Search results for: compression strength
1463 Behaviour of Masonry Wall Constructed using Interlocking Soil Cement Bricks
Authors: Ahmad Z., Othman S. Z., Md Yunus B., Mohamed A.
Abstract:
According to the masonry standard the compressive strength is basically dependent on factors such as the mortar strength and the relative values of unit and mortar strength. However interlocking brick has none or less use of mortar. Therefore there is a need to investigate the behavior of masonry walls using interlocking bricks. In this study a series of tests have been conducted; physical properties and compressive strength of brick units and masonry walls were constructed from interlocking bricks and tested under constant vertical load at different eccentricities. The purpose of the experimental investigations is to obtain the force displacement curves, analyze the behavior of masonry walls. The results showed that the brick is categorized as common brick (BS 3921:1985) and severe weathering grade (ASTM C62). The maximum compressive stress of interlocking brick wall is 3.6 N/mm2 and fulfilled the requirement of standard for residential building.Keywords: Interlocking brick, soil-cement brick, masonry wall, compressive strength, eccentricities
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62071462 Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete
Authors: Fareed Ahmed Memon, Muhd Fadhil Nuruddin, Samuel Demie, Nasir Shafiq
Abstract:
This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the compressive strength of self-compacting geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time and curing temperature in the range of 24-96 hours and 60-90°C respectively. The essential workability properties of freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and resistance to segregation as specified by guidelines on Self-compacting Concrete by EFNARC were satisfied. Test results indicate that longer curing time and curing the concrete specimens at higher temperatures result in higher compressive strength. There was increase in compressive strength with the increase in curing time; however increase in compressive strength after 48 hours was not significant. Concrete specimens cured at 70°C produced the highest compressive strength as compared to specimens cured at 60°C, 80°C and 90°C.Keywords: Geopolymer Concrete, Self-compacting Geopolymerconcrete, Compressive strength, Curing time, Curing temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57531461 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy
Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh
Abstract:
Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.
TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.
Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40841460 Thermal Performance and Environmental Assessment of Evaporative Cooling Systems: Case of Mina Valley, Saudi Arabia
Authors: A. Alharbi, R. Boukhanouf, T. Habeebullah, H. Ibrahim
Abstract:
This paper presents a detailed description of evaporative cooling systems used for space cooling in Mina Valley, Saudi Arabia. The thermal performance and environmental impact of the evaporative coolers were evaluated. It was found that the evaporative cooling systems used for space cooling in pilgrims’ accommodations and in the train stations could reduce energy consumption by as much as 75% and cut carbon dioxide emission by 78% compared to traditional vapour compression systems.
Keywords: Evaporative cooling, vapour compression, electricity consumption and CO2 emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30421459 A Cell-centered Diffusion Finite Volume Scheme and it's Application to Magnetic Flux Compression Generators
Authors: Qiang Zhao, Yina Shi, Guangwei Yuan, Zhiwei Dong
Abstract:
A cell-centered finite volume scheme for discretizing diffusion operators on distorted quadrilateral meshes has recently been designed and added to APMFCG to enable that code to be used as a tool for studying explosive magnetic flux compression generators. This paper describes this scheme. Comparisons with analytic results for 2-D test cases are presented, as well as 2-D results from a test of a "realistic" generator configuration.
Keywords: Cell-centered FVM, distorted meshes, diffusion scheme, MFCG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13641458 The Role of the Studs Configuration in the Structural Response of Composite Bridges
Authors: M. M. Mohammadi Dehnavi, A. De Angelis, M. R. Pecce
Abstract:
This paper deals with the role of studs in structural response for steel-concrete composite beams. A tri-linear slip-shear strength law is assumed according to literature and codes provisions for developing a finite element (FE) model of a case study of a composite deck. The variation of the strength and ductility of the connection is implemented in the numerical model carrying out nonlinear analyses. The results confirm the utility of the model to evaluate the importance of the studs capacity, ductility and strength, on the global response (ductility and strength) of the structures but also to analyse the trend of slip and shear at interface along the beams.
