Search results for: Trend based segmentation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16401

Search results for: Trend based segmentation method

16191 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours

Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic

Abstract:

Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.

Keywords: player number, soccer video, HSV color space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
16190 Medical Image Edge Detection Based on Neuro-Fuzzy Approach

Authors: J. Mehena, M. C. Adhikary

Abstract:

Edge detection is one of the most important tasks in image processing. Medical image edge detection plays an important role in segmentation and object recognition of the human organs. It refers to the process of identifying and locating sharp discontinuities in medical images. In this paper, a neuro-fuzzy based approach is introduced to detect the edges for noisy medical images. This approach uses desired number of neuro-fuzzy subdetectors with a postprocessor for detecting the edges of medical images. The internal parameters of the approach are optimized by training pattern using artificial images. The performance of the approach is evaluated on different medical images and compared with popular edge detection algorithm. From the experimental results, it is clear that this approach has better performance than those of other competing edge detection algorithms for noisy medical images.

Keywords: Edge detection, neuro-fuzzy, image segmentation, artificial image, object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
16189 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods

Authors: I. Laurence Aroquiaraj, K. Thangavel

Abstract:

Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.

Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
16188 Simultaneous Segmentation and Recognition of Arabic Characters in an Unconstrained On-Line Cursive Handwritten Document

Authors: Randa I. Elanwar, Mohsen A. Rashwan, Samia A. Mashali

Abstract:

The last two decades witnessed some advances in the development of an Arabic character recognition (CR) system. Arabic CR faces technical problems not encountered in any other language that make Arabic CR systems achieve relatively low accuracy and retards establishing them as market products. We propose the basic stages towards a system that attacks the problem of recognizing online Arabic cursive handwriting. Rule-based methods are used to perform simultaneous segmentation and recognition of word portions in an unconstrained cursively handwritten document using dynamic programming. The output of these stages is in the form of a ranked list of the possible decisions. A new technique for text line separation is also used.

Keywords: Arabic handwriting, character recognition, cursive handwriting, on-line recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
16187 Color Constancy using Superpixel

Authors: Xingsheng Yuan, Zhengzhi Wang

Abstract:

Color constancy algorithms are generally based on the simplified assumption about the spectral distribution or the reflection attributes of the scene surface. However, in reality, these assumptions are too restrictive. The methodology is proposed to extend existing algorithm to applying color constancy locally to image patches rather than globally to the entire images. In this paper, a method based on low-level image features using superpixels is proposed. Superpixel segmentation partition an image into regions that are approximately uniform in size and shape. Instead of using entire pixel set for estimating the illuminant, only superpixels with the most valuable information are used. Based on large scale experiments on real-world scenes, it can be derived that the estimation is more accurate using superpixels than when using the entire image.

Keywords: color constancy, illuminant estimation, superpixel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
16186 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach

Authors: Safak Isik, Ozalp Vayvay

Abstract:

Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.

Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
16185 Video Matting based on Background Estimation

Authors: J.-H. Moon, D.-O Kim, R.-H. Park

Abstract:

This paper presents a video matting method, which extracts the foreground and alpha matte from a video sequence. The objective of video matting is finding the foreground and compositing it with the background that is different from the one in the original image. By finding the motion vectors (MVs) using a sliced block matching algorithm (SBMA), we can extract moving regions from the video sequence under the assumption that the foreground is moving and the background is stationary. In practice, foreground areas are not moving through all frames in an image sequence, thus we accumulate moving regions through the image sequence. The boundaries of moving regions are found by Canny edge detector and the foreground region is separated in each frame of the sequence. Remaining regions are defined as background regions. Extracted backgrounds in each frame are combined and reframed as an integrated single background. Based on the estimated background, we compute the frame difference (FD) of each frame. Regions with the FD larger than the threshold are defined as foreground regions, boundaries of foreground regions are defined as unknown regions and the rest of regions are defined as backgrounds. Segmentation information that classifies an image into foreground, background, and unknown regions is called a trimap. Matting process can extract an alpha matte in the unknown region using pixel information in foreground and background regions, and estimate the values of foreground and background pixels in unknown regions. The proposed video matting approach is adaptive and convenient to extract a foreground automatically and to composite a foreground with a background that is different from the original background.

Keywords: Background estimation, Object segmentation, Blockmatching algorithm, Video matting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
16184 Segmentation of Korean Words on Korean Road Signs

Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon

Abstract:

This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.

