Search results for: carbonate co-precipitation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 73

Search results for: carbonate co-precipitation

13 The Study of Stable Isotopes (18O, 2H & 13C) in Kardeh River and Dam Reservoir, North-Eastern Iran

Authors: Hossein Mohammadzadeh, Mojtaba Heydarizad

Abstract:

Among various water resources, the surface water has a dominant role in providing water supply in the arid and semi-arid region of Iran. Andarokh-Kardeh basin is located in 50 km from Mashhad city - the second biggest city of Iran (NE of Iran), draining by Kardeh river which provides a significant portion of potable and irrigation water needs for Mashhad. The stable isotopes (18O, 2H,13C-DIC, and 13C-DOC), as reliable and precious water fingerprints, have been measured in Kardeh river (Kharket, Mareshk, Jong, All and Kardeh stations) and in Kardeh dam reservoirs (at five different sites S1 to S5) during March to June 2011 and June 2012. On δ18O vs. δ2H diagram, the river samples were plotted between Global and Eastern Mediterranean Meteoric Water lines (GMWL and EMMWL) which demonstrate that various moisture sources are providing humidity for precipitation events in this area. The enriched δ18O and δ2H values (-6.5 ‰ and -44.5 ‰ VSMOW) of Kardeh dam reservoir are compared to Kardeh river (-8.6‰and-54.4‰), and its deviation from Mashhad meteoric water line (MMWL- δ2H=7.16δ18O+11.22) is due to evaporation from the open surface water body. The enriched value of δ 13C-DIC and high amount of DIC values (-7.9 ‰ VPDB and 57.23 ppm) in the river and Kardeh dam reservoir (-7.3 ‰ VPDB and 55.53 ppm) is due to dissolution of Mozdooran Carbonate Formation lithology (Jm1 to Jm3 units) (contains enriched δ13C DIC values of 9.2‰ to 27.7‰ VPDB) in the region. Because of the domination of C3 vegetations in Andarokh_Kardeh basin, the δ13C-DOC isotope of the river (-28.4‰ VPDB) and dam reservoir (-32.3‰ VPDB) demonstrate depleted values. Higher DOC concentration in dam reservoir (2.57 ppm) compared to the river (0.72 ppm) is due to more biologogical activities and organic matters in dam reservoir.

Keywords: Dam reservoir, Iran, Kardeh river, Khorasan razavi, Stable isotopes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
12 Petrology Investigation of Apatite Minerals in the Esfordi Mine, Yazd, Iran

Authors: Haleh Rezaei Zanjirabadi, Fatemeh Saberi, Bahman Rahimzadeh, Fariborz Masoudi, Mohammad Rahgosha

Abstract:

In this study, apatite minerals from the iron-phosphate deposit of Yazd have been investigated within the microcontinent zone of Iran in the Zagros structural zone. The geological units in the Esfordi area belong to the pre-Cambrian to lower-Cambrian age, consisting of a succession of carbonate rocks (dolomite), shale, tuff, sandstone, and volcanic rocks. In addition to the mentioned sedimentary and volcanic rocks, the granitoid mass of Bahabad, which is the largest intrusive mass in the region, has intruded into the eastern part of this series and has caused its metamorphism and alteration. After collecting the available data, various samples of Esfordi’s apatite were prepared, and their mineralogy and crystallography were investigated using laboratory methods such as petrographic microscopy, Raman spectroscopy, EDS (Energy Dispersive Spectroscopy), and Scanning Electron Microscopy (SEM). In non-destructive Raman spectroscopy, the molecular structure of apatite minerals was revealed in four distinct spectral ranges. Initially, the spectra of phosphate and aluminum bonds with O2HO, OH, were observed, followed by the identification of Cl, OH, Al, Na, Ca and hydroxyl units depending on the type of apatite mineral family. In SEM analysis, based on various shapes and different phases of apatites, their constituent major elements were identified through EDS, indicating that the samples from the Esfordi mining area exhibit a dense and coherent texture with smooth surfaces. Based on the elemental analysis results by EDS, the apatites in the Esfordi area are classified into the calcic apatite group.

