Search results for: online learning higher-order learning attributes.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2803

Search results for: online learning higher-order learning attributes.

553 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images

Authors: Jameela Ali Alkrimi, Loay E. George, Azizah Suliman, Abdul Rahim Ahmad, Karim Al-Jashamy

Abstract:

Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. Anemia is a lack of RBCs is characterized by its level compared to the normal hemoglobin level. In this study, a system based image processing methodology was developed to localize and extract RBCs from microscopic images. Also, the machine learning approach is adopted to classify the localized anemic RBCs images. Several textural and geometrical features are calculated for each extracted RBCs. The training set of features was analyzed using principal component analysis (PCA). With the proposed method, RBCs were isolated in 4.3secondsfrom an image containing 18 to 27 cells. The reasons behind using PCA are its low computation complexity and suitability to find the most discriminating features which can lead to accurate classification decisions. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network RBFNN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained within short time period, and the results became better when PCA was used.

Keywords: Red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3199
552 Innovative Teaching in Systems Analysis and Design - an Action Research Project

Authors: Imelda Smit

Abstract:

Systems Analysis and Design is a key subject in Information Technology courses, but students do not find it easy to cope with, since it is not “precise" like programming and not exact like Mathematics. It is a subject working with many concepts, modeling ideas into visual representations and then translating the pictures into a real life system. To complicate matters users who are not necessarily familiar with computers need to give their inputs to ensure that they get the system the need. Systems Analysis and Design also covers two fields, namely Analysis, focusing on the analysis of the existing system and Design, focusing on the design of the new system. To be able to test the analysis and design of a system, it is necessary to develop a system or at least a prototype of the system to test the validity of the analysis and design. The skills necessary in each aspect differs vastly. Project Management Skills, Database Knowledge and Object Oriented Principles are all necessary. In the context of a developing country where students enter tertiary education underprepared and the digital divide is alive and well, students need to be motivated to learn the necessary skills, get an opportunity to test it in a “live" but protected environment – within the framework of a university. The purpose of this article is to improve the learning experience in Systems Analysis and Design through reviewing the underlying teaching principles used, the teaching tools implemented, the observations made and the reflections that will influence future developments in Systems Analysis and Design. Action research principles allows the focus to be on a few problematic aspects during a particular semester.

Keywords: Action Research, Project Development, Systems Analysis and Design, Technology in Teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
551 A Formal Suite of Object Relational Database Metrics

Authors: Justus S, K Iyakutti

Abstract:

Object Relational Databases (ORDB) are complex in nature than traditional relational databases because they combine the characteristics of both object oriented concepts and relational features of conventional databases. Design of an ORDB demands efficient and quality schema considering the structural, functional and componential traits. This internal quality of the schema is assured by metrics that measure the relevant attributes. This is extended to substantiate the understandability, usability and reliability of the schema, thus assuring external quality of the schema. This work institutes a formalization of ORDB metrics; metric definition, evaluation methodology and the calibration of the metric. Three ORDB schemas were used to conduct the evaluation and the formalization of the metrics. The metrics are calibrated using content and criteria related validity based on the measurability, consistency and reliability of the metrics. Nominal and summative scales are derived based on the evaluated metric values and are standardized. Future works pertaining to ORDB metrics forms the concluding note.

Keywords: Measurements, Product metrics, Metrics calibration, Object-relational database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
550 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
549 Surrogate based Evolutionary Algorithm for Design Optimization

Authors: Maumita Bhattacharya

Abstract:

Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.

Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
548 Specification of Attributes of a Multimedia Presentation for Presentation Manager

Authors: Veli Hakkoymaz, Alpaslan Altunköprü

Abstract:

A multimedia presentation system refers to the integration of a multimedia database with a presentation manager which has the functionality of content selection, organization and playout of multimedia presentations. It requires high performance of involved system components. Starting from multimedia information capture until the presentation delivery, high performance tools are required for accessing, manipulating, storing and retrieving these segments, for transferring and delivering them in a presentation terminal according to a playout order. The organization of presentations is a complex task in that the display order of presentation contents (in time and space) must be specified. A multimedia presentation contains audio, video, images and text media types. The critical decisions for presentation construction include what the contents are, how the contents are organized, and once the decision is made on the organization of the contents of the presentation, it must be conveyed to the end user in the correct organizational order and in a timely fashion. This paper introduces a framework for specification of multimedia presentations and describes the design of sample presentations using this framework from a multimedia database.

Keywords: Multimedia presentation, temporal specification, SMIL, spatial specification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
547 Social Media and Counseling: Opportunities, Risks and Ethical Considerations

Authors: Kyriaki G. Giota, George Kleftaras

Abstract:

The purpose of this article is to briefly review the opportunities that social media present to counselors and psychologists. Particular attention was given to understanding some of the more important common risks inherent in social media and the potential ethical dilemmas which may arise for counselors and psychologists who embrace them in their practice. Key considerations of issues pertinent to an online presence such as multiple relationships, visibility and privacy, maintaining ethical principles and professional boundaries are being discussed.

Keywords: Social Media, Counseling, Risks, Ethics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7971
546 The Effect of User Comments on Traffic Application Usage

Authors: I. Gokasar, G. Bakioglu

Abstract:

With the unprecedented rates of technological improvements, people start to solve their problems with the help of technological tools. According to application stores and websites in which people evaluate and comment on the traffic apps, there are more than 100 traffic applications which have different features with respect to their purpose of usage ranging from the features of traffic apps for public transit modes to the features of traffic apps for private cars. This study focuses on the top 30 traffic applications which were chosen with respect to their download counts. All data about the traffic applications were obtained from related websites. The purpose of this study is to analyze traffic applications in terms of their categorical attributes with the help of developing a regression model. The analysis results suggest that negative interpretations (e.g., being deficient) does not lead to lower star ratings of the applications. However, those negative interpretations result in a smaller increase in star rate. In addition, women use higher star rates than men for the evaluation of traffic applications.

