Search results for: document structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1549

Search results for: document structures

1549 Highlighting Document's Structure

Authors: Sylvie Ratté, Wilfried Njomgue, Pierre-André Ménard

Abstract:

In this paper, we present symbolic recognition models to extract knowledge characterized by document structures. Focussing on the extraction and the meticulous exploitation of the semantic structure of documents, we obtain a meaningful contextual tagging corresponding to different unit types (title, chapter, section, enumeration, etc.).

Keywords: Information retrieval, document structures, symbolic grammars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
1548 Persian/Arabic Document Segmentation Based On Pyramidal Image Structure

Authors: Seyyed Yasser Hashemi, Khalil Monfaredi

Abstract:

Automatic transformation of paper documents into electronic documents requires document segmentation at the first stage. However, some parameters restrictions such as variations in character font sizes, different text line spacing, and also not uniform document layout structures altogether have made it difficult to design a general-purpose document layout analysis algorithm for many years. Thus in most previously reported methods it is inevitable to include these parameters. This problem becomes excessively acute and severe, especially in Persian/Arabic documents. Since the Persian/Arabic scripts differ considerably from the English scripts, most of the proposed methods for the English scripts do not render good results for the Persian scripts. In this paper, we present a novel parameter-free method for segmenting the Persian/Arabic document images which also works well for English scripts. This method segments the document image into maximal homogeneous regions and identifies them as texts and non-texts based on a pyramidal image structure. In other words the proposed method is capable of document segmentation without considering the character font sizes, text line spacing, and document layout structures. This algorithm is examined for 150 Arabic/Persian and English documents and document segmentation process are done successfully for 96 percent of documents.

Keywords: Persian/Arabic document, document segmentation, Pyramidal Image Structure, skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
1547 Entropy Based Data Hiding for Document Images

Authors: Swetha Kurup, Sridhar G., Sridhar V.

Abstract:

In this paper we present a novel technique for data hiding in binary document images. We use the concept of entropy in order to identify document specific least distortive areas throughout the binary document image. The document image is treated as any other image and the proposed method utilizes the standard document characteristics for the embedding process. Proposed method minimizes perceptual distortion due to embedding and allows watermark extraction without the requirement of any side information at the decoder end.

Keywords: Entropy, Steganography, Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
1546 A New Approach for Flexible Document Categorization

Authors: Jebari Chaker, Ounelli Habib

Abstract:

In this paper we propose a new approach for flexible document categorization according to the document type or genre instead of topic. Our approach implements two homogenous classifiers: contextual classifier and logical classifier. The contextual classifier is based on the document URL, whereas, the logical classifier use the logical structure of the document to perform the categorization. The final categorization is obtained by combining contextual and logical categorizations. In our approach, each document is assigned to all predefined categories with different membership degrees. Our experiments demonstrate that our approach is best than other genre categorization approaches.

Keywords: Categorization, combination, flexible, logicalstructure, genre, category, URL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1545 The Usefulness of Logical Structure in Flexible Document Categorization

Authors: Jebari Chaker, Ounalli Habib

Abstract:

This paper presents a new approach for automatic document categorization. Exploiting the logical structure of the document, our approach assigns a HTML document to one or more categories (thesis, paper, call for papers, email, ...). Using a set of training documents, our approach generates a set of rules used to categorize new documents. The approach flexibility is carried out with rule weight association representing your importance in the discrimination between possible categories. This weight is dynamically modified at each new document categorization. The experimentation of the proposed approach provides satisfactory results.

Keywords: categorization rule, document categorization, flexible categorization, logical structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
1544 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
1543 Towards Clustering of Web-based Document Structures

Authors: Matthias Dehmer, Frank Emmert Streib, Jürgen Kilian, Andreas Zulauf

Abstract:

Methods for organizing web data into groups in order to analyze web-based hypertext data and facilitate data availability are very important in terms of the number of documents available online. Thereby, the task of clustering web-based document structures has many applications, e.g., improving information retrieval on the web, better understanding of user navigation behavior, improving web users requests servicing, and increasing web information accessibility. In this paper we investigate a new approach for clustering web-based hypertexts on the basis of their graph structures. The hypertexts will be represented as so called generalized trees which are more general than usual directed rooted trees, e.g., DOM-Trees. As a important preprocessing step we measure the structural similarity between the generalized trees on the basis of a similarity measure d. Then, we apply agglomerative clustering to the obtained similarity matrix in order to create clusters of hypertext graph patterns representing navigation structures. In the present paper we will run our approach on a data set of hypertext structures and obtain good results in Web Structure Mining. Furthermore we outline the application of our approach in Web Usage Mining as future work.