Keywords: Petrology, apatite, Esfordi, EDS, SEM, Scanning Electron Microscopy, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52
11 Ingenious Use of Hypo Sludge in M25 Concrete

Authors: Abhinandan Singh Gill

Abstract:

Paper mill sludge is one of the major economic and environmental problems for paper and board industry, million tonnes quantity of sludge is produced in the world. It is essential to dispose these wastes safely without affecting health of human being, environment, fertile land; sources of water bodies, economy as it adversely affect the strength, durability and other properties of building materials based on them. Moreover, in developing countries like India where there is low availability of non-renewable resources and large need of building material like cement therefore it is essential to develop eco-efficient utilization of paper sludge. Primarily in functional terms paper sludge comprises of cellulose fibers, calcium carbonate, china clay, low silica, residual chemical bonds with water. The material is sticky and full of moisture content which is hard to dry. The manufacturing of paper usually produce loads of solid waste. These paper fibers are recycled in paper mills to limited number of times till they become weak to produce high quality paper. Thereafter, these left out small and weak pieces called as low quality paper fibers are detached out to become paper sludge. The material is by-product of de-inking and re-pulping of paper. This hypo sludge includes all kinds of inks, dyes, coating etc inscribed on the paper. This paper presents an overview of the published work on the use of hypo sludge in M25 concrete formulations as a supplementary cementitious material exploring its properties such as compressive strength, splitting and parameters like modulus of elasticity, density, applications and most importantly investigation of low cost concrete by using hypo sludge are presented.

Keywords: Concrete, sludge waste, hypo sludge, supplementary cementitious material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
10 Hypogenic Karstification and Conduit System Controlling by Tectonic Pattern in Foundation Rocks of the Salman Farsi Dam in South-Western Iran

Authors: Mehran Koleini, Jan Louis Van Rooy, Adam Bumby

Abstract:

The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of south-western Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality.      

Keywords: Asmari Limestone, Karstification, Salman Farsi Dam, Tectonic Pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
9 Wadi Halfa Oolitic Ironstone Formation, Wadi Halfa and Argein Areas, North Sudan

Authors: M. Nafi, A. El Amein, M. El Dawi, K. Salih, O. Elbahi, A. Abou

Abstract:

In present study, a large deposit of oolitic iron ore of Late Carboniferous-Permotriassic-Lower Jurassic age was discovered in Wadi Halfa and Argein areas, North Sudan. It seems that the iron ore mineralization exists in the west and east bank of the River Nile of the study area that are found on the Egyptian-Sudanese border. The Carboniferous-Lower Jurassic age strata were covered by 67 sections and each section has been examined and carefully described. The iron-ore in Wadi Halfa occurs as oolitic ironstone and contained two horizons: (A) horizon and (B) horizon. Only horizon (A) was observed in southern Argein area. The texture of the ore is variable depending on the volume of the component. In thin sections, the average of the ooids was ranged between 90%-80%. The matrix varies between 10%-20% by volume and detritus quartz in other component my reach up to 30% by volume in sandy massive ore. Ooids size ranges from 0.2mm-1.00 mm on average in very coarse ooids may attend up to 1 mm in size. The matrix around the ooids is dominated by iron hydroxide, carbonate, fine, and amorphous silica. The probable ore reserve estimate of 1.234 billion at a head grade of 41.29% Fe for the Wadi Halfa Oolitic Ironstone Formation. The iron ore shows higher content of phosphorus ranges from 6.15% to 0.16%, with mean 1.45%. The new technology Hatch–Ironstone Chloride Segregation (HICS) can be used to produce commercial-quality of iron and reduce phosphorus and silica to acceptable levels for steel industry. The presence of infrastructures in addition to the presence of massive quantities of iron ore would make exploitation economically.

Keywords: HICS, Late Carboniferous age, Oolitic iron ore, phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
8 Characterization of Biocomposites Based on Mussel Shell Wastes

Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk

Abstract:

Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.

Keywords: Biocomposite, epoxy resin, mussel shell, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
7 Assessment of Groundwater Chemistry and Quality Characteristics in an Alluvial Aquifer and a Single Plane Fractured-Rock Aquifer in Bloemfontein, South Africa

Authors: Modreck Gomo

Abstract:

The evolution of groundwater chemistry and its quality is largely controlled by hydrogeochemical processes and their understanding is therefore important for groundwater quality assessments and protection of the water resources. A study was conducted in Bloemfontein town of South Africa to assess and compare the groundwater chemistry and quality characteristics in an alluvial aquifer and single-plane fractured-rock aquifers. 9 groundwater samples were collected from monitoring boreholes drilled into the two aquifer systems during a once-off sampling exercise. Samples were collected through low-flow purging technique and analysed for major ions and trace elements. In order to describe the hydrochemical facies and identify dominant hydrogeochemical processes, the groundwater chemistry data are interpreted using stiff diagrams and principal component analysis (PCA), as complimentary tools. The fitness of the groundwater quality for domestic and irrigation uses is also assessed. Results show that the alluvial aquifer is characterised by a Na-HCO3 hydrochemical facie while fractured-rock aquifer has a Ca-HCO3 facie. The groundwater in both aquifers originally evolved from the dissolution of calcite rocks that are common on land surface environments. However the groundwater in the alluvial aquifer further goes through another evolution as driven by cation exchange process in which Na in the sediments exchanges with Ca2+ in the Ca-HCO3 hydrochemical type to result in the Na-HCO3 hydrochemical type. Despite the difference in the hydrogeochemical processes between the alluvial aquifer and single-plane fractured-rock aquifer, this did not influence the groundwater quality. The groundwater in the two aquifers is very hard as influenced by the elevated magnesium and calcium ions that evolve from dissolution of carbonate minerals which typically occurs in surface environments. Based on total dissolved levels (600-900 mg/L), groundwater quality of the two aquifer systems is classified to be of fair quality. The negative potential impacts of the groundwater quality for domestic uses are highlighted.

