Search results for: Genetic algorithm optimization
2186 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm
Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou
Abstract:
Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and Weight on Bit (WOB) used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036 m3/h and -2.374 m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. The best combination of funnel viscosity, final shear force and drilling time is obtained through quantitative calculation. The minimum loss rate of lost circulation wells in Shunbei area is 10 m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.
Keywords: Drilling fluid, loss rate, main controlling factors, Unmanned Intervention Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4022185 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology
Authors: Joseph C. Chen, Venkata Karthik Jakka
Abstract:
The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.
Keywords: Injection molding processes, Taguchi Parameter Design, tensile strength, shrinkage test, high-density polyethylene, HDPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8402184 Optimal Current Control of Externally Excited Synchronous Machines in Automotive Traction Drive Applications
Authors: Oliver Haala, Bernhard Wagner, Maximilian Hofmann, Martin Marz
Abstract:
The excellent suitability of the externally excited synchronous machine (EESM) in automotive traction drive applications is justified by its high efficiency over the whole operation range and the high availability of materials. Usually, maximum efficiency is obtained by modelling each single loss and minimizing the sum of all losses. As a result, the quality of the optimization highly depends on the precision of the model. Moreover, it requires accurate knowledge of the saturation dependent machine inductances. Therefore, the present contribution proposes a method to minimize the overall losses of a salient pole EESM and its inverter in steady state operation based on measurement data only. Since this method does not require any manufacturer data, it is well suited for an automated measurement data evaluation and inverter parametrization. The field oriented control (FOC) of an EESM provides three current components resp. three degrees of freedom (DOF). An analytic minimization of the copper losses in the stator and the rotor (assuming constant inductances) is performed and serves as a first approximation of how to choose the optimal current reference values. After a numeric offline minimization of the overall losses based on measurement data the results are compared to a control strategy that satisfies cos (ϕ) = 1.
Keywords: Current control, efficiency, externally excited synchronous machine, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43962183 Efficient Semi-Systolic Finite Field Multiplier Using Redundant Basis
Authors: Hyun-Ho Lee, Kee-Won Kim
Abstract:
The arithmetic operations over GF(2m) have been extensively used in error correcting codes and public-key cryptography schemes. Finite field arithmetic includes addition, multiplication, division and inversion operations. Addition is very simple and can be implemented with an extremely simple circuit. The other operations are much more complex. The multiplication is the most important for cryptosystems, such as the elliptic curve cryptosystem, since computing exponentiation, division, and computing multiplicative inverse can be performed by computing multiplication iteratively. In this paper, we present a parallel computation algorithm that operates Montgomery multiplication over finite field using redundant basis. Also, based on the multiplication algorithm, we present an efficient semi-systolic multiplier over finite field. The multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the multiplier saves at least 5% area, 50% time, and 53% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as inversion and division operation.Keywords: Finite field, Montgomery multiplication, systolic array, cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16462182 Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing
Authors: Saif Ullah, Guan Zailin, Xu Xianhao, He Zongdong, Wang Baoxi
Abstract:
Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.
Keywords: Assembly line balancing, Buffer sizing, Pareto solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33622181 Synthetic Aperture Radar Remote Sensing Classification Using the Bag of Visual Words Model to Land Cover Studies
Authors: Reza Mohammadi, Mahmod R. Sahebi, Mehrnoosh Omati, Milad Vahidi
Abstract:
Classification of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images plays an important role in land cover and land use management. Recently, classification algorithms based on Bag of Visual Words (BOVW) model have attracted significant interest among scholars and researchers in and out of the field of remote sensing. In this paper, BOVW model with pixel based low-level features has been implemented to classify a subset of San Francisco bay PolSAR image, acquired by RADARSAR 2 in C-band. We have used segment-based decision-making strategy and compared the result with the result of traditional Support Vector Machine (SVM) classifier. 90.95% overall accuracy of the classification with the proposed algorithm has shown that the proposed algorithm is comparable with the state-of-the-art methods. In addition to increase in the classification accuracy, the proposed method has decreased undesirable speckle effect of SAR images.