Keywords: Clustering methods, graph-based patterns, graph similarity, hypertext structures, web structure mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
1542 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition

Authors: L. Hamsaveni, Navya Prakash, Suresha

Abstract:

Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.

Keywords: Grayscale image format, image fusing, SURF detection, YCbCr image format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
1541 Combining Color and Layout Features for the Identification of Low-resolution Documents

Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold

Abstract:

This paper proposes a method, combining color and layout features, for identifying documents captured from lowresolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. The combined color and layout features are arranged in a symbolic file, which is unique for each document and is called the document-s visual signature. Our identification method first uses the color information in the signatures in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining search space. Finally, our experiment considers slide documents, which are often captured using handheld devices.

Keywords: Document color modeling, document visual signature, kernel density estimation, document identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
1540 Color and Layout-based Identification of Documents Captured from Handheld Devices

Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold

Abstract:

This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.

Keywords: Document color modeling, document visualsignature, kernel density estimation, document identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
1539 Application of a Similarity Measure for Graphs to Web-based Document Structures

Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser

Abstract:

Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.

Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
1538 Collaborative Document Evaluation: An Alternative Approach to Classic Peer Review

Authors: J. Beel, B. Gipp

Abstract:

Research papers are usually evaluated via peer review. However, peer review has limitations in evaluating research papers. In this paper, Scienstein and the new idea of 'collaborative document evaluation' are presented. Scienstein is a project to evaluate scientific papers collaboratively based on ratings, links, annotations and classifications by the scientific community using the internet. In this paper, critical success factors of collaborative document evaluation are analyzed. That is the scientists- motivation to participate as reviewers, the reviewers- competence and the reviewers- trustworthiness. It is shown that if these factors are ensured, collaborative document evaluation may prove to be a more objective, faster and less resource intensive approach to scientific document evaluation in comparison to the classical peer review process. It is shown that additional advantages exist as collaborative document evaluation supports interdisciplinary work, allows continuous post-publishing quality assessments and enables the implementation of academic recommendation engines. In the long term, it seems possible that collaborative document evaluation will successively substitute peer review and decrease the need for journals.

Keywords: Peer Review, Alternative, Collaboration, Document Evaluation, Rating, Annotations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
1537 Data Extraction of XML Files using Searching and Indexing Techniques

Authors: Sushma Satpute, Vaishali Katkar, Nilesh Sahare

Abstract:

XML files contain data which is in well formatted manner. By studying the format or semantics of the grammar it will be helpful for fast retrieval of the data. There are many algorithms which describes about searching the data from XML files. There are no. of approaches which uses data structure or are related to the contents of the document. In these cases user must know about the structure of the document and information retrieval techniques using NLPs is related to content of the document. Hence the result may be irrelevant or not so successful and may take more time to search.. This paper presents fast XML retrieval techniques by using new indexing technique and the concept of RXML. When indexing an XML document, the system takes into account both the document content and the document structure and assigns the value to each tag from file. To query the system, a user is not constrained about fixed format of query.

Keywords: XML Retrieval, Indexed Search, Information Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
1536 Skew Detection Technique for Binary Document Images based on Hough Transform

Authors: Manjunath Aradhya V N, Hemantha Kumar G, Shivakumara P

Abstract:

Document image processing has become an increasingly important technology in the automation of office documentation tasks. During document scanning, skew is inevitably introduced into the incoming document image. Since the algorithm for layout analysis and character recognition are generally very sensitive to the page skew. Hence, skew detection and correction in document images are the critical steps before layout analysis. In this paper, a novel skew detection method is presented for binary document images. The method considered the some selected characters of the text which may be subjected to thinning and Hough transform to estimate skew angle accurately. Several experiments have been conducted on various types of documents such as documents containing English Documents, Journals, Text-Book, Different Languages and Document with different fonts, Documents with different resolutions, to reveal the robustness of the proposed method. The experimental results revealed that the proposed method is accurate compared to the results of well-known existing methods.

