Search results for: Minimal polynomial degree.
1326 Factoring a Polynomial with Multiple-Roots
Authors: Feng Cheng Chang
Abstract:
A given polynomial, possibly with multiple roots, is factored into several lower-degree distinct-root polynomials with natural-order-integer powers. All the roots, including multiplicities, of the original polynomial may be obtained by solving these lowerdegree distinct-root polynomials, instead of the original high-degree multiple-root polynomial directly. The approach requires polynomial Greatest Common Divisor (GCD) computation. The very simple and effective process, “Monic polynomial subtractions" converted trickily from “Longhand polynomial divisions" of Euclidean algorithm is employed. It requires only simple elementary arithmetic operations without any advanced mathematics. Amazingly, the derived routine gives the expected results for the test polynomials of very high degree, such as p( x) =(x+1)1000.Keywords: Polynomial roots, greatest common divisor, Longhand polynomial division, Euclidean GCD Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761325 Fuzzy Fingerprint Vault using Multiple Polynomials
Authors: Daesung Moon, Woo-Yong Choi, Kiyoung Moon
Abstract:
Fuzzy fingerprint vault is a recently developed cryptographic construct based on the polynomial reconstruction problem to secure critical data with the fingerprint data. However, the previous researches are not applicable to the fingerprint having a few minutiae since they use a fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use an adaptive degree of the polynomial considering the number of minutiae extracted from each user. Also, we apply multiple polynomials to avoid the possible degradation of the security of a simple solution(i.e., using a low-degree polynomial). Based on the experimental results, our method can make the possible attack difficult 2192 times more than using a low-degree polynomial as well as verify the users having a few minutiae.
Keywords: Fuzzy vault, fingerprint recognition multiple polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15461324 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series
Authors: Wiem Gadri
Abstract:
This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral characteristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.
Keywords: Pisot numbers, Salem numbers, Formal power series, Minimal polynomial degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471323 Transformations between Bivariate Polynomial Bases
Authors: Dimitris Varsamis, Nicholas Karampetakis
Abstract:
It is well known, that any interpolating polynomial p (x, y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y, has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of this short note is twofold : a) to present transformations between the coordinates of the polynomial p (x, y) in the aforementioned basis and b) to present transformations between these bases.
Keywords: Bivariate interpolation polynomial, Polynomial basis, Transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22821322 Discrete Polynomial Moments and Savitzky-Golay Smoothing
Authors: Paul O'Leary, Matthew Harker
Abstract:
This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.Keywords: Gram polynomials, Savitzky-Golay Smoothing, Discrete Polynomial Moments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27891321 Cryptography over Sextic Extension with Cubic Subfield
Authors: A. Chillali, M. Sahmoudi
Abstract:
In this paper, we will give a cryptographic application over the integral closure O_Lof sextic extension L, namely L is an extension of Q of degree 6 in the form Q(a,b), which is a rational quadratic and monogenic extension over a pure monogenic cubic subfield K generated by a who is a root of monic irreducible polynomial of degree 2 andb is a root of irreducible polynomial of degree 3.
Keywords: Integral bases, Cryptography, Discrete logarithm problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411320 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree
Authors: S. A. Gayvoronsky, T. A. Ezangina
Abstract:
The robust control system objects with interval- undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.
Keywords: An interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15931319 Generalized Chebyshev Collocation Method
Authors: Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.
Keywords: Generalized Chebyshev Collocation method, Generalized Chebyshev Polynomial, Initial value problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26391318 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning
Authors: Azita Tajaddini, Ramleh Shamsi
Abstract:
In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8741317 On the Multiplicity of Discriminants of Relative Quadratic Extensions of Quintic Fields
Authors: Schehrazad Selmane
Abstract:
According to Hermite there exists only a finite number of number fields having a given degree, and a given value of the discriminant, nevertheless this number is not known generally. The determination of a maximum number of number fields of degree 10 having a given discriminant that contain a subfield of degree 5 having a fixed class number, narrow class number and Galois group is the purpose of this work. The constructed lists of the first coincidences of 52 (resp. 50, 40, 48, 22, 6) nonisomorphic number fields with same discriminant of degree 10 of signature (6,2) (resp. (4,3), (8,1), (2,4), (0,5), (10,0)) containing a quintic field. For each field in the lists, we indicate its discriminant, the discriminant of its subfield, a relative polynomial generating the field over its quintic field and its relative discriminant, the corresponding polynomial over Q and its Galois closure are presented with concluding remarks.
