Search results for: statistical signal processing.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3603

Search results for: statistical signal processing.

1143 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.

Keywords: Politics, personality traits, LIWC, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1142 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.  

Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1141 A Video-based Algorithm for Moving Objects Detection at Signalized Intersection

Authors: Juan Li, Chunfu Shao, Chunjiao Dong, Dan Zhao, Yinhong Liu

Abstract:

Mixed-traffic (e.g., pedestrians, bicycles, and vehicles) data at an intersection is one of the essential factors for intersection design and traffic control. However, some data such as pedestrian volume cannot be directly collected by common detectors (e.g. inductive loop, sonar and microwave sensors). In this paper, a video based detection algorithm is proposed for mixed-traffic data collection at intersections using surveillance cameras. The algorithm is derived from Gaussian Mixture Model (GMM), and uses a mergence time adjustment scheme to improve the traditional algorithm. Real-world video data were selected to test the algorithm. The results show that the proposed algorithm has the faster processing speed and more accuracy than the traditional algorithm. This indicates that the improved algorithm can be applied to detect mixed-traffic at signalized intersection, even when conflicts occur.

Keywords: detection, intersection, mixed traffic, moving objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
1140 Performance Analysis of Parallel Client-Server Model Versus Parallel Mobile Agent Model

Authors: K. B. Manwade, G. A. Patil

Abstract:

Mobile agent has motivated the creation of a new methodology for parallel computing. We introduce a methodology for the creation of parallel applications on the network. The proposed Mobile-Agent parallel processing framework uses multiple Javamobile Agents. Each mobile agent can travel to the specified machine in the network to perform its tasks. We also introduce the concept of master agent, which is Java object capable of implementing a particular task of the target application. Master agent is dynamically assigns the task to mobile agents. We have developed and tested a prototype application: Mobile Agent Based Parallel Computing. Boosted by the inherited benefits of using Java and Mobile Agents, our proposed methodology breaks the barriers between the environments, and could potentially exploit in a parallel manner all the available computational resources on the network. This paper elaborates performance issues of a mobile agent for parallel computing.

Keywords: Parallel Computing, Mobile Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1139 Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures

Authors: Anas M. Fares, A. Touqan

Abstract:

A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.

Keywords: Concrete, earthquake-resistant design, finite element, fundamental period, lateral stiffness, linear analysis, modal analysis, rayleigh, SAP2000, shear wall, ASCE7-16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
1138 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach

Authors: Hamed Rahmani, Wim Groot

Abstract:

The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Center of Iran and the Ministry of Cooperatives Labor and Social Welfare that are taken from the labor force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of 6 years in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education, years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.

Keywords: NEET youth, probit, CART, machine learning, unemployment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 350
1137 A Sequential Approach to Random-Effects Meta-Analysis

Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya

Abstract:

The objective of meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence base for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research significantly changed over time and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable only to fixed effect model (FEM) of meta-analysis. For random-effects model (REM), the analysis incorporates the heterogeneity variance, τ 2 and its estimation create complications. In this paper we study the use of a truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring in REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of applications.

Keywords: Meta-analysis, random-effects model, sequential testing, temporal changes in effect sizes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
1136 Mathematical Analysis of EEG of Patients with Non-fatal Nonspecific Diffuse Encephalitis

Authors: Mukesh Doble, Sunil K Narayan

Abstract:

Diffuse viral encephalitis may lack fever and other cardinal signs of infection and hence its distinction from other acute encephalopathic illnesses is challenging. Often, the EEG changes seen routinely are nonspecific and reflect diffuse encephalopathic changes only. The aim of this study was to use nonlinear dynamic mathematical techniques for analyzing the EEG data in order to look for any characteristic diagnostic patterns in diffuse forms of encephalitis.It was diagnosed on clinical, imaging and cerebrospinal fluid criteria in three young male patients. Metabolic and toxic encephalopathies were ruled out through appropriate investigations. Digital EEGs were done on the 3rd to 5th day of onset. The digital EEGs of 5 male and 5 female age and sex matched healthy volunteers served as controls.Two sample t-test indicated that there was no statistically significant difference between the average values in amplitude between the two groups. However, the standard deviation (or variance) of the EEG signals at FP1-F7 and FP2-F8 are significantly higher for the patients than the normal subjects. The regularisation dimension is significantly less for the patients (average between 1.24-1.43) when compared to the normal persons (average between 1.41-1.63) for the EEG signals from all locations except for the Fz-Cz signal. Similarly the wavelet dimension is significantly less (P = 0.05*) for the patients (1.122) when compared to the normal person (1.458). EEGs are subdued in the case of the patients with presence of uniform patterns, manifested in the values of regularisation and wavelet dimensions, when compared to the normal person, indicating a decrease in chaotic nature.