Keywords: Shear Load, slip, steel-concrete composite bridge, stud connectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3921457 Compressive Strength and Interfacial Transition Zone Characteristic of Geopolymer Concrete with Different Cast In-Situ Curing Conditions
Authors: Muhd Fadhil Nuruddin, Andri Kusbiantoro, Sobia Qazi, Nasir Shafiq
Abstract:
The compressive strength development through polymerization process of alkaline solution and fly ash blended with Microwave Incinerated Rice Husk Ash (MIRHA) is described in this paper. Three curing conditions, which are hot gunny curing, ambient curing, and external humidity curing are investigated to obtain the suitable curing condition for cast in situ provision. Fly ash was blended with MIRHA at 3%, 5%, and 7% to identify the effect of blended mixes to the compressive strength and microstructure properties of geopolymer concrete. Compressive strength results indicated an improvement in the strength development with external humidity curing concrete samples compared to hot gunny curing and ambient curing. Blended mixes also presented better performance than control mixes. Improvement of interfacial transition zone (ITZ) and micro structure in external humidity concrete samples were also identified compared to hot gunny and ambient curing.Keywords: Compressive Strength, alkaline solution, fly ash, geopolymer, ITZ, MIRHA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28441456 The Effects of Eight-Week Pilates Training on Limits of Stability and Abdominal Muscle Strength in Young Dancers
Authors: Yen-Ting Wang, Pao-Cheng Lin, Chen-Fu Huang, Lung-Ching Liang, Alex J.Y. Lee
Abstract:
This study examined the effects of 8-week Pilates training program on limits of stability (LOS) and abdominal muscle strength in young dancers. Twenty-four female volunteered and randomly assigned as experimental group (EG) or control group (CG). All subjects received the same dance lessons but the EG underwent an extra Pilates mat exercises for 40 minutes, three times a week, for 8 weeks. LOS was evaluated by the Biodex Balance System and the abdominal strength was measured by 30/60 seconds sit-ups test. One factor ANCOVA was used to examine the differences between groups after training. The results showed that the overall LOS scores at levels 2/8 and the 30/60 seconds sit-ups for the EG group pre- and post-training were changed from 22/38 % to 31/51 % and 20/33 times to 24/42 times, respectively. The study demonstrated that 8-week Pilates training can improve the LOS performance and abdominal strength in young dancers.
Keywords: Balance, Core Strength Exercise Training, and Posture Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311455 Research into Concrete Blocks with Waste Glass
Authors: P. Turgut, E. S. Yahlizade
Abstract:
In this paper, a parametric experimental study for producing paving blocks using fine and coarse waste glass is presented. Some of the physical and mechanical properties of paving blocks having various levels of fine glass (FG) and coarse glass (CG) replacements with fine aggregate (FA) are investigated. The test results show that the replacement of FG by FA at level of 20% by weight has a significant effect on the compressive strength, flexural strength, splitting tensile strength and abrasion resistance of the paving blocks as compared with the control sample because of puzzolanic nature of FG. The compressive strength, flexural strength, splitting tensile strength and abrasion resistance of the paving block samples in the FG replacement level of 20% are 69%, 90%, 47% and 15 % higher as compared with the control sample respectively. It is reported in the earlier works the replacement of FG by FA at level of 20% by weight suppress the alkali-silica reaction (ASR) in the concrete. The test results show that the FG at level of 20% has a potential to be used in the production of paving blocks. The beneficial effect on these properties of CG replacement with FA is little as compared with FG.
Keywords: Concrete paving , Properties, Waste glass.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52711454 Effect of Mass on Bus Superstructure Strength Having Rollover Crash
Authors: Mustafa Bin Yusof, Mohammad Amirul Affiz Bin Afripin
Abstract:
Safety of bus journey is a fundamental concern. Risk of injuries and fatalities is severe when bus superstructure fails during rollover accident. Adequate design and sufficient strength of bus superstructure can reduce the number of injuries and fatalities. This paper deals with structural analysis of bus superstructure undergoes rollover event. Several value of mass will be varied in multiple simulations. The purpose of this work is to analyze structural response of bus superstructure in terms of deformation, stress and strain under several loading and constraining conditions. A complete bus superstructure with forty four passenger-s capability was developed using finite element analysis software. Simulations have been conducted to observe the effect of total mass of bus on the strength of superstructure. These simulations are following United Nation Economic Commission of Europe regulation 66 which focuses on strength of large vehicle superstructure. Validation process had been done using simple box model experiment and results obtained are comparing with simulation results. Inputs data from validation process had been used in full scale simulation. Analyses suggested that, the failure of bus superstructure during rollover situation is basically dependent on the total mass of bus and on the strength of bus superstructure.