Keywords: Alluvial aquifer, fractured-rock aquifer, groundwater quality, hydrogeochemical processes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
6 Factors Affecting the Ultimate Compressive Strength of the Quaternary Calcarenites, North Western Desert, Egypt

Authors: M. A. Rashed, A. S. Mansour, H. Faris, W. Afify

Abstract:

The calcarenites carbonate rocks of the Quaternary ridges, which extend along the northwestern Mediterranean coastal plain of Egypt, represent an excellent model for the transformation of loose sediments to real sedimentary rocks by the different stages of meteoric diagenesis. The depositional and diagenetic fabrics of the rocks, in addition to the strata orientation, highly affect their ultimate compressive strength and other geotechnical properties.

There is a marked increase in the compressive strength (UCS) from the first to the fourth ridge rock samples. The lowest values are related to the loose packing, weakly cemented aragonitic ooid sediments with high porosity, besides the irregularly distributed of cement, which result in decreasing the ability of these rocks to withstand crushing under direct pressure. The high (UCS) values are attributed to the low porosity, the presence of micritic cement, the reduction in grain size and the occurrence of micritization and calcretization processes.

The strata orientation has a notable effect on the measured (UCS). The lowest values have been recorded for the samples cored in the inclined direction; whereas the highest values have been noticed in most samples cored in the vertical and parallel directions to bedding plane. In case of the inclined direction, the bedding planes were oriented close to the plane of maximum shear stress. The lowest and highest anisotropy values have been recorded for the first and the third ridges rock samples, respectively, which may attributed to the relatively homogeneity and well sorted grainstone of the first ridge rock samples, and relatively heterogeneity in grain and pore size distribution and degree of cementation of the third ridge rock samples, besides, the abundance of shell fragments with intraparticle pore spaces, which may produce lines of weakness within the rock.

Keywords: Compressive strength, Anisotropy, Calcarenites, Egypt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4082
5 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm2 are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm2). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: Focused ultrasound therapy, Histotripsy, generation of inertial cavitation, mechanical tissue ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
4 Promoting Social Advocacy through Digital Storytelling: The Case of Ocean Acidification

Authors: Chun Chen Yea, Wen Huei Chou

Abstract:

Many chemical changes in the atmosphere and the ocean are invisible to the naked eye, but they have profound impacts. These changes not only confirm the phenomenon of global carbon pollution, but also forewarn that more changes are coming. The carbon dioxide gases emitted from the burning of fossil fuels dissolve into the ocean and chemically react with seawater to form carbonic acid, which increases the acidity of the originally alkaline seawater. This gradual acidification is occurring at an unprecedented rate and will affect the effective formation of carapace of some marine organisms such as corals and crustaceans, which are almost entirely composed of calcium carbonate. The carapace of these organisms will become more dissoluble. Acidified seawater not only threatens the survival of marine life, but also negatively impacts the global ecosystem via the food chain. Faced with the threat of ocean acidification, all humans are duty-bound. The industrial sector outputs the highest level of carbon dioxide emissions in Taiwan, and the petrochemical industry is the major contributor. Ever since the construction of Formosa Plastics Group's No. 6 Naphtha Cracker Plant in Yunlin County, there have been many environmental concerns such as air pollution and carbon dioxide emission. The marine life along the coast of Yunlin is directly affected by ocean acidification arising from the carbon emissions. Societal change demands our willingness to act, which is what social advocacy promotes. This study uses digital storytelling for social advocacy and ocean acidification as the subject of a visual narrative in visualization to demonstrate the subsequent promotion of social advocacy. Storytelling can transform dull knowledge into an engaging narrative of the crisis faced by marine life. Digital dissemination is an effective social-work practice. The visualization promoting awareness on ocean acidification disseminated via social media platforms, such as Facebook and Instagram. Social media enables users to compose their own messages and share information across different platforms, which helps disseminate the core message of social advocacy.

