Towards Clustering of Web-based Document Structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Towards Clustering of Web-based Document Structures

Authors: Matthias Dehmer, Frank Emmert Streib, Jürgen Kilian, Andreas Zulauf

Abstract:

Methods for organizing web data into groups in order to analyze web-based hypertext data and facilitate data availability are very important in terms of the number of documents available online. Thereby, the task of clustering web-based document structures has many applications, e.g., improving information retrieval on the web, better understanding of user navigation behavior, improving web users requests servicing, and increasing web information accessibility. In this paper we investigate a new approach for clustering web-based hypertexts on the basis of their graph structures. The hypertexts will be represented as so called generalized trees which are more general than usual directed rooted trees, e.g., DOM-Trees. As a important preprocessing step we measure the structural similarity between the generalized trees on the basis of a similarity measure d. Then, we apply agglomerative clustering to the obtained similarity matrix in order to create clusters of hypertext graph patterns representing navigation structures. In the present paper we will run our approach on a data set of hypertext structures and obtain good results in Web Structure Mining. Furthermore we outline the application of our approach in Web Usage Mining as future work.

Keywords: Clustering methods, graph-based patterns, graph similarity, hypertext structures, web structure mining

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075657

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509

References:


[1] R. Bellman, Dynamic Programming. Princeton University Press, 1957
[2] H. H. Bock: Automatische Klassifikation. Theoretische und praktische Methoden zur Gruppierung und Strukturierung von Daten, Studia Mathematica - Mathematische Lehrb¨ucher, Vandenhoeck & Ruprecht Verlag, 1974
[3] R. A. Botafogo, B. Shneiderman: Structural analysis of hypertexts: Identifying hierarchies and useful metrics, ACM Trans. Inf. Syst. 10 (2), 1992, 142-180
[4] S. Chakrabarti: Mining the Web. Discovering Knowledge from Hypertext Data, Morgen and Kaufmann Publishers, 2003
[5] S. Chakrabarti: Integrating the document object model with hyperlinks for enhanced topic distillation and information extraction, Proc. of the 10th International World Wide Web Conference, Hong Kong, 2001, 211- 220
[6] I. F. Cruz, S. Borisov, M. A. Marks, T. R. Webb: Measuring Structural Similarity Among Web Documents: Preliminary Results , Lecture Notes In Computer Science, Vol. 1375, 1998
[7] M. Dehmer, Strukturelle Analyse web-basierter Dokumente, Ph.D Thesis, Department of Computer Science, Technische Universit¨at Darmstadt, 2005
[8] M. Dehmer, F. Emmert-Streib, A. Mehler, J. Kilian, M. M¨uhlh¨auser, Application of a similarity measure for graphs to web-based document structures, International Conference on Data Analysis ICA 2005, in conjuction with the 7-th World Enformatika Conference, Budapest/Hungary
[9] B. S. Everitt, S. Landau, M. Leese: Cluster Analysis, Arnold Publishers; 4-th edition, 2001
[10] R. Gleim: HyGraph - Ein Framework zur Extraktion, Repr¨asentation und Analyse webbasierter Hypertextstrukturen, Beitr¨age zur GLDVTagung 2005, Bonn/Germany, 2005
[11] A. K. Jain, R. C. Dubes: Algorithms for Clustering Data, Prentice Hall, 1988
[12] A. Mehler, M. Dehmer, R. Gleim: Towards logical hypertext structure. A graph-theoretic perspective, Proc. of I2CS-04, Guadalajara/Mexico, Lecture Notes in Computer Science, Berlin-New York: Springer, 2004
[13] M. M¨uhlh¨auser: eLearning After Four Decades: What About Sustainability?, Proceedings of ED-MEDIA 2004, 3694-3700
[14] T. Richter, J. Naumann, S. Noller: LOGPAT: A semi-automatic way to analyze hypertext navigation behavior, Swiss Journal of Psychology, Vol. 62, 2003, 113-120
[15] B. Rieger: Unscharfe Semantik, Peter Lang Verlag, 1989
[16] P. H. Winne., L. Gupta, J. C. Nesbit: Exploring individual differences in studying strategies using graph theoretic statistics, The Alberta Journal of Educational Research, Vol. 40, 177-193, 1994