Keywords: Discriminant, nonisomorphic fields, quintic fields, relative quadratic extensions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14621316 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation
Authors: Seung-Won Jung, Hye-Soo Kim, Le Thanh Ha, Seung-Jin Baek, Sung-Jea Ko
Abstract:
In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.Keywords: Deinterlacing, polynomial interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13811315 Designing FIR Filters with Polynomial Approach
Authors: Sunil Bhooshan, Vinay Kumar
Abstract:
This paper discusses a method for designing the Finite Impulse Response (FIR) filters based on polynomial approach.Keywords: FIR filter, Polynomial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19251314 Blow up in Polynomial Differential Equations
Authors: Rudolf Csikja, Janos Toth
Abstract:
Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.
Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21811313 Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection
Authors: Serge B. Provost, Min Jiang
Abstract:
The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.Keywords: kernel density estimation, orthogonal polynomials, moment-based methodologies, density approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23691312 On Generalized New Class of Matrix Polynomial Set
Authors: Ghazi S. Kahmmash
Abstract:
New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.
Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12521311 Quasi-Permutation Representations for the Group SL(2, q) when Extended by a Certain Group of Order Two
Authors: M. Ghorbany
Abstract:
A square matrix over the complex field with non- negative integral trace is called a quasi-permutation matrix. For a finite group G the minimal degree of a faithful representation of G by quasi-permutation matrices over the rationals and the complex numbers are denoted by q(G) and c(G) respectively. Finally r (G) denotes the minimal degree of a faithful rational valued complex character of C. The purpose of this paper is to calculate q(G), c(G) and r(G) for the group S L(2, q) when extended by a certain group of order two.
Keywords: General linear group, Quasi-permutation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10791310 Evolutionary Design of Polynomial Controller
Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka
Abstract:
In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21561309 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm
Authors: Suparman
Abstract:
Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.
Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16681308 Computable Function Representations Using Effective Chebyshev Polynomial
Authors: Mohammed A. Abutheraa, David Lester
Abstract:
We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.
Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30861307 Optimal Image Representation for Linear Canonical Transform Multiplexing
Authors: Navdeep Goel, Salvador Gabarda
Abstract:
Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21291306 Implementation and Analysis of Elliptic Curve Cryptosystems over Polynomial basis and ONB
Authors: Yong-Je Choi, Moo-Seop Kim, Hang-Rok Lee, Ho-Won Kim
Abstract:
Polynomial bases and normal bases are both used for elliptic curve cryptosystems, but field arithmetic operations such as multiplication, inversion and doubling for each basis are implemented by different methods. In general, it is said that normal bases, especially optimal normal bases (ONB) which are special cases on normal bases, are efficient for the implementation in hardware in comparison with polynomial bases. However there seems to be more examined by implementing and analyzing these systems under similar condition. In this paper, we designed field arithmetic operators for each basis over GF(2233), which field has a polynomial basis recommended by SEC2 and a type-II ONB both, and analyzed these implementation results. And, in addition, we predicted the efficiency of two elliptic curve cryptosystems using these field arithmetic operators.Keywords: Elliptic Curve Cryptosystem, Crypto Algorithm, Polynomial Basis, Optimal Normal Basis, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20871305 A New Approach to Polynomial Neural Networks based on Genetic Algorithm
Authors: S. Farzi
Abstract:
Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.Keywords: GMDH, GPNN, GA, PNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20931304 A Deterministic Polynomial-time Algorithm for the Clique Problem and the Equality of P and NP Complexity Classes
Authors: Zohreh O. Akbari
Abstract:
In this paper a deterministic polynomial-time algorithm is presented for the Clique problem. The case is considered as the problem of omitting the minimum number of vertices from the input graph so that none of the zeroes on the graph-s adjacency matrix (except the main diagonal entries) would remain on the adjacency matrix of the resulting subgraph. The existence of a deterministic polynomial-time algorithm for the Clique problem, as an NP-complete problem will prove the equality of P and NP complexity classes.Keywords: Clique problem, Deterministic Polynomial-time Algorithm, Equality of P and NP Complexity Classes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18091303 Numerical Inverse Laplace Transform Using Chebyshev Polynomial
Authors: Vinod Mishra, Dimple Rani
Abstract:
In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.
Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14021302 Stress Solitary Waves Generated by a Second-Order Polynomial Constitutive Equation
Authors: Tsun-Hui Huang, Shyue-Cheng Yang, Chiou-Fen Shieh
Abstract:
In this paper, a nonlinear constitutive law and a curve fitting, two relationships between the stress-strain and the shear stress-strain for sandstone material were used to obtain a second-order polynomial constitutive equation. Based on the established polynomial constitutive equations and Newton’s second law, a mathematical model of the non-homogeneous nonlinear wave equation under an external pressure was derived. The external pressure can be assumed as an impulse function to simulate a real earthquake source. A displacement response under nonlinear two-dimensional wave equation was determined by a numerical method and computer-aided software. The results show that a suit pressure in the sandstone generates the phenomenon of stress solitary waves.
Keywords: Polynomial constitutive equation, solitary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651301 On CR-Structure and F-Structure Satisfying Polynomial Equation
Authors: Manisha Kankarej
Abstract:
The purpose of this paper is to show a relation between CR structure and F-structure satisfying polynomial equation. In this paper, we have checked the significance of CR structure and F-structure on Integrability conditions and Nijenhuis tensor. It was proved that all the properties of Integrability conditions and Nijenhuis tensor are satisfied by CR structures and F-structure satisfying polynomial equation.Keywords: CR-submainfolds, CR-structure, Integrability condition & Nijenhuis tensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7931300 New Laguerre-s Type Method for Solving of a Polynomial Equations Systems
Authors: Oleksandr Poliakov, Yevgen Pashkov, Marina Kolesova, Olena Chepenyuk, Mykhaylo Kalinin, Vadym Kramar
Abstract:
In this paper we present a substantiation of a new Laguerre-s type iterative method for solving of a nonlinear polynomial equations systems with real coefficients. The problems of its implementation, including relating to the structural choice of initial approximations, were considered. Test examples demonstrate the effectiveness of the method at the solving of many practical problems solving.Keywords: Iterative method, Laguerre's method, Newton's method, polynomial equation, system of equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14891299 Particle Filter Applied to Noisy Synchronization in Polynomial Chaotic Maps
Authors: Moussa Yahia, Pascal Acco, Malek Benslama
Abstract:
Polynomial maps offer analytical properties used to obtain better performances in the scope of chaos synchronization under noisy channels. This paper presents a new method to simplify equations of the Exact Polynomial Kalman Filter (ExPKF) given in [1]. This faster algorithm is compared to other estimators showing that performances of all considered observers vanish rapidly with the channel noise making application of chaos synchronization intractable. Simulation of ExPKF shows that saturation drawn on the emitter to keep it stable impacts badly performances for low channel noise. Then we propose a particle filter that outperforms all other Kalman structured observers in the case of noisy channels.
Keywords: Chaos synchronization, Saturation, Fast ExPKF, Particlefilter, Polynomial maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401298 An Interval Type-2 Dual Fuzzy Polynomial Equations and Ranking Method of Fuzzy Numbers
Authors: Nurhakimah Ab. Rahman, Lazim Abdullah
Abstract:
According to fuzzy arithmetic, dual fuzzy polynomials cannot be replaced by fuzzy polynomials. Hence, the concept of ranking method is used to find real roots of dual fuzzy polynomial equations. Therefore, in this study we want to propose an interval type-2 dual fuzzy polynomial equation (IT2 DFPE). Then, the concept of ranking method also is used to find real roots of IT2 DFPE (if exists). We transform IT2 DFPE to system of crisp IT2 DFPE. This transformation performed with ranking method of fuzzy numbers based on three parameters namely value, ambiguity and fuzziness. At the end, we illustrate our approach by two numerical examples.
Keywords: Dual fuzzy polynomial equations, Interval type-2, Ranking method, Value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17641297 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.
Keywords: Design of experiments, regression analysis, SI Engine, statistical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252