Keywords: Segmentation, road signs, characters, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2750
16183 Analysis of Knowledge Management Trend by Bibliometric Approach

Authors: Hsu-Hao Tsai, Jiann-Min Yang

Abstract:

The analysis is mainly concentrating on the knowledge management literatures productivity trend which subjects as “knowledge management" in SSCI database. The purpose what the analysis will propose is to summarize the trend information for knowledge management researchers since core knowledge will be concentrated in core categories. The result indicated that the literature productivity which topic as “knowledge management" is still increasing extremely and will demonstrate the trend by different categories including author, country/territory, institution name, document type, language, publication year, and subject area. Focus on the right categories, you will catch the core research information. This implies that the phenomenon "success breeds success" is more common in higher quality publications.

Keywords: Knowledge Management, SSCI, Bibliometric, Lotka's Law

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1238
16182 A Pairwise-Gaussian-Merging Approach: Towards Genome Segmentation for Copy Number Analysis

Authors: Chih-Hao Chen, Hsing-Chung Lee, Qingdong Ling, Hsiao-Jung Chen, Sun-Chong Wang, Li-Ching Wu, H.C. Lee

Abstract:

Segmentation, filtering out of measurement errors and identification of breakpoints are integral parts of any analysis of microarray data for the detection of copy number variation (CNV). Existing algorithms designed for these tasks have had some successes in the past, but they tend to be O(N2) in either computation time or memory requirement, or both, and the rapid advance of microarray resolution has practically rendered such algorithms useless. Here we propose an algorithm, SAD, that is much faster and much less thirsty for memory – O(N) in both computation time and memory requirement -- and offers higher accuracy. The two key ingredients of SAD are the fundamental assumption in statistics that measurement errors are normally distributed and the mathematical relation that the product of two Gaussians is another Gaussian (function). We have produced a computer program for analyzing CNV based on SAD. In addition to being fast and small it offers two important features: quantitative statistics for predictions and, with only two user-decided parameters, ease of use. Its speed shows little dependence on genomic profile. Running on an average modern computer, it completes CNV analyses for a 262 thousand-probe array in ~1 second and a 1.8 million-probe array in 9 seconds

Keywords: Cancer, pathogenesis, chromosomal aberration, copy number variation, segmentation analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
16181 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
16180 An Efficient Pixel Based Cervical Disc Localization

Authors: J. Preetha, S. Selvarajan

Abstract:

When neck pain is associated with pain, numbness, or weakness in the arm, shoulder, or hand, further investigation is needed as these are symptoms indicating pressure on one or more nerve roots. Evaluation necessitates a neurologic examination and imaging using an MRI/CT scan. A degenerating disc loses some thickness and is less flexible, causing inter-vertebrae space to narrow. A radiologist diagnoses an Intervertebral Disc Degeneration (IDD) by localizing every inter-vertebral disc and identifying the pathology in a disc based on its geometry and appearance. Accurate localizing is necessary to diagnose IDD pathology. But, the underlying image signal is ambiguous: a disc’s intensity overlaps the spinal nerve fibres. Even the structure changes from case to case, with possible spinal column bending (scoliosis). The inter-vertebral disc pathology’s quantitative assessment needs accurate localization of the cervical region discs. In this work, the efficacy of multilevel set segmentation model, to segment cervical discs is investigated. The segmented images are annotated using a simple distance matrix.

Keywords: Intervertebral Disc Degeneration (IDD), Cervical Disc Localization, multilevel set segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
16179 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods

Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk

Abstract:

The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.

Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3780
16178 On Musical Information Geometry with Applications to Sonified Image Analysis

Authors: Shannon Steinmetz, Ellen Gethner

Abstract:

In this paper a theoretical foundation is developed to segment, analyze and associate patterns within audio. We explore this on imagery via sonified audio applied to our segmentation framework. The approach involves a geodesic estimator within the statistical manifold, parameterized by musical centricity. We demonstrate viability by processing a database of random imagery to produce statistically significant clusters of similar imagery content.

Keywords: Sonification, musical information geometry, image content extraction, automated quantification, audio segmentation, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 426
16177 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT

Authors: A. Sindhuja, V. Sadasivam

Abstract:

Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.

Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
16176 A Review on Technology Forecasting Methods and Their Application Area

Authors: Daekook Kang, Wooseok Jang, Hyeonjeong Lee, Hyun Joung No

Abstract:

Technology changes have been acknowledged as a critical factor in determining competitiveness of organization. Under such environment, the right anticipation of technology change has been of huge importance in strategic planning. To monitor technology change, technology forecasting (TF) is frequently utilized. In academic perspective, TF has received great attention for a long time. However, few researches have been conducted to provide overview of the TF literature. Even though some studies deals with review of TF research, they generally focused on type and characteristics of various TF, so hardly provides information about patterns of TF research and which TF method is used in certain technology industry. Accordingly, this study profile developments in and patterns of scholarly research in TF over time. Also, this study investigates which technology industries have used certain TF method and identifies their relationships. This study will help in understanding TF research trend and their application area.

