Search results for: Bi-directional associative memory (BAM) neural networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2794

Search results for: Bi-directional associative memory (BAM) neural networks

424 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
423 Widening Students Perspective: Empowering Them with Systems Methodologies

Authors: Albertus G. Joubert, Roelien Goede

Abstract:

Benefits to the organisation are just as important as technical ability when it comes to software success. The challenge is to provide industry with professionals who understand this. In other words: How to teach computer engineering students to look beyond technology, and at the benefits of software to organizations? This paper reports on the conceptual design of a section of the computer networks module aimed to sensitize the students to the organisational context. Checkland focuses on different worldviews represented by various role players in the organisation. He developed the Soft Systems Methodology that guides purposeful action in organisations, while incorporating different worldviews in the modeling process. If we can sensitize students to these methods, they are likely to appreciate the wider context of application of system software. This paper will provide literature on these concepts as well as detail on how the students will be guided to adopt these concepts.

Keywords: Checkland, Soft Systems Methodology, Systems Approach, System Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
422 Model of Multi-Criteria Evaluation for Railway Lines

Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek

Abstract:

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Keywords: Railway track, multi-criteria methods, evaluation, transportation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
421 Neutral to Earth Voltage Analysis in Harmonic Polluted Distribution Networks with Multi- Grounded Neutrals

Authors: G. Ahmadi, S.M. Shahrtash

Abstract:

A multiphase harmonic load flow algorithm is developed based on backward/forward sweep to examine the effects of various factors on the neutral to earth voltage (NEV), including unsymmetrical system configuration, load unbalance and harmonic injection. The proposed algorithm composes fundamental frequency and harmonic frequencies power flows. The algorithm and the associated models are tested on IEEE 13 bus system. The magnitude of NEV is investigated under various conditions of the number of grounding rods per feeder lengths, the grounding rods resistance and the grounding resistance of the in feeding source. Additionally, the harmonic injection of nonlinear loads has been considered and its influences on NEV under different conditions are shown.

Keywords: NEV, Distribution System, Multi-grounded, Backward/Forward Sweep, Harmonic Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
420 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan

Authors: Li Li, Kai-Hsuan Chu

Abstract:

It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.

Keywords: Real estate price, least-square, grey correlation, macroeconomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
419 Knowledge Acquisition as Determinant of Outputs of Innovative Business in Regions of the Czech Republic

Authors: P. Hajek, J. Stejskal

Abstract:

The aim of this paper is to analyze the ability to identify and acquire knowledge from external sources at the regional level in the Czech Republic. The results show that the most important sources of knowledge for innovative activities are sources within the businesses themselves, followed by customers and suppliers. Furthermore, the analysis of relationships between the objective of the innovative activity and the ability to identify and acquire knowledge implies that knowledge obtained from (1) customers aims at replacing outdated products and increasing product quality; (2) suppliers aims at increasing capacity and flexibility of production; and (3) competing businesses aims at growing market share and increasing the flexibility of production and services. Regions should therefore direct their support especially into development and strengthening of networks within the value chain.

Keywords: Knowledge, acquisition, innovative business, Czech republic, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
418 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation

Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana

Abstract:

This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.

Keywords: Brain Computer Interface (BCI), gait trainer, Spinal Cord Injury (SCI), neurorehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
417 Satellite Imagery Classification Based on Deep Convolution Network

Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu

Abstract:

Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.

Keywords: Satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346
416 Parameter Estimation for Viewing Rank Distribution of Video-on-Demand

Authors: Hyoup-Sang Yoon

Abstract:

Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.

Keywords: VOD, CDN, parabolic fractal distribution, viewing rank, weighted linear model fitting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
415 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems

Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan

Abstract:

Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.

Keywords: Data mining, hybrid storage system, recurrent neural network, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
414 Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Authors: Nhon Do, Hien Nguyen

Abstract:

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Keywords: educational software, artificial intelligence, knowledge base system, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
413 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: Classification algorithms; data mining; tourism; knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
412 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than Optical Character Recognition (OCR) results.