Keywords: Bus, rollover, superstructure strength, UNECE regulation 66.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25561453 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio
Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog
Abstract:
Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.Keywords: Shear strength, over-consolidation ratio, vane shear test, clayey soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21451452 Influence of Ambiguity Cluster on Quality Improvement in Image Compression
Authors: Safaa Al-Ali, Ahmad Shahin, Fadi Chakik
Abstract:
Image coding based on clustering provides immediate access to targeted features of interest in a high quality decoded image. This approach is useful for intelligent devices, as well as for multimedia content-based description standards. The result of image clustering cannot be precise in some positions especially on pixels with edge information which produce ambiguity among the clusters. Even with a good enhancement operator based on PDE, the quality of the decoded image will highly depend on the clustering process. In this paper, we introduce an ambiguity cluster in image coding to represent pixels with vagueness properties. The presence of such cluster allows preserving some details inherent to edges as well for uncertain pixels. It will also be very useful during the decoding phase in which an anisotropic diffusion operator, such as Perona-Malik, enhances the quality of the restored image. This work also offers a comparative study to demonstrate the effectiveness of a fuzzy clustering technique in detecting the ambiguity cluster without losing lot of the essential image information. Several experiments have been carried out to demonstrate the usefulness of ambiguity concept in image compression. The coding results and the performance of the proposed algorithms are discussed in terms of the peak signal-tonoise ratio and the quantity of ambiguous pixels.Keywords: Ambiguity Cluster, Anisotropic Diffusion, Fuzzy Clustering, Image Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15691451 Development of the Maturity Sensor Prototype and Method of Its Placement in the Structure
Authors: Ye. B. Utepov, A. S. Tulebekova, A. B. Kazkeyev
Abstract:
Maturity sensors are used to determine concrete strength by the non-destructive method. The method of placement of the maturity sensors determines their number required for a certain frame of a monolithic building. This paper proposes a cheap prototype of an embedded wireless sensor for monitoring concrete structures, as well as an alternative strategy for placing sensors based on the transitional boundaries of the temperature distribution of concrete curing, which were determined by building a heat map of the temperature distribution, where unknown values are calculated by the method of inverse distance weighing. The developed prototype can simultaneously measure temperature and relative humidity over a smartphone-controlled time interval. It implements a maturity method to assess the in-situ strength of concrete, which is considered an alternative to the traditional shock impulse and compression testing method used in Kazakhstan. The prototype was tested in laboratory and field conditions. The tests were aimed at studying the effect of internal and external temperature and relative humidity on concrete's strength gain. Based on an experimentally poured concrete slab with randomly integrated maturity sensors, it the transition boundaries form elliptical forms were determined. Temperature distribution over the largest diameter of the ellipses was plotted, resulting in correct and inverted parabolas. As a result, the distance between the closest opposite crossing points of the parabolas is accepted as the maximum permissible step for setting the maturity sensors. The proposed placement strategy can be applied to sensors that measure various continuous phenomena such as relative humidity. Prototype testing has also revealed Bluetooth inconvenience due to weak signal and inability to access multiple prototypes simultaneously. For this reason, further prototype upgrades are planned in the future work.
Keywords: Heat map, placement strategy, temperature and relative humidity, wireless embedded sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651450 A Complexity-Based Approach in Image Compression using Neural Networks
Authors: Hadi Veisi, Mansour Jamzad
Abstract:
In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22221449 Effects of the Sintering Process on Properties of Triaxial Electrical Porcelain from Ugandan Ceramic Minerals
Authors: Peter W. Olupot, Stefan Jonsson, Joseph K. Byaruhanga
Abstract:
Porcelain specimens were fired at 6C/min to 1250C (dwell time 0.5-3h) and cooled at 6C/min to room temperature. Additionally, three different slower firing/cooling cycles were tried. Sintering profile and effects on MOR, crystalline phase content and morphology were investigated using dilatometry, 4-point bending strength, XRD and FEG-SEM respectively. Industrial-sized specimens prepared using the promising cycle were tested basing on the ANSI standards. Increasing dwell time from 1h to 3h at peak temperature of 1250C resulted in neither a significant effect on the quartz and mullite content nor MOR. Reducing the firing/cooling rate to below 6C/min, for peak temperature of 1250C (dwell time of 1h) does not result in improvement of strength of porcelain. The industrial sized specimen exhibited flashover voltages of 20.3kV (dry) and 9.3kV (wet) respectively, transverse strength of 12.5kN and bulk density of 2.27g/cm3, which are satisfactory. There was however dye penetration during porosity test. KeywordsDwell time, Microstructure, Porcelain, Strength.Keywords: Dwell time, Microstructure, Porcelain, Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29901448 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation
Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei
Abstract:
Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.