Keywords: Optical Character Recognition, Skew angle, Thinning, Hough transform, Document processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
1535 A Study on Finding Similar Document with Multiple Categories

Authors: R. Saraçoğlu, N. Allahverdi

Abstract:

Searching similar documents and document management subjects have important place in text mining. One of the most important parts of similar document research studies is the process of classifying or clustering the documents. In this study, a similar document search approach that includes discussion of out the case of belonging to multiple categories (multiple categories problem) has been carried. The proposed method that based on Fuzzy Similarity Classification (FSC) has been compared with Rocchio algorithm and naive Bayes method which are widely used in text mining. Empirical results show that the proposed method is quite successful and can be applied effectively. For the second stage, multiple categories vector method based on information of categories regarding to frequency of being seen together has been used. Empirical results show that achievement is increased almost two times, when proposed method is compared with classical approach.

Keywords: Document similarity, Fuzzy classification, Multiple categories, Text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
1534 Research on Applying the Continuity Care Document to Generate a Medical Record with Entry Level

Authors: Hsing-Yi Kao, Der-Ming Liou

Abstract:

Transferring patient information between medical care sites is necessary to deliver better patient care and to reduce medical cost. So developing of electronic medical records is an important trend for the world.The Continuity of Care Document (CCD) is product of collaboration between CDA and CCR standards. In this study, we will develop a system to generate medical records with entry level based on CCD template module.

Keywords: Continuity Care Document, medical record, entrylevel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1533 A Proposed Hybrid Approach for Feature Selection in Text Document Categorization

Authors: M. F. Zaiyadi, B. Baharudin

Abstract:

Text document categorization involves large amount of data or features. The high dimensionality of features is a troublesome and can affect the performance of the classification. Therefore, feature selection is strongly considered as one of the crucial part in text document categorization. Selecting the best features to represent documents can reduce the dimensionality of feature space hence increase the performance. There were many approaches has been implemented by various researchers to overcome this problem. This paper proposed a novel hybrid approach for feature selection in text document categorization based on Ant Colony Optimization (ACO) and Information Gain (IG). We also presented state-of-the-art algorithms by several other researchers.

Keywords: Ant colony optimization, feature selection, information gain, text categorization, text representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
1532 Information Filtering using Index Word Selection based on the Topics

Authors: Takeru YOKOI, Hidekazu YANAGIMOTO, Sigeru OMATU

Abstract:

We have proposed an information filtering system using index word selection from a document set based on the topics included in a set of documents. This method narrows down the particularly characteristic words in a document set and the topics are obtained by Sparse Non-negative Matrix Factorization. In information filtering, a document is often represented with the vector in which the elements correspond to the weight of the index words, and the dimension of the vector becomes larger as the number of documents is increased. Therefore, it is possible that useless words as index words for the information filtering are included. In order to address the problem, the dimension needs to be reduced. Our proposal reduces the dimension by selecting index words based on the topics included in a document set. We have applied the Sparse Non-negative Matrix Factorization to the document set to obtain these topics. The filtering is carried out based on a centroid of the learning document set. The centroid is regarded as the user-s interest. In addition, the centroid is represented with a document vector whose elements consist of the weight of the selected index words. Using the English test collection MEDLINE, thus, we confirm the effectiveness of our proposal. Hence, our proposed selection can confirm the improvement of the recommendation accuracy from the other previous methods when selecting the appropriate number of index words. In addition, we discussed the selected index words by our proposal and we found our proposal was able to select the index words covered some minor topics included in the document set.

Keywords: Information Filtering, Sparse NMF, Index wordSelection, User Profile, Chi-squared Measure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
1531 A Proposed Approach for Emotion Lexicon Enrichment

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.