Keywords: Biological pathway, image understanding, gene name recognition, object detection, Siamese network, Visual Geometry Group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
411 Link Availability Estimation for Modified AOMDV Protocol

Authors: R. Prabha, N. Ramaraj

Abstract:

Routing in adhoc networks is a challenge as nodes are mobile, and links are constantly created and broken. Present ondemand adhoc routing algorithms initiate route discovery after a path breaks, incurring significant cost to detect disconnection and establish a new route. Specifically, when a path is about to be broken, the source is warned of the likelihood of a disconnection. The source then initiates path discovery early, avoiding disconnection totally. A path is considered about to break when link availability decreases. This study modifies Adhoc On-demand Multipath Distance Vector routing (AOMDV) so that route handoff occurs through link availability estimation.

Keywords: Mobile Adhoc Network (MANET), Routing, Adhoc On-demand Multipath Distance Vector routing (AOMDV), Link Availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
410 Exploring Anti-Western Sentiment Among Arabs and Its Influence on Support for Russia in the Ukraine Conflict

Authors: Soran Tarkhani

Abstract:

The phenomenon of significant Arab support for Russia's invasion of Ukraine, despite widespread condemnation from Arab leaders, poses a puzzling scenario. This paper delves into the paradox by employing multiple regression analysis on the online reactions of Arab audiences to the conflict as reported by seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. It hypothesizes that this support stems from prevalent anti-Western sentiment within the Arab world. The empirical findings corroborate the hypothesis, providing insight into the underlying motivations for Arab backing of Russia against Ukraine, despite their historical familiarity with the harsh realities of war.

Keywords: Anti-Western Sentiment, Arab World, Russia-Ukraine Conflict, social media analysis, political sentiment, international relations, regional influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162
409 Investigation of Interference Conditions in BFWA System Applying Adaptive TDD

Authors: Gábor Szládek, Balázs Héder, János Bitó

Abstract:

In a BFWA (Broadband Fixed Wireless Access Network) the evolved SINR (Signal to Interference plus Noise Ratio) is relevant influenced by the applied duplex method. The TDD (Time Division Duplex), especially adaptive TDD method has some advantage contrary to FDD (Frequency Division Duplex), for example the spectrum efficiency and flexibility. However these methods are suffering several new interference situations that can-t occur in a FDD system. This leads to reduced SINR in the covered area what could cause some connection outages. Therefore, countermeasure techniques against interference are necessary to apply in TDD systems. Synchronization is one way to handling the interference. In this paper the TDD systems – applying different system synchronization degree - will be compared by the evolved SINR at different locations of the BFWA service area and the percentage of the covered area by the system.

Keywords: Adaptive TDD, BFWA networks, duplex methods, intra system interferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
408 Trust Building Mechanisms for Electronic Business Networks and Their Relation to eSkills

Authors: Radoslav Delina, Michal Tkáč

Abstract:

Globalization, supported by information and communication technologies, changes the rules of competitiveness and increases the significance of information, knowledge and network cooperation. In line with this trend, the need for efficient trust-building tools has emerged. The absence of trust building mechanisms and strategies was identified within several studies. Through trust development, participation on e-business network and usage of network services will increase and provide to SMEs new economic benefits. This work is focused on effective trust building strategies development for electronic business network platforms. Based on trust building mechanism identification, the questionnairebased analysis of its significance and minimum level of requirements was conducted. In the paper, we are confirming the trust dependency on e-Skills which play crucial role in higher level of trust into the more sophisticated and complex trust building ICT solutions.

Keywords: Correlation analysis, decision trees, e-marketplace, trust building

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
407 Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Authors: Li Shoutao, Gordon Lee

Abstract:

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Keywords: adaptive fuzzy neural inference, evolutionary tuning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
406 Frequent and Systematic Timing Enhancement of Congestion Window in Typical Transmission Control Protocol

Authors: Ghassan A. Abed, Akbal O. Salman, Bayan M. Sabbar

Abstract:

Transmission Control Protocol (TCP) among the wired and wireless networks, it still has a practical problem; where the congestion control mechanism does not permit the data stream to get complete bandwidth over the existing network links. To solve this problem, many TCP protocols have been introduced with high speed performance. Therefore, an enhanced congestion window (cwnd) for the congestion control mechanism is proposed in this article to improve the performance of TCP by increasing the number of cycles of the new window to improve the transmitted packet number. The proposed algorithm used a new mechanism based on the available bandwidth of the connection to detect the capacity of network path in order to improve the regular clocking of congestion avoidance mechanism. The work in this paper based on using Network Simulator 2 (NS-2) to simulate the proposed algorithm.