Keywords: Chaos, Diffuse encephalitis, Electroencephalogram, Fractal dimension, Fourier spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
1135 Processor Scheduling on Parallel Computers

Authors: Mohammad S. Laghari, Gulzar A. Khuwaja

Abstract:

Many problems in computer vision and image processing present potential for parallel implementations through one of the three major paradigms of geometric parallelism, algorithmic parallelism and processor farming. Static process scheduling techniques are used successfully to exploit geometric and algorithmic parallelism, while dynamic process scheduling is better suited to dealing with the independent processes inherent in the process farming paradigm. This paper considers the application of parallel or multi-computers to a class of problems exhibiting spatial data characteristic of the geometric paradigm. However, by using processor farming paradigm, a dynamic scheduling technique is developed to suit the MIMD structure of the multi-computers. A hybrid scheme of scheduling is also developed and compared with the other schemes. The specific problem chosen for the investigation is the Hough transform for line detection.

Keywords: Hough transforms, parallel computer, parallel paradigms, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
1134 GPU Implementation for Solving in Compressible Two-Phase Flows

Authors: Sheng-Hsiu Kuo, Pao-Hsiung Chiu, Reui-Kuo Lin, Yan-Ting Lin

Abstract:

A one-step conservative level set method, combined with a global mass correction method, is developed in this study to simulate the incompressible two-phase flows. The present framework do not need to solve the conservative level set scheme at two separated steps, and the global mass can be exactly conserved. The present method is then more efficient than two-step conservative level set scheme. The dispersion-relation-preserving schemes are utilized for the advection terms. The pressure Poisson equation solver is applied to GPU computation using the pCDR library developed by National Center for High-Performance Computing, Taiwan. The SMP parallelization is used to accelerate the rest of calculations. Three benchmark problems were done for the performance evaluation. Good agreements with the referenced solutions are demonstrated for all the investigated problems.

Keywords: Conservative level set method, two-phase flow, dispersion-relation-preserving, graphics processing unit (GPU), multi-threading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
1133 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic speech recognition system, children speech, adaptation, Malay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
1132 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance

Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab

Abstract:

Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.

Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10156
1131 Study of Reporting System for Adverse Events Related to Common Medical Devices at a Tertiary Care Public Sector Hospital in India

Authors: S. Kurien, S. Satpathy, S. K. Gupta, S. K. Arya, D. K. Sharma

Abstract:

Advances in the use of health care technology have resulted in increased adverse events (AEs) related to the use of medical devices. The study focused on the existing reporting systems. This study was conducted in a tertiary care public sector hospital. Devices included Syringe infusion pumps, Cardiac monitors, Pulse oximeters, Ventilators and Defibrillators. A total of 211 respondents were recruited. Interviews were held with 30 key informants. Medical records were scrutinized. Relevant statistical tests were used. Resident doctors reported maximum frequency of AEs, followed by nurses; and least by consultants. A significant association was found between the cadre of health care personnel and awareness that the patients and bystanders have a risk of sustaining AE. Awareness regarding reporting of AEs was low, and it was generally done verbally. Other critical findings are discussed in the light of the barriers to reporting, reasons for non-compliance, recording system, and so on.

Keywords: Adverse events, health care technology, public sector hospital, reporting systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
1130 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording

Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy

Abstract:

Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.

Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
1129 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns

Authors: Hyun-Woo Cho

Abstract:

The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.

Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1128 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation

Authors: Zhichao Zhao, Yi Liu, Shunping Xiao

Abstract:

A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.

Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
1127 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol

Authors: Apidet Booranawong

Abstract:

In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.

Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1126 Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema

Authors: Mario Mastriani

Abstract:

Super-resolution is nowadays used for a high-resolution image produced from several low-resolution noisy frames. In this work, we consider the problem of high-quality interpolation of a single noise-free image. Such images may come from different sources, i.e., they may be frames of videos, individual pictures, etc. On the other hand, in the encoder we apply a downsampling via bidimen-sional interpolation of each frame, and in the decoder we apply a upsampling by which we restore the original size of the image. If the compression ratio is very high, then we use a convolutive mask that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. In fact, the mentioned mask is coded inside texture memory of a GPGPU.