Keywords: Bag of Visual Words, classification, feature extraction, land cover management, Polarimetric Synthetic Aperture Radar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7742180 Performance Evaluation of QoS Based Forwarding and Non Forwarding Energetic Node Selection Algorithm for Reducing the Flooding in Multihop Routing in Highly Dynamic MANET
Authors: R. Reka, R. S. D. Wahidabanu
Abstract:
The aim of this paper is to propose a novel technique to guarantee Quality of Service (QoS) in a highly dynamic environment. The MANET changes its topology dynamically as the nodes are moved frequently. This will cause link failure between mobile nodes. MANET cannot ensure reliability without delay. The relay node is selected based on achieving QoS in previous transmission. It considers one more factor Connection Existence Period (CEP) to ensure reliability. CEP is to find out the period during that connection exists between the nodes. The node with highest CEP becomes a next relay node. The relay node is selected dynamically to avoid frequent failure. The bandwidth of each link changed dynamically based on service rate and request rate. This paper proposes Active bandwidth setting up algorithm to guarantee the QoS. The series of results obtained by using the Network Simulator (NS-2) demonstrate the viability of our proposed techniques.
Keywords: Bandwidth, Connection Existence Period (CEP), Mobile Adhoc Network (MANET), Quality of Service (QoS), Relay node.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21072179 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning
Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas
Abstract:
During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.Keywords: Cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5342178 Review of the Model-Based Supply Chain Management Research in the Construction Industry
Authors: Aspasia Koutsokosta, Stefanos Katsavounis
Abstract:
This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of the CSC modeling research accommodates conceptual or process models which present general management frameworks and do not relate to acknowledged soft Operations Research methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, objectives, modeling approach, solution methods and software used. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop optimization models for integrated CSCM. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without translating the generic concepts to the context of construction industry.Keywords: Construction supply chain management, modeling, operations research, optimization and simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28252177 Control Configuration Selection and Controller Design for Multivariable Processes Using Normalized Gain
Authors: R. Hanuma Naik, D. V. Ashok Kumar, K. S. R. Anjaneyulu
Abstract:
Several of the practical industrial control processes are multivariable processes. Due to the relation amid the variables (interaction), delay in the loops, it is very intricate to design a controller directly for these processes. So first, the interaction of the variables is analyzed using Relative Normalized Gain Array (RNGA), which considers the time constant, static gain and delay time of the processes. Based on the effect of RNGA, relative gain array (RGA) and NI, the pair (control configuration) of variables to be controlled by decentralized control is selected. The equivalent transfer function (ETF) of the process model is estimated as first order process with delay using the corresponding elements in the Relative gain array and Relative average residence time array (RARTA) of the processes. Secondly, a decentralized Proportional- Integral (PI) controller is designed for each ETF simply using frequency response specifications. Finally, the performance and robustness of the algorithm is comparing with existing related approaches to validate the effectiveness of the projected algorithm.
Keywords: Decentralized control, interaction, Multivariable processes, relative normalized gain array, relative average residence time array, steady state gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23182176 Optimization of Process Parameters for Friction Stir Welding of Cast Alloy AA7075 by Taguchi Method
Authors: Dhairya Partap Sing, Vikram Singh, Sudhir Kumar
Abstract:
This investigation proposes Friction stir welding technique to solve the fusion welding problems. Objectives of this investigation are fabrication of AA7075-10%wt. Silicon carbide (SiC) aluminum metal matrix composite and optimization of optimal process parameters of friction stir welded AA7075-10%wt. SiC Composites. Composites were prepared by the mechanical stir casting process. Experiments were performed with four process parameters such as tool rotational speed, weld speed, axial force and tool geometry considering three levels of each. The quality characteristics considered is joint efficiency (JE). The welding experiments were conducted using L27 orthogonal array. An orthogonal array and design of experiments were used to give best possible welding parameters that give optimal JE. The fabricated welded joints using rotational speed of 1500 rpm, welding speed (1.3 mm/sec), axial force (7 k/n) of and tool geometry (square) give best possible results. Experimental result reveals that the tool rotation speed, welding speed and axial force are the significant process parameters affecting the welding performance. The predicted optimal value of percentage JE is 95.621. The confirmation tests also have been done for verifying the results.