Keywords: TCP, cwnd, Congestion Control, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
405 Quality and Quantity in the Strategic Network of Higher Education Institutions

Authors: Juha Kettunen

Abstract:

This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Keywords: Higher education, network, research and development, strategic management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
404 Types of Epilepsies and Findings EEG- LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review the findings EEG- LORETA about epilepsy.

Keywords: Epilepsy, EEG, EEG- Loreta, loreta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3094
403 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: Mesh network, RFID, wireless sensor network, zigbee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
402 Experimental Evaluation of Mobility Anchor Point Selection Scheme in Hierarchical Mobile IPv6

Authors: Zulkeflee Kusin, Mohamad Shanudin Zakaria

Abstract:

Hierarchical Mobile IPv6 (HMIPv6) was designed to support IP micro-mobility management in the Next Generation Networks (NGN) framework. The main design behind this protocol is the usage of Mobility Anchor Point (MAP) located at any level router of network to support hierarchical mobility management. However, the distance MAP selection in HMIPv6 causes MAP overloaded and increase frequent binding update as the network grows. Therefore, to address the issue in designing MAP selection scheme, we propose a dynamic load control mechanism integrates with a speed detection mechanism (DMS-DLC). From the experimental results we obtain that the proposed scheme gives better distribution in MAP load and increase handover speed.

Keywords: Dynamic load control, HMIPv6, Mobility AnchorPoint, MAP selection scheme

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
401 A New Cut–Through Mechanism in IEEE 802.16 Mesh Networks

Authors: Yi-Ting Mai, Chun-Chuan Yang, Cheng-Jung Wen

Abstract:

IEEE 802.16 is a new wireless technology standard, it has some advantages, including wider coverage, higher bandwidth, and QoS support. As the new wireless technology for last mile solution, there are designed two models in IEEE 802.16 standard. One is PMP (point to multipoint) and the other is Mesh. In this paper we only focus on IEEE 802.16 Mesh model. According to the IEEE 802.16 standard description, Mesh model has two scheduling modes, centralized and distributed. Considering the pros and cons of the two scheduling, we present the combined scheduling QoS framework that the BS (Base Station) controls time frame scheduling and selects the shortest path from source to destination directly. On the other hand, we propose the Expedited Queue mechanism to cut down the transmission time. The EQ mechanism can reduce a lot of end-to-end delay in our QoS framework. Simulation study has shown that the average delay is smaller than contrasts. Furthermore, our proposed scheme can also achieve higher performance.

Keywords: IEEE 802.16 Mesh, Scheduling, Expedited Queue, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
400 Comparative study of the Genetic Algorithms and Hessians Method for Minimization of the Electric Power Production Cost

Authors: L. Abdelmalek, M. Zerikat, M. Rahli

Abstract:

In this paper, we present a comparative study of the genetic algorithms and Hessian-s methods for optimal research of the active powers in an electric network of power. The objective function which is the performance index of production of electrical energy is minimized by satisfying the constraints of the equality type and inequality type initially by the Hessian-s methods and in the second time by the genetic Algorithms. The results found by the application of AG for the minimization of the electric production costs of power are very encouraging. The algorithms seem to be an effective technique to solve a great number of problems and which are in constant evolution. Nevertheless it should be specified that the traditional binary representation used for the genetic algorithms creates problems of optimization of management of the large-sized networks with high numerical precision.

Keywords: Genetic algorithm, Flow of optimum loadimpedances, Hessians method, Optimal distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
399 Error Correction Codes in Wireless Sensor Network: An Energy Aware Approach

Authors: Mohammad Rakibul Islam

Abstract:

Link reliability and transmitted power are two important design constraints in wireless network design. Error control coding (ECC) is a classic approach used to increase link reliability and to lower the required transmitted power. It provides coding gain, resulting in transmitter energy savings at the cost of added decoder power consumption. But the choice of ECC is very critical in the case of wireless sensor network (WSN). Since the WSNs are energy constraint in nature, both the BER and power consumption has to be taken into count. This paper develops a step by step approach in finding suitable error control codes for WSNs. Several simulations are taken considering different error control codes and the result shows that the RS(31,21) fits both in BER and power consumption criteria.