Keywords: General-Purpose computation on Graphics ProcessingUnits, Image Compression, Interpolation, Super-resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
1125 Development and Optimization of Automated Dry-Wafer Separation

Authors: Tim Giesen, Christian Fischmann, Fabian Böttinger, Alexander Ehm, Alexander Verl

Abstract:

In a state-of-the-art industrial production line of photovoltaic products the handling and automation processes are of particular importance and implication. While processing a fully functional crystalline solar cell an as-cut photovoltaic wafer is subject to numerous repeated handling steps. With respect to stronger requirements in productivity and decreasing rejections due to defects the mechanical stress on the thin wafers has to be reduced to a minimum as the fragility increases by decreasing wafer thicknesses. In relation to the increasing wafer fragility, researches at the Fraunhofer Institutes IPA and CSP showed a negative correlation between multiple handling processes and the wafer integrity. Recent work therefore focused on the analysis and optimization of the dry wafer stack separation process with compressed air. The achievement of a wafer sensitive process capability and a high production throughput rate is the basic motivation in this research.

Keywords: Automation, Photovoltaic Manufacturing, Thin Wafer, Material Handling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
1124 Defining Human Resources “Bundles” and Its’ Correlation with Companies’ Financial Performances

Authors: Ivana Tadić, Snježana Pivac

Abstract:

Although human resources are recognized as the crucial companies’ resources and their positive influence on companies’ performances has been confirmed through different researches, scientists are still debating it. In order to contribute this debate, this paper firstly discusses the most important human resource management elements and practices and its influence on companies’ success. Afterwards it defines human resource “bundles” – interrelated and internally consistent human resource practices, complementary to each other, or the most important human resource practices and elements regarding Croatian companies and its human resource management activities. Finally, the paper provides empirical results; more precisely it reveals the relation of the level of development of human resource management function (“bundles”) and companies’ financial performances (using profitability ratios, liquidity ratios, solvency ratios and a group of additional ratios related to employees’ indicators).

Keywords: Companies’ performances, human resource bundles, multivariate statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8811
1123 Proposing Enterprise Wide Information Systems Business Performance Model

Authors: Vineet Kansal

Abstract:

Enterprise Wide Information Systems (EWIS) implementation involves the entire business and will require changes throughout the firm. Because of the scope, complexity and continuous nature of ERP, the project-based approach to managing the implementation process resulted in failure rates of between 60% and 80%. In recent years ERP systems have received much attention. The organizational relevance and risk of ERP projects make it important for organizations to focus on ways to make ERP implementation successful. Once these systems are in place, however, their performance depends on the identified macro variables viz. 'Business Process', 'Decision Making' and 'Individual / Group working'. The questionnaire was designed and administered. The responses from 92 organizations were compiled. The relationship of these variables with EWIS performance is analyzed using inferential statistical measurements. The study helps to understand the performance of model presented. The study suggested in keeping away from the calamities and thereby giving the necessary competitive edge. Whenever some discrepancy is identified during the process of performance appraisal care has to be taken to draft necessary preventive measures. If all these measures are taken care off then the EWIS performance will definitely deliver the results.

Keywords: Enterprise Systems, performance, technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
1122 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
1121 A Model to Study the Effect of Excess Buffers and Na+ Ions on Ca2+ Diffusion in Neuron Cell

Authors: Vikas Tewari, Shivendra Tewari, K. R. Pardasani

Abstract:

Calcium is a vital second messenger used in signal transduction. Calcium controls secretion, cell movement, muscular contraction, cell differentiation, ciliary beating and so on. Two theories have been used to simplify the system of reaction-diffusion equations of calcium into a single equation. One is excess buffer approximation (EBA) which assumes that mobile buffer is present in excess and cannot be saturated. The other is rapid buffer approximation (RBA), which assumes that calcium binding to buffer is rapid compared to calcium diffusion rate. In the present work, attempt has been made to develop a model for calcium diffusion under excess buffer approximation in neuron cells. This model incorporates the effect of [Na+] influx on [Ca2+] diffusion,variable calcium and sodium sources, sodium-calcium exchange protein, Sarcolemmal Calcium ATPase pump, sodium and calcium channels. The proposed mathematical model leads to a system of partial differential equations which have been solved numerically using Forward Time Centered Space (FTCS) approach. The numerical results have been used to study the relationships among different types of parameters such as buffer concentration, association rate, calcium permeability.