Keywords: Hammershock, IDDES, S-bend, surge signature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9051447 High Volume Fly Ash Concrete for Paver Blocks
Authors: Som Nath Sachdeva, Vanita Aggarwal, S. M. Gupta
Abstract:
Use of concrete paver blocks is becoming increasingly popular. They are used for paving of approaches, paths and parking areas including their application in pre-engineered buildings and pavements. This paper discusses the results of an experimental study conducted on Fly Ash Concrete with the aim to report its suitability for concrete paver blocks. In this study, the effect of varying proportions of fly ash, 20% to 40%, on compressive strength and flexural strength of concrete has been evaluated. The mix designs studied are M-30, M-35, M-40 and M-50. It is observed that all the fly ash based mixes are able to achieve the required compressive and flexural strengths. In comparison to control mixes, the compressive and flexural strengths of the fly ash based mixes are found to be slightly less at 7-days and 28 days and a little more at 90 days.
Keywords: Compressive strength, flexural strength, high volume fly ash concrete, paver blocks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48701446 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests
Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani
Abstract:
Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.
Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12801445 Exergy Analysis of Vapour Compression Refrigeration System Using R507A, R134a, R114, R22 and R717
Authors: Ali Dinarveis
Abstract:
This paper compares the energy and exergy efficiency of a vapour compression refrigeration system using refrigerants of different groups. In this study, five different refrigerants including R507A, R134a, R114, R22 and R717 have been studied. EES Program is used to solve the thermodynamic equations. The results of this analysis are shown graphically. Based on the results, energy and exergy efficiencies for R717 are higher than the other refrigerants. Also, the energy and exergy efficiencies will be decreased with increasing the condensing temperature and decreasing the evaporating temperature.Keywords: Energy, exergy, refrigeration, temperature, thermodynamic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8621444 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites
Authors: Pasquale Verde, Giuseppe Lamanna
Abstract:
A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.
Keywords: Fatigue life, strength, composites, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19891443 Effect of Stirrup Corrosion on Concrete Confinement Strength
Authors: Mucip Tapan, Ali Ozvan, Ismail Akkaya
Abstract:
This study investigated how the concrete confinement strength and axial load carrying capacity of reinforced concrete columns are affected by corrosion damage to the stirrups. A total of small-scale 12 test specimens were cast for evaluating the effect of stirrup corrosion on confinement strength of concrete. The results of this study show that the stirrup corrosion alone dramatically decreases the axial load carrying capacity of corroded reinforced concrete columns. Recommendations were presented for improved inspection practices which will allow estimating concrete confinement strength of corrosion-damaged reinforced concrete bridge columns.
Keywords: Bridge, column, concrete, corrosion, inspection, stirrup reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731442 Behavior of Optical Fiber Aged in CTAC Solutions
Authors: R. El Abdi, A. D. Rujinski, R. M. Boumbimba, M. Poulain
Abstract:
The evolution of silica optical fiber strength aged in cetyltrimethylammonium chloride solution (CTAC) has been investigated. If the solution containing surfactants presents appreciable changes in physical and chemical properties at the critical micelle concentration (CMC), a non negligible mechanical behavior fiber change is observed for silica fiber aged in cationic surfactants as CTAC which can lead to optical fiber reliability questioning. The purpose of this work is to study the mechanical behavior of silica coated and naked optical fibers in contact with CTAC solution at different concentrations. Result analysis proves that the immersion in CTAC drastically decreases the fiber strength and specially near the CMC point. Beyond CMC point, a small increase of fiber strength is analyzed and commented.