Keywords: Error correcting code, RS, BCH, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3233
398 Using the Minnesota Multiphasic Personality Inventory-2 and Mini Mental State Examination-2 in Cognitive Behavioral Therapy: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

From a psychological perspective, psychopathology is the area of clinical psychology that has at its core psychological assessment and psychotherapy. In day-to-day clinical practice, psychodiagnosis and psychotherapy are used independently, according to their intended purpose and their specific methods of application. The paper explores how the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) and Mini Mental State Examination-2 (MMSE-2) psychological tools contribute to enhancing the effectiveness of cognitive behavioral psychotherapy (CBT). This combined approach, psychotherapy in conjunction with assessment of personality and cognitive functions, is illustrated by two cases, a severe depressive episode with psychotic symptoms and a mixed anxiety-depressive disorder. The order in which CBT, MMPI-2, and MMSE-2 were used in the diagnostic and therapeutic process was determined by the particularities of each case. In the first case, the sequence started with psychotherapy, followed by the administration of blue form MMSE-2, MMPI-2, and red form MMSE-2. In the second case, the cognitive screening with blue form MMSE-2 led to a personality assessment using MMPI-2, followed by red form MMSE-2; reapplication of the MMPI-2 due to the invalidation of the first profile, and finally, psychotherapy. The MMPI-2 protocols gathered useful information that directed the steps of therapeutic intervention: a detailed symptom picture of potentially self-destructive thoughts and behaviors otherwise undetected during the interview. The memory loss and poor concentration were confirmed by MMSE-2 cognitive screening. This combined approach, psychotherapy with psychological assessment, aligns with the trend of adaptation of the psychological services to the everyday life of contemporary man and paves the way for deepening and developing the field.

Keywords: Assessment, cognitive behavioral psychotherapy, MMPI-2, MMSE-2, psychopathology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
397 Dynamic Load Balancing Strategy for Grid Computing

Authors: Belabbas Yagoubi, Yahya Slimani

Abstract:

Workload and resource management are two essential functions provided at the service level of the grid software infrastructure. To improve the global throughput of these software environments, workloads have to be evenly scheduled among the available resources. To realize this goal several load balancing strategies and algorithms have been proposed. Most strategies were developed in mind, assuming homogeneous set of sites linked with homogeneous and fast networks. However for computational grids we must address main new issues, namely: heterogeneity, scalability and adaptability. In this paper, we propose a layered algorithm which achieve dynamic load balancing in grid computing. Based on a tree model, our algorithm presents the following main features: (i) it is layered; (ii) it supports heterogeneity and scalability; and, (iii) it is totally independent from any physical architecture of a grid.

Keywords: Grid computing, load balancing, workload, tree based model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
396 Spike Sorting Method Using Exponential Autoregressive Modeling of Action Potentials

Authors: Sajjad Farashi

Abstract:

Neurons in the nervous system communicate with each other by producing electrical signals called spikes. To investigate the physiological function of nervous system it is essential to study the activity of neurons by detecting and sorting spikes in the recorded signal. In this paper a method is proposed for considering the spike sorting problem which is based on the nonlinear modeling of spikes using exponential autoregressive model. The genetic algorithm is utilized for model parameter estimation. In this regard some selected model coefficients are used as features for sorting purposes. For optimal selection of model coefficients, self-organizing feature map is used. The results show that modeling of spikes with nonlinear autoregressive model outperforms its linear counterpart. Also the extracted features based on the coefficients of exponential autoregressive model are better than wavelet based extracted features and get more compact and well-separated clusters. In the case of spikes different in small-scale structures where principal component analysis fails to get separated clouds in the feature space, the proposed method can obtain well-separated cluster which removes the necessity of applying complex classifiers.

Keywords: Exponential autoregressive model, Neural data, spike sorting, time series modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
395 Performance Analysis of Learning Automata-Based Routing Algorithms in Sparse Graphs

Authors: Z.Farhadpour, Mohammad.R.Meybodi

Abstract:

A number of routing algorithms based on learning automata technique have been proposed for communication networks. How ever, there has been little work on the effects of variation of graph scarcity on the performance of these algorithms. In this paper, a comprehensive study is launched to investigate the performance of LASPA, the first learning automata based solution to the dynamic shortest path routing, across different graph structures with varying scarcities. The sensitivity of three main performance parameters of the algorithm, being average number of processed nodes, scanned edges and average time per update, to variation in graph scarcity is reported. Simulation results indicate that the LASPA algorithm can adapt well to the scarcity variation in graph structure and gives much better outputs than the existing dynamic and fixed algorithms in terms of performance criteria.

Keywords: Learning automata, routing, algorithm, sparse graph

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357