Keywords: Excess buffer approximation, Na+ influx, sodium calcium exchange protein, sarcolemmal calcium atpase pump, forward time centred space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1120 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology

Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin

Abstract:

Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.

Keywords: Ferulic acid, Enzymatic Synthesis, Esters, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
1119 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

Authors: Vinod Kumar, Jatinder Kumar

Abstract:

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

Keywords: Stress, MRR, Flow, Ultrasonic Machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
1118 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: Corporate credit rating prediction, feature selection, genetic algorithms, instance selection, multiclass support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
1117 Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface

Authors: Homayoon Zarshenas, Mahdi Bamdad, Hadi Grailu, Akbar A. Shakoori

Abstract:

In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.

Keywords: BCI, EEG, Classifier, Fuzzy operator, OWA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1116 Promoting Authenticity in Employer Brands to Address the Global-Local Problem in Complex Organisations: The Case of a Developing Country

Authors: Saud A. Taj

Abstract:

Employer branding is considered as a useful tool for addressing the global-local problem facing complex organisations that have operations scattered across the globe and face challenges of dealing with the local environment alongside. Despite being an established field of study within the Western developed world, there is little empirical evidence concerning the relevance of employer branding to global companies that operate in the under-developed economies. This paper fills this gap by gaining rich insight into the implementation of employer branding programs in a foreign multinational operating in Pakistan dealing with the global-local problem. The study is qualitative in nature and employs semistructured and focus group interviews with senior/middle managers and local frontline employees to deeply examine the phenomenon in case organisation. Findings suggest that authenticity is required in employer brands to enable them to respond to the local needs thereby leading to the resolution of the global-local problem. However, the role of signaling theory is key to the development of authentic employer brands as it stresses on the need to establish an efficient and effective signaling environment where in signals travel in both directions (from signal designers to receivers and backwards) and facilitate firms with the global-local problem. The paper also identifies future avenues of research for the employer branding field.

Keywords: Authenticity, Counter-signals, Employer Branding, Global-Local Problem, Signaling Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
1115 Developing New Processes and Optimizing Performance Using Response Surface Methodology

Authors: S. Raissi

Abstract:

Response surface methodology (RSM) is a very efficient tool to provide a good practical insight into developing new process and optimizing them. This methodology could help engineers to raise a mathematical model to represent the behavior of system as a convincing function of process parameters. Through this paper the sequential nature of the RSM surveyed for process engineers and its relationship to design of experiments (DOE), regression analysis and robust design reviewed. The proposed four-step procedure in two different phases could help system analyst to resolve the parameter design problem involving responses. In order to check accuracy of the designed model, residual analysis and prediction error sum of squares (PRESS) described. It is believed that the proposed procedure in this study can resolve a complex parameter design problem with one or more responses. It can be applied to those areas where there are large data sets and a number of responses are to be optimized simultaneously. In addition, the proposed procedure is relatively simple and can be implemented easily by using ready-made standard statistical packages.

Keywords: Response Surface Methodology (RSM), Design of Experiments (DOE), Process modeling, Process setting, Process optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
1114 Solid Waste Management in Adama, Ethiopia: Aspects and Challenges

Authors: Mengist Hailemariam, Assegid Ajeme

Abstract:

The ever increasing amount of solid waste (SW) generated which is exacerbated by lack of proper waste management system is of growing concern worldwide and in major cities in developing countries due to its social, economic and environmental implications. This study attempts to describe the aspects of solid waste management (SWM) in Adama, one of the fast urbanizing cities in Ethiopia, and highlights the challenges thereof. Data were gathered through interview supplemented by field observation and self-administered questionnaire. Then, the data were analyzed using the Statistical Package for Social Science (SPSS) software. In addition, secondary data were gathered from documents. Findings revealed that the current SWM practice couldn’t cope with the fast urbanizing needs and the rapid population growth exhibited by the city. Besides, major factors contributing to the inefficient system were identified. The study would provide practical insights to decision makers in developing a sustainable SWM system leading to minimized risk in the city.

Keywords: Adama, Aspects and challenges, Ethiopia, Solid waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7605