated in order to improve the cells. In this work, various nickel-yttria stabilized zirconia (Ni-YSZ) fuel electrode supported or YSZ electrolyte supported cells, cerium gadolinium oxide (CGO) barrier layer, and an oxygen electrode are investigated for durability under co-electrolysis conditions in both galvanostatic and potentiostatic conditions. While changing the gas on the oxygen electrode, keeping the fuel electrode gas composition constant, a change in the gas concentration arc was observed by impedance spectroscopy. Measurements of open circuit potential revealed the presence of leaks in the setup. It is speculated that the change in concentration impedance may be related to the leaks. Furthermore, the cells were also tested under pressurized conditions to find an inter-play between the leak rate and the pressure. A mathematical modeling together with electrochemical and microscopy analysis is presented.

Keywords: Co-electrolysis, solid oxide electrolysis cells, leaks, durability, gas concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837