Keywords: Metal matrix composite, axial force, joint efficiency, rotational speed, traverse speed, tool geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8702175 Optimal Channel Equalization for MIMO Time-Varying Channels
Authors: Ehab F. Badran, Guoxiang Gu
Abstract:
We consider optimal channel equalization for MIMO (multi-input/multi-output) time-varying channels in the sense of MMSE (minimum mean-squared-error), where the observation noise can be non-stationary. We show that all ZF (zero-forcing) receivers can be parameterized in an affine form which eliminates completely the ISI (inter-symbol-interference), and optimal channel equalizers can be designed through minimization of the MSE (mean-squarederror) between the detected signals and the transmitted signals, among all ZF receivers. We demonstrate that the optimal channel equalizer is a modified Kalman filter, and show that under the AWGN (additive white Gaussian noise) assumption, the proposed optimal channel equalizer minimizes the BER (bit error rate) among all possible ZF receivers. Our results are applicable to optimal channel equalization for DWMT (discrete wavelet multitone), multirate transmultiplexers, OFDM (orthogonal frequency division multiplexing), and DS (direct sequence) CDMA (code division multiple access) wireless data communication systems. A design algorithm for optimal channel equalization is developed, and several simulation examples are worked out to illustrate the proposed design algorithm.Keywords: Channel equalization, Kalman filtering, Time-varying systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342174 Advantages of Neural Network Based Air Data Estimation for Unmanned Aerial Vehicles
Authors: Angelo Lerro, Manuela Battipede, Piero Gili, Alberto Brandl
Abstract:
Redundancy requirements for UAV (Unmanned Aerial Vehicle) are hardly faced due to the generally restricted amount of available space and allowable weight for the aircraft systems, limiting their exploitation. Essential equipment as the Air Data, Attitude and Heading Reference Systems (ADAHRS) require several external probes to measure significant data as the Angle of Attack or the Sideslip Angle. Previous research focused on the analysis of a patented technology named Smart-ADAHRS (Smart Air Data, Attitude and Heading Reference System) as an alternative method to obtain reliable and accurate estimates of the aerodynamic angles. This solution is based on an innovative sensor fusion algorithm implementing soft computing techniques and it allows to obtain a simplified inertial and air data system reducing external devices. In fact, only one external source of dynamic and static pressures is needed. This paper focuses on the benefits which would be gained by the implementation of this system in UAV applications. A simplification of the entire ADAHRS architecture will bring to reduce the overall cost together with improved safety performance. Smart-ADAHRS has currently reached Technology Readiness Level (TRL) 6. Real flight tests took place on ultralight aircraft equipped with a suitable Flight Test Instrumentation (FTI). The output of the algorithm using the flight test measurements demonstrates the capability for this fusion algorithm to embed in a single device multiple physical and virtual sensors. Any source of dynamic and static pressure can be integrated with this system gaining a significant improvement in terms of versatility.Keywords: Neural network, aerodynamic angles, virtual sensor, unmanned aerial vehicle, air data system, flight test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10232173 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Authors: Thiang, Handry Khoswanto, Rendy Pangaldus
Abstract:
Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22882172 Copy-Move Image Forgery Detection in Virtual Electrostatic Field
Authors: Michael Zimba, Darlison Nyirenda
Abstract:
A novel copy-move image forgery, CMIF, detection method is proposed. The proposed method presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilized to extract robust features. The extracted features are invariant to additive noise, JPEG compression, and affine transformation. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. SATS is a better option than the common shift vector method because SATS is insensitive to affine transformation. Consequently, the proposed CMIF algorithm is not only fast but also more robust to attacks compared to the existing related CMIF algorithms. The experimental results show high detection rates, as high as 100% in some cases.
Keywords: Affine transformation, Radix sort, SATS, Virtual electrostatic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18162171 A Beacon Based Priority Routing Scheme for Solar Power Plants in WSNs
Authors: Ki-Sung Park, Dae-Hee Lee, Dae-Ho Won, Yeon-Mo Yang
Abstract:
Solar power plants(SPPs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm to deriver the sensing data from the end node of solar power plants to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self routing scheme for solar power plants. The proposed beacon based priority routing Algorithm (BPRA) scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing in solar power plants.Keywords: Solar Power Plants(SPPs), Self routing, Quality of Service(QoS), WPANs, WSNs, TinyOS, TOSSIM, IEEE802.15.4
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21702170 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System
Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva
Abstract:
Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.