Keywords: Digital storytelling, visualization, ocean acidification, social advocacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900
3 Growth Performance and Yield of the Edible White Rot Fungus (Pleurotus ostreatus) on Different Agro Waste Materials

Authors: Terna T. Paul, Iloechuba P. Ngozika

Abstract:

A study was carried out to evaluate the growth and yield performance of Pleurotus ostreatus spawn on different organic substrates in Lafia, Nasarawa State, Nigeria. 50 g each of four different substrates namely; corncobs, rice straw, sugarcane bagasse and sawdust sourced locally from farmlands and processing sites, were amended with 2% calcium carbonate and calcium sulphide and sterilized using three sterilization methods namely; hot water, steam, and lime. Five grams of P. ostreatus spawn were inoculated unto treated substrates, incubated in the dark for 16 days and in light for 19 days at 25 0C for the commencement of pinhead and fruit body formations respectively. Growth and yield parameters such as days to full colonization, days to pinhead formation and days to fruit body formation were recorded. Cap diameter and fresh weight of mature mushrooms were also measured for a total count of four flushes. P. ostreatus spawn grown on sugarcane bagasse recorded the highest mean cap diameter (4.69 cm), highest mean fresh weight (34.68 g), highest biological efficiency (69.37%) and highest production rate (2.83 g per day). Spawn grown on rice straw recorded the least number of days to full substrate colonization (11.00). Spawn grown on corn cobs recorded the least mean number of days to pin head (18.75) and fruiting body formations (20.25). There were no significant differences (P ≤ 0.05) among the evaluated substrates with respect to growth and yield performance of P. ostreatus. Substrates sterilized with hot water supported the highest mean cap diameter (5.64 cm), highest biological efficiency (87.04%) and highest production rate (3.43 g per day) of P. ostreatus. Significant differences (P ≤ 0.05) were observed in cap diameter, fresh weight, biological efficiency and production rates among the evaluated sterilization methods. Hot water sterilization of sugarcane bagasse could be adopted for enhanced yield of oyster mushrooms, especially among indigent farming communities in Nigeria and beyond.

Keywords: Agro wastes, growth, Pleurotus ostreatus, sterilization methods, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
2 Assessment of Groundwater Quality in Karakulam Grama Panchayath in Thiruvananthapuram, Kerala State, South India

Authors: D. S. Jaya, G. P. Deepthi

Abstract:

Groundwater is vital to the livelihoods and health of the majority of the people, since it provides almost the entire water resource for domestic, agricultural and industrial uses. Groundwater quality comprises the physical, chemical and bacteriological qualities. The present investigation was carried out to determine the physicochemical and bacteriological quality of the ground water sources in the residential areas of Karakulam Grama Panchayath in Thiruvananthapuram district, Kerala state in India. Karakulam is located in the eastern suburbs of Thiruvananthapuram city. The major drinking water source of the residents in the study area is wells. The present study aims to assess the portability and irrigational suitability of groundwater in the study area. The water samples were collected from randomly selected dug wells and bore wells in the study area during post monsoon and pre monsoon seasons of the year 2014 after a preliminary field survey. The physical, chemical and bacteriological parameters of the water samples were analyzed following standard procedures. The concentration of heavy metals (Cd, Pb and Mn) in the acid digested water samples were determined by using an Atomic Absorption Spectrophotometer. The results showed that the pH of well water samples ranged from acidic to alkaline level. In majority of well water samples (>54 %) the iron and magnesium content were found high in both the seasons studied, and the values were above the permissible limits of WHO drinking water quality standards. Bacteriological analyses showed that 63% of the wells were contaminated with total coliforms in both the seasons studied. Irrigational suitability of groundwater was assessed by determining the chemical indices like Sodium Percentage (%Na), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), and the results indicate that the well water in the study area are good for irrigation purposes. Therefore, the study reveals the degradation of drinking water quality groundwater sources in Karakulam Grama Panchayath in Thiruvananthapuram District, Keralain terms of its chemical and bacteriological characteristics, and is not potable without proper treatment. In the study, more than 1/3rdof the well water samples tested were positive for total coliforms, and the bacterial contamination may pose threat to public health. The study recommends the need for periodic well water quality monitoring in the study area and to conduct awareness programs among the residents.

Keywords: Bacteriological, groundwater, irrigational suitability, physicochemical, potability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2840
1 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: A. Belhaj Mohamed, M. Saidi, N. Boucherb, N. Ourtani, A. Soltani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GCMS), capillary GC with flame-ionization detection, Compound Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (- 198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: Biomarkers, oil and gas seeps, organic geochemistry, source rock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3380