Keywords: Technology forecasting, technology industry, TF trend, technology trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
16175 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: Building detection, tree detection, matched filtering, multiscale, local maximum filtering, watershed segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549
16174 Binarization of Text Region based on Fuzzy Clustering and Histogram Distribution in Signboards

Authors: Jonghyun Park, Toan Nguyen Dinh, Gueesang Lee

Abstract:

In this paper, we present a novel approach to accurately detect text regions including shop name in signboard images with complex background for mobile system applications. The proposed method is based on the combination of text detection using edge profile and region segmentation using fuzzy c-means method. In the first step, we perform an elaborate canny edge operator to extract all possible object edges. Then, edge profile analysis with vertical and horizontal direction is performed on these edge pixels to detect potential text region existing shop name in a signboard. The edge profile and geometrical characteristics of each object contour are carefully examined to construct candidate text regions and classify the main text region from background. Finally, the fuzzy c-means algorithm is performed to segment and detected binarize text region. Experimental results show that our proposed method is robust in text detection with respect to different character size and color and can provide reliable text binarization result.

Keywords: Text detection, edge profile, signboard image, fuzzy clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
16173 Segmentation Problems and Solutions in Printed Degraded Gurmukhi Script

Authors: M. K. Jindal, G. S. Lehal, R. K. Sharma

Abstract:

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper we have proposed a complete solution for segmenting touching characters in all the three zones of printed Gurmukhi script. A study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis. Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone, upper zone and lower zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded printed Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text. We have also discussed a new and useful technique to segment the horizontally overlapping lines.

Keywords: Character Segmentation, Middle Zone, Upper Zone, Lower Zone, Touching Characters, Horizontally Overlapping Lines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
16172 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semianalytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific subparametric elements. Mapping functions are uses as a class of higherorder Lagrange polynomials, special shape functions, Gauss-Lobatto- Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D Elastodynamic Problems, Lagrange Polynomials, G-L-Lquadrature, Decoupled SBFEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
16171 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
16170 Side Effects of Dental Tooth Whitening: Data from Literature

Authors: Saimir Heta, Ilma Robo, Emela Dalloshi, Nevila Alliu, Vera Ostreni

Abstract:

The dental whitening process, beyond the fact that it is a mini-invasive dental treatment, has effects on the dental structure or on the pulp of the tooth where it is applied. The electronic search was performed using keywords to find articles published within the last 10 years about side effects, assessed as such, of the minimally invasive dental bleaching treatment. The aim of the study was to evaluate the side effects of bleaching based on the percentage and type of solution used, where the latter was evaluated on the basic solution used for bleaching. The side effects of bleaching are evaluated in selected articles depending on the method of bleaching application, which means it is carried out with recommended solutions, or with mixtures of alternative solutions or substances based on Internet information. The dental bleaching process has side effects which have not yet been definitively evaluated, experimentally in large samples of individuals or animals (mice or cattle) to arrive at accurate numerical conclusions. The trend of publications about this topic is increasing in recent years, as long as the trend for aesthetic facial treatments, including dental ones, is increasing.

Keywords: Teeth whitening, side effects, permanent teeth, formed dental apex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20
16169 Evaluation of Dynamic Behavior of a Rotor-Bearing System in Operating Conditions

Authors: Mohammad Hadi Jalali, Behrooz Shahriari, Mostafa Ghayour, Saeed Ziaei-Rad, Shahram Yousefi

Abstract:

Most flexible rotors can be considered as beam-like structures. In many cases, rotors are modeled as one-dimensional bodies, made basically of beam-like shafts with rigid bodies attached to them. This approach is typical of rotor dynamics, both analytical and numerical, and several rotor dynamic codes, based on the finite element method, follow this trend. In this paper, a finite element model based on Timoshenko beam elements is utilized to analyze the lateral dynamic behavior of a certain rotor-bearing system in operating conditions.

Keywords: Finite element method, Operational deflection shape, Timoshenko beam elements, Unbalance response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
16168 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic

Authors: Aneta Oblouková, Eva Vítková

Abstract:

The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research were obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in 2019-2021 was also calculated using a chosen method – a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.

Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
16167 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
16166 New Corneal Reflection Removal Method Used In Iris Recognition System

Authors: Walid Aydi, Nouri Masmoudi, Lotfi Kamoun

Abstract:

Images of human iris contain specular highlights due to the reflective properties of the cornea. This corneal reflection causes many errors not only in iris and pupil center estimation but also to locate iris and pupil boundaries especially for methods that use active contour. Each iris recognition system has four steps: Segmentation, Normalization, Encoding and Matching. In order to address the corneal reflection, a novel reflection removal method is proposed in this paper. Comparative experiments of two existing methods for reflection removal method are evaluated on CASIA iris image databases V3. The experimental results reveal that the proposed algorithm provides higher performance in reflection removal.

Keywords: iris, pupil, specular highlights, reflection removal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3207
16165 Economic Forecasting Model in Practice Using the Regression Analysis: The Relationship of Price, Domestic Output, Gross National Product, and Trend Variable of Gas or Oil Production

Authors: Ashiquer Rahman, Ummey Salma, Afrin Jannat

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or Organization of the Petroleum Exporting Countries (OPEC) announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study in relation between the number of wellheads and other economic variables may give us some understanding of the mechanism indicated the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: price of the wellhead, domestic output, and Gross National Product (GNP) constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: Price, domestic output, GNP, trend variable, wildcat activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33
16164 Multilevel Activation Functions For True Color Image Segmentation Using a Self Supervised Parallel Self Organizing Neural Network (PSONN) Architecture: A Comparative Study

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

The paper describes a self supervised parallel self organizing neural network (PSONN) architecture for true color image segmentation. The proposed architecture is a parallel extension of the standard single self organizing neural network architecture (SONN) and comprises an input (source) layer of image information, three single self organizing neural network architectures for segmentation of the different primary color components in a color image scene and one final output (sink) layer for fusion of the segmented color component images. Responses to the different shades of color components are induced in each of the three single network architectures (meant for component level processing) by applying a multilevel version of the characteristic activation function, which maps the input color information into different shades of color components, thereby yielding a processed component color image segmented on the basis of the different shades of component colors. The number of target classes in the segmented image corresponds to the number of levels in the multilevel activation function. Since the multilevel version of the activation function exhibits several subnormal responses to the input color image scene information, the system errors of the three component network architectures are computed from some subnormal linear index of fuzziness of the component color image scenes at the individual level. Several multilevel activation functions are employed for segmentation of the input color image scene using the proposed network architecture. Results of the application of the multilevel activation functions to the PSONN architecture are reported on three real life true color images. The results are substantiated empirically with the correlation coefficients between the segmented images and the original images.

Keywords: Colour image segmentation, fuzzy set theory, multi-level activation functions, parallel self-organizing neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
16163 Factors Related to Behaviour Trend of Roasted Coffee Consumers

Authors: Anocha Kimkong

Abstract:

The purpose of this research was to study the behavior trend factors of consumers to roasted coffee at the petrol station on the route of Rangsit to Nakhon Nayok. The research drew upon data collected from the regular consumers of roasted coffee stands. The majority of respondents was male, 33-39 years old, and holding a bachelor degree. The majority of respondents considered themselves private business proprietors or entrepreneurs and had a monthly income of between 10,000-16,000 baht. The regular coffee consumers spent a minimum coffee expense of between 45 and 300 baht per day. These consumers also displayed good attitude and good motivation which can be ranked as very high. From the hypothesis testing of the behavior trend for the roasted coffee consumers in repurchasing coffee and recommended the coffee to others, the findings revealed that it had a significant correlation. Moreover, the overall attitude towards the marketing mix factors also had a significant correlation with the behavior trend consumers.

Keywords: Factors Related, Consuming Behaviour, Coffee Consumers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3264
16162 Developing Marketing Strategy in Nonmetallic Mineral Industry at the Business Level

Authors: Nader Gharibnavaz, Naser Gharibnavaz

Abstract:

This study extends research on the relationship between marketing strategy and market segmentation by investigating on market segments in the cement industry. Competitive strength and rivals distance from the factory were used as business environment. A three segment (positive, neutral or indifferent and zero zones) were identified as strategic segments. For each segment a marketing strategy (aggressive, defensive and decline) were developed. This study employed data from cement industry to fulfill two objectives, the first is to give a framework to the segmentation of cement industry and the second is developing marketing strategy with varying competitive strength. Fifty six questionnaires containing close-and open-ended questions were collected and analyzed. Results supported the theory that segments tend to be more aggressive than defensive when competitive strength increases. It is concluded that high strength segments follow total market coverage, concentric diversification and frontal attack to their competitors. With decreased competitive strength, Business tends to follow multi-market strategy, product modification/improvement and flank attack to direct competitors for this kind of segments. Segments with weak competitive strength followed focus strategy and decline strategy.

Keywords: Marketing strategy, Competitive strength, Market Segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763