Keywords: Energy production, meteorological data, irradiance decomposition, solar photovoltaic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7662169 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25462168 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram
Authors: V Krishnaveni, S Jayaraman, K Ramadoss
Abstract:
The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.
Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21932167 A Green Design for Assembly Model for Integrated Design Evaluation and Assembly and Disassembly Sequence Planning
Authors: Yuan-Jye Tseng, Fang-Yu Yu, Feng-Yi Huang
Abstract:
A green design for assembly model is presented to integrate design evaluation and assembly and disassembly sequence planning by evaluating the three activities in one integrated model. For an assembled product, an assembly sequence planning model is required for assembling the product at the start of the product life cycle. A disassembly sequence planning model is needed for disassembling the product at the end. In a green product life cycle, it is important to plan how a product can be disassembled, reused, or recycled, before the product is actually assembled and produced. Given a product requirement, there may be several design alternative cases to design the same product. In the different design cases, the assembly and disassembly sequences for producing the product can be different. In this research, a new model is presented to concurrently evaluate the design and plan the assembly and disassembly sequences. First, the components are represented by using graph based models. Next, a particle swarm optimization (PSO) method with a new encoding scheme is developed. In the new PSO encoding scheme, a particle is represented by a position matrix defining an assembly sequence and a disassembly sequence. The assembly and disassembly sequences can be simultaneously planned with an objective of minimizing the total of assembly costs and disassembly costs. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly and disassembly sequence planning problem. An example product is implemented and illustrated in this paper.Keywords: green design, assembly and disassembly sequence planning, green design for assembly, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17782166 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model
Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis
Abstract:
In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.Keywords: Expectation-maximization (EM) algorithm, cause of failure, intensity, linear degradation path, masked data, reliability function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10742165 A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model
Authors: Gye-rok Jeon, Jae-hee Jung, In-cheol Kim, Ah-young Jeon, Sang-hwa Yoon, Jung-man Son, Jae-hyung Kim, Soo-young Ye, Jung-hoon Ro, Dong-hyun Kim, Chul-han Kim
Abstract:
A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.Keywords: Arterial blood pressure, oscillometric method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33372164 Adaptation Learning Speed Control for a High- Performance Induction Motor using Neural Networks
Authors: M. Zerikat, S. Chekroun
Abstract:
This paper proposes an effective adaptation learning algorithm based on artificial neural networks for speed control of an induction motor assumed to operate in a high-performance drives environment. The structure scheme consists of a neural network controller and an algorithm for changing the NN weights in order that the motor speed can accurately track of the reference command. This paper also makes uses a very realistic and practical scheme to estimate and adaptively learn the noise content in the speed load torque characteristic of the motor. The availability of the proposed controller is verified by through a laboratory implementation and under computation simulations with Matlab-software. The process is also tested for the tracking property using different types of reference signals. The performance and robustness of the proposed control scheme have evaluated under a variety of operating conditions of the induction motor drives. The obtained results demonstrate the effectiveness of the proposed control scheme system performances, both in steady state error in speed and dynamic conditions, was found to be excellent and those is not overshoot.Keywords: Electric drive, Induction motor, speed control, Adaptive control, neural network, High Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20282163 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.
Keywords: Activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28712162 Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study
Authors: Khalil Ur Rehman, M. Y. Malik, Usman Ali
Abstract:
In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier’s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk.
Keywords: Nanoparticles, Newtonian fluid model, chemical reaction, heat source/sink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9882161 Scalable Systolic Multiplier over Binary Extension Fields Based on Two-Level Karatsuba Decomposition
Authors: Chiou-Yng Lee, Wen-Yo Lee, Chieh-Tsai Wu, Cheng-Chen Yang
Abstract:
Shifted polynomial basis (SPB) is a variation of polynomial basis representation. SPB has potential for efficient bit level and digi -level implementations of multiplication over binary extension fields with subquadratic space complexity. For efficient implementation of pairing computation with large finite fields, this paper presents a new SPB multiplication algorithm based on Karatsuba schemes, and used that to derive a novel scalable multiplier architecture. Analytical results show that the proposed multiplier provides a trade-off between space and time complexities. Our proposed multiplier is modular, regular, and suitable for very large scale integration (VLSI) implementations. It involves less area complexity compared to the multipliers based on traditional decomposition methods. It is therefore, more suitable for efficient hardware implementation of pairing based cryptography and elliptic curve cryptography (ECC) in constraint driven applications.