Keywords: Document analysis, sentimental analysis, emotion detection, WEKA tool, NRC Lexicon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
1530 Using Suffix Tree Document Representation in Hierarchical Agglomerative Clustering

Authors: Daniel I. Morariu, Radu G. Cretulescu, Lucian N. Vintan

Abstract:

In text categorization problem the most used method for documents representation is based on words frequency vectors called VSM (Vector Space Model). This representation is based only on words from documents and in this case loses any “word context" information found in the document. In this article we make a comparison between the classical method of document representation and a method called Suffix Tree Document Model (STDM) that is based on representing documents in the Suffix Tree format. For the STDM model we proposed a new approach for documents representation and a new formula for computing the similarity between two documents. Thus we propose to build the suffix tree only for any two documents at a time. This approach is faster, it has lower memory consumption and use entire document representation without using methods for disposing nodes. Also for this method is proposed a formula for computing the similarity between documents, which improves substantially the clustering quality. This representation method was validated using HAC - Hierarchical Agglomerative Clustering. In this context we experiment also the stemming influence in the document preprocessing step and highlight the difference between similarity or dissimilarity measures to find “closer" documents.

Keywords: Text Clustering, Suffix tree documentrepresentation, Hierarchical Agglomerative Clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
1529 Ultra High Speed Approach for Document Skew Detection and Correction Based On Centre of Gravity

Authors: Seyyed Yasser Hashemi

Abstract:

Skew detection and correction (SDC) has a direct effect in efficiency and exactitude of documents’ segmentation and analysis and thus is considered as a very important step in documents’ analysis field. Skew is a major problem in documents’ analysis for every language. For Arabic/Persian document scripts this problem is more severe because of special features of these languages. In this paper an efficient and fast algorithm for Document Skew Detection (DSD) based on the concept of segmentation and Center of Gravity (COG) is proposed. This algorithm is examined for 150 Arabic/Persian and English documents and SDC process are done successfully for 93 percent of documents with error rate of less than 1°. This algorithm shows better results for English documents compared to Arabic/Persian documents. The proposed method is also represents favorable results for handwritten, printed and also complicated documents such as newspapers and journals even with very low quality and resolution.

Keywords: Arabic/Persian document, Baseline, Centre of gravity, Document segmentation, Skew detection and correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
1528 Advanced Information Extraction with n-gram based LSI

Authors: Ahmet Güven, Ö. Özgür Bozkurt, Oya Kalıpsız

Abstract:

Number of documents being created increases at an increasing pace while most of them being in already known topics and little of them introducing new concepts. This fact has started a new era in information retrieval discipline where the requirements have their own specialties. That is digging into topics and concepts and finding out subtopics or relations between topics. Up to now IR researches were interested in retrieving documents about a general topic or clustering documents under generic subjects. However these conventional approaches can-t go deep into content of documents which makes it difficult for people to reach to right documents they were searching. So we need new ways of mining document sets where the critic point is to know much about the contents of the documents. As a solution we are proposing to enhance LSI, one of the proven IR techniques by supporting its vector space with n-gram forms of words. Positive results we have obtained are shown in two different application area of IR domain; querying a document database, clustering documents in the document database.

Keywords: Document clustering, Information Extraction, Information Retrieval, LSI, n-gram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
1527 Organization Model of Semantic Document Repository and Search Techniques for Studying Information Technology

Authors: Nhon Do, Thuong Huynh, An Pham

Abstract:

Nowadays, organizing a repository of documents and resources for learning on a special field as Information Technology (IT), together with search techniques based on domain knowledge or document-s content is an urgent need in practice of teaching, learning and researching. There have been several works related to methods of organization and search by content. However, the results are still limited and insufficient to meet user-s demand for semantic document retrieval. This paper presents a solution for the organization of a repository that supports semantic representation and processing in search. The proposed solution is a model which integrates components such as an ontology describing domain knowledge, a database of document repository, semantic representation for documents and a file system; with problems, semantic processing techniques and advanced search techniques based on measuring semantic similarity. The solution is applied to build a IT learning materials management system of a university with semantic search function serving students, teachers, and manager as well. The application has been implemented, tested at the University of Information Technology, Ho Chi Minh City, Vietnam and has achieved good results.

Keywords: document retrieval system, knowledgerepresentation, document representation, semantic search, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
1526 A Keyword-Based Filtering Technique of Document-Centric XML using NFA Representation

Authors: Changwoo Byun, Kyounghan Lee, Seog Park

Abstract:

XML is becoming a de facto standard for online data exchange. Existing XML filtering techniques based on a publish/subscribe model are focused on the highly structured data marked up with XML tags. These techniques are efficient in filtering the documents of data-centric XML but are not effective in filtering the element contents of the document-centric XML. In this paper, we propose an extended XPath specification which includes a special matching character '%' used in the LIKE operation of SQL in order to solve the difficulty of writing some queries to adequately filter element contents using the previous XPath specification. We also present a novel technique for filtering a collection of document-centric XMLs, called Pfilter, which is able to exploit the extended XPath specification. We show several performance studies, efficiency and scalability using the multi-query processing time (MQPT).