Keywords: Optical fiber, CMC point, CTAC surfactant, fiber strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19181441 Inference of Stress-Strength Model for a Lomax Distribution
Abstract:
In this paper, the estimation of the stress-strength parameter R = P(Y < X), when X and Y are independent and both are Lomax distributions with the common scale parameters but different shape parameters is studied. The maximum likelihood estimator of R is derived. Assuming that the common scale parameter is known, the bayes estimator and exact confidence interval of R are discussed. Simulation study to investigate performance of the different proposed methods has been carried out.Keywords: Stress-Strength model; maximum likelihoodestimator; Bayes estimator; Lomax distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931440 REDUCER – An Architectural Design Pattern for Reducing Large and Noisy Data Sets
Authors: Apkar Salatian
Abstract:
To relieve the burden of reasoning on a point to point basis, in many domains there is a need to reduce large and noisy data sets into trends for qualitative reasoning. In this paper we propose and describe a new architectural design pattern called REDUCER for reducing large and noisy data sets that can be tailored for particular situations. REDUCER consists of 2 consecutive processes: Filter which takes the original data and removes outliers, inconsistencies or noise; and Compression which takes the filtered data and derives trends in the data. In this seminal article we also show how REDUCER has successfully been applied to 3 different case studies.
Keywords: Design Pattern, filtering, compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901439 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel
Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung
Abstract:
Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.
Keywords: Buckling resistance, GFRP infill panel, stacking sequence, temperature dependent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001438 Durability of Lime Treated Soil Reinforced by Natural Fiber under Bending Force
Authors: Vivi Anggraini, Afshin Asadi, Bujang B. K. Huat
Abstract:
Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results that the coir fibers were effective in improving the flexural strength and Young’s modulus of all soils examined and ductility after peak strength for reinforced marine clay soil treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimens’ demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths.Keywords: Flexural strength, Durabilty, Lime, Coir Fibers, Bending force, Ductility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23901437 Development of Elasticity Modulus in Time for Concrete Containing Mineral Admixtures
Authors: K. Krizova, R. Hela, S. Keprdova
Abstract:
This paper introduces selected composition of conventional concretes and their resulting mechanical properties at different ages of concrete. With respect to utilization of mineral admixtures, fly ash and ground limestone agents were included in addition to pure Portland binder. The proposal of concrete composition remained constant in basic concrete components such as cement and representation of individual contents of aggregate fractions; weight dosing of admixtures and water dose were only modified. Water dose was chosen in order to achieve identical consistence by settlement for all proposals of concrete composition. Mechanical properties monitored include compression strength, static and dynamic modulus of concrete elasticity, at ages of 7, 28, 90, and 180 days.
Keywords: Cement, mineral admixtures, microstructure of concrete, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20391436 Features of Rail Strength Analysis in Conditions of Increased Force Loading
Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze
Abstract:
In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure.
As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.
Keywords: Axial loading, rail force loading, rail structure, rail strength analysis, rail track stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19401435 Strength and Permeability of the Granular Pavement Materials Treated with Polyacrylamide Based Additive
Authors: Romel N. Georgees, Rayya A Hassan, Robert P. Evans, Piratheepan Jegatheesan
Abstract:
Among other traditional and non-traditional additives, polymers have shown an efficient performance in the field and improved sustainability. Polyacrylamide (PAM) is one such additive that has demonstrated many advantages including a reduction in permeability, an increase in durability and the provision of strength characteristics. However, information about its effect on the improved geotechnical characteristics is very limited to the field performance monitoring. Therefore, a laboratory investigation was carried out to examine the basic and engineering behaviors of three types of soils treated with a PAM additive. The results showed an increase in dry density and unconfined compressive strength for all the soils. The results further demonstrated an increase in unsoaked CBR and a reduction in permeability for all stabilized samples.Keywords: CBR, Hydraulic conductivity, PAM, Unconfined compressive strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19771434 The Improvement of 28-day Compressive Strength of Self Compacting Concrete Made by Different Percentages of Recycled Concrete Aggregates using Nano-Silica
Authors: S. Salkhordeh, P. Golbazi, H. Amini
Abstract:
In this study two series of self compacting concrete mixtures were prepared with 100% coarse recycled concrete aggregates and different percentages of 0%, 20%, 40%, 60%, 80% and 100% fine recycled concrete aggregates. In series I and II the water to binder ratios were 0.50 and 0.45, respectively. The cement content was kept 350 3 m kg for those mixtures that don't have any Nano-Silica. To improve the compressive strength of samples, Nano- Silica replaced with 10% of cement weight in concrete mixtures. By doing the tests, the results showed that, adding Nano-silica to the samples with less percentage of fine recycled concrete aggregates, lead to more increase on the compressive strength.Keywords: Compressive Strength, Nano-Silica, RecycledConcrete Aggregates, Self Compacting Concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951