Keywords: Digit-serial systolic multiplier, elliptic curve cryptography (ECC), Karatsuba algorithm (KA), shifted polynomial basis (SPB), pairing computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20612160 Bee Parameter Determination via Weighted Centriod Modified Simplex and Constrained Response Surface Optimisation Methods
Authors: P. Luangpaiboon
Abstract:
Various intelligences and inspirations have been adopted into the iterative searching process called as meta-heuristics. They intelligently perform the exploration and exploitation in the solution domain space aiming to efficiently seek near optimal solutions. In this work, the bee algorithm, inspired by the natural foraging behaviour of honey bees, was adapted to find the near optimal solutions of the transportation management system, dynamic multi-zone dispatching. This problem prepares for an uncertainty and changing customers- demand. In striving to remain competitive, transportation system should therefore be flexible in order to cope with the changes of customers- demand in terms of in-bound and outbound goods and technological innovations. To remain higher service level but lower cost management via the minimal imbalance scenario, the rearrangement penalty of the area, in each zone, including time periods are also included. However, the performance of the algorithm depends on the appropriate parameters- setting and need to be determined and analysed before its implementation. BEE parameters are determined through the linear constrained response surface optimisation or LCRSOM and weighted centroid modified simplex methods or WCMSM. Experimental results were analysed in terms of best solutions found so far, mean and standard deviation on the imbalance values including the convergence of the solutions obtained. It was found that the results obtained from the LCRSOM were better than those using the WCMSM. However, the average execution time of experimental run using the LCRSOM was longer than those using the WCMSM. Finally a recommendation of proper level settings of BEE parameters for some selected problem sizes is given as a guideline for future applications.Keywords: Meta-heuristic, Bee Algorithm, Dynamic Multi-Zone Dispatching, Linear Constrained Response SurfaceOptimisation Method, Weighted Centroid Modified Simplex Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13732159 Optimal Design of Flat – Gain Wide-Band Discrete Raman Amplifiers
Authors: Banaz Omer Rasheed, Parexan M. Aljaff
Abstract:
In this paper, a wide band gain–flattened discrete Raman amplifiers utilizing four optimum pump wavelengths is demonstrated.Keywords: Fiber Raman Amplifiers, Optimization, WaveLength Division Multiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14632158 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24942157 Matching Pursuit based Removal of Cardiac Pulse-Related Artifacts in EEG/fMRI
Authors: Rainer Schneider, Stephan Lau, Levin Kuhlmann, Simon Vogrin, Maciej Gratkowski, Mark Cook, Jens Haueisen
Abstract:
Cardiac pulse-related artifacts in the EEG recorded simultaneously with fMRI are complex and highly variable. Their effective removal is an unsolved problem. Our aim is to develop an adaptive removal algorithm based on the matching pursuit (MP) technique and to compare it to established methods using a visual evoked potential (VEP). We recorded the VEP inside the static magnetic field of an MR scanner (with artifacts) as well as in an electrically shielded room (artifact free). The MP-based artifact removal outperformed average artifact subtraction (AAS) and optimal basis set removal (OBS) in terms of restoring the EEG field map topography of the VEP. Subsequently, a dipole model was fitted to the VEP under each condition using a realistic boundary element head model. The source location of the VEP recorded inside the MR scanner was closest to that of the artifact free VEP after cleaning with the MP-based algorithm as well as with AAS. While none of the tested algorithms offered complete removal, MP showed promising results due to its ability to adapt to variations of latency, frequency and amplitude of individual artifact occurrences while still utilizing a common template.Keywords: matching pursuit, ballistocardiogram, artifactremoval, EEG/fMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688