Keywords: XML Data Stream, Document-centric XML, Filtering Technique, Value-based Predicates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
1525 Data Migration between Document-Oriented and Relational Databases

Authors: Bogdan Walek, Cyril Klimes

Abstract:

Current tools for data migration between documentoriented and relational databases have several disadvantages. We propose a new approach for data migration between documentoriented and relational databases. During data migration the relational schema of the target (relational database) is automatically created from collection of XML documents. Proposed approach is verified on data migration between document-oriented database IBM Lotus/ Notes Domino and relational database implemented in relational database management system (RDBMS) MySQL.

Keywords: data migration, database, document-oriented database, XML, relational schema

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525
1524 Soccer Video Edition Using a Multimodal Annotation

Authors: Fendri Emna, Ben-Abdallah Hanêne, Ben-Hamadou Abdelmajid

Abstract:

In this paper, we present an approach for soccer video edition using a multimodal annotation. We propose to associate with each video sequence of a soccer match a textual document to be used for further exploitation like search, browsing and abstract edition. The textual document contains video meta data, match meta data, and match data. This document, generated automatically while the video is analyzed, segmented and classified, can be enriched semi automatically according to the user type and/or a specialized recommendation system.

Keywords: XML, Multimodal Annotation, recommendation system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
1523 Behavior Factor of Flat Double-Layer Space Structures

Authors: Behnam Shirkhanghah, Vahid Shahbaznejhad-Fard, Houshyar Eimani-Kalesar, Babak Pahlevan

Abstract:

Flat double-layer grid is from category of space structures that are formed from two flat layers connected together with diagonal members. Increased stiffness and better seismic resistance in relation to other space structures are advantages of flat double layer space structures. The objective of this study is assessment and calculation of Behavior factor of flat double layer space structures. With regarding that these structures are used widely but Behavior factor used to design these structures against seismic force is not determined and exact, the necessity of study is obvious. This study is theoretical. In this study we used structures with span length of 16m and 20 m. All connections are pivotal. ANSYS software is used to non-linear analysis of structures.

Keywords: Behavior factor, Double-layer, Intensified resistance, Non-linear analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1522 WebGD: A CORBA-based Document Classification and Retrieval System on the Web

Authors: Fuyang Peng, Bo Deng, Chao Qi, Mou Zhan

Abstract:

This paper presents the design and implementation of the WebGD, a CORBA-based document classification and retrieval system on Internet. The WebGD makes use of such techniques as Web, CORBA, Java, NLP, fuzzy technique, knowledge-based processing and database technology. Unified classification and retrieval model, classifying and retrieving with one reasoning engine and flexible working mode configuration are some of its main features. The architecture of WebGD, the unified classification and retrieval model, the components of the WebGD server and the fuzzy inference engine are discussed in this paper in detail.

Keywords: Text Mining, document classification, knowledgeprocessing, fuzzy logic, Web, CORBA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
1521 Automatic Enhanced Update Summary Generation System for News Documents

Authors: S. V. Kogilavani, C. S. Kanimozhiselvi, S. Malliga

Abstract:

Fast changing knowledge systems on the Internet can be accessed more efficiently with the help of automatic document summarization and updating techniques. The aim of multi-document update summary generation is to construct a summary unfolding the mainstream of data from a collection of documents based on the hypothesis that the user has already read a set of previous documents. In order to provide a lot of semantic information from the documents, deeper linguistic or semantic analysis of the source documents were used instead of relying only on document word frequencies to select important concepts. In order to produce a responsive summary, meaning oriented structural analysis is needed. To address this issue, the proposed system presents a document summarization approach based on sentence annotation with aspects, prepositions and named entities. Semantic element extraction strategy is used to select important concepts from documents which are used to generate enhanced semantic summary.

Keywords: Aspects, named entities, prepositions, update summary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
1520 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745