Keywords: Traffic App, real–time information, traffic congestion, regression analysis, dummy variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
545 Artificial Neural Network Approach for Inventory Management Problem

Authors: Govind Shay Sharma, Randhir Singh Baghel

Abstract:

The stock management of raw materials and finished goods is a significant issue for industries in fulfilling customer demand. Optimization of inventory strategies is crucial to enhancing customer service, reducing lead times and costs, and meeting market demand. This paper suggests finding an approach to predict the optimum stock level by utilizing past stocks and forecasting the required quantities. In this paper, we utilized Artificial Neural Network (ANN) to determine the optimal value. The objective of this paper is to discuss the optimized ANN that can find the best solution for the inventory model. In the context of the paper, we mentioned that the k-means algorithm is employed to create homogeneous groups of items. These groups likely exhibit similar characteristics or attributes that make them suitable for being managed using uniform inventory control policies. The paper proposes a method that uses the neural fit algorithm to control the cost of inventory.

Keywords: Artificial Neural Network, inventory management, optimization, distributor center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
544 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
543 Transforming Personal Healthcare through Patient Engagement: An In-Depth Analysis of Tools and Methods for the Digital Age

Authors: Emily Hickmann, Peggy Richter, Maren Kählig, Hannes Schlieter

Abstract:

Patient engagement is a cornerstone of high-quality care and essential for patients with chronic diseases to achieve improved health outcomes. Through digital transformation, possibilities to engage patients in their personal healthcare have multiplied. However, the exploitation of this potential is still lagging. To support the transmission of patient engagement theory into practice, this paper’s objective is to give a state-of-the-art overview of patient engagement tools and methods. A systematic literature review was conducted. Overall, 56 tools and methods were extracted and synthesized according to the four attributes of patient engagement, i.e., personalization, access, commitment, and therapeutic alliance. The results are discussed in terms of their potential to be implemented in digital health solutions under consideration of the “computers are social actors” (CASA) paradigm. It is concluded that digital health can catalyze patient engagement in practice, and a broad future research agenda is formulated.

Keywords: Chronic diseases, digitalization, patient-centeredness, patient empowerment, patient engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76
542 Aesthetics and Robotics: Which Form to give to the Human-Like Robot?

Authors: B. Tondu, N. Bardou

Abstract:

The recent development of humanoid robots has led robot designers to imagine a great variety of anthropomorphic forms for human-like machine. Which form is the best ? We try to answer this question from a double meaning of the anthropomorphism : a positive anthropomorphism corresponing to the realization of an effective anthropomorphic form object and a negative one corresponding to our natural tendency in certain circumstances to give human attributes to non-human beings. We postulate that any humanoid robot is concerned by both these two anthropomorphism kinds. We propose to use gestalt theory and Heider-s balance theory in order to analyze how negative anthropomorphism can influence our perception of human-like robots. From our theoretical approach we conclude that an “even shape" as defined by gestalt theory is not a sufficient condition for a good integration of future humanoid robots into a human community. Aesthetic perception of the robot cannot be splitted from a social perception : a humanoid robot, any how the efforts made for improving its appearance, could be rejected if it is devoted to a task with too high affective implications.

Keywords: Robot appearance, humanoid robot, uncanny valley, human-robot-interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
541 A Critical Review on the Development of a Theoretical Framework for Managing Environmental Impacts of Construction Project

Authors: Sami Mustafa M. E. Ahmed, Noor Amila Wan Abdullah Zawawi, Zulkipli B. Ghazali

Abstract:

Construction industry is considered as one of the main contributor of natural resources depletion, responsible for high level pollution and it is one of the attributes that pose climate changes and other environmental threats. A lot of efforts had and have been done to reduce and control these impacts. Project Environmental Management (PEM) includes the processes required to ensure that the impacts of the project execution to the surrounding environment will remain within the limits stated in legal permits. The main aim of most of researches conducted managing Environmental Impacts (EI) is to protect earth planet from pollution. Those researches are presenting four major environmental elements; Environmental Management Systems (EMS), Environmental Design (ED), Environmental Planning (EP) and Environmental Impacts Assessments (EIA). Although everything has been said about environmental management for construction projects, but almost everything remains to be said and therefore to be explored or rediscovered because incontestably, almost everything remains to be done. This paper aimed at reviewing some of what has been said about PEM. Also one of its objectives is to explore and rediscover the whole view of managing the EI problems by proposing a framework that based on the relation between these environmental researches.

Keywords: Environmental planning, sustainable design, EIA and EMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
540 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
539 Twitter Sentiment Analysis during the Lockdown on New Zealand

Authors: Smah Doeban Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
538 Effectiveness of Business Software Systems Development and Enhancement Projects versus Work Effort Estimation Methods

Authors: Beata Czarnacka-Chrobot

Abstract:

Execution of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) is characterized by the exceptionally low effectiveness, leading to considerable financial losses. The general reason for low effectiveness of such projects is that they are inappropriately managed. One of the factors of proper BSS D&EP management is suitable (reliable and objective) method of project work effort estimation since this is what determines correct estimation of its major attributes: project cost and duration. BSS D&EP is usually considered to be accomplished effectively if product of a planned functionality is delivered without cost and time overrun. The goal of this paper is to prove that choosing approach to the BSS D&EP work effort estimation has a considerable influence on the effectiveness of such projects execution.

Keywords: Business software systems, development and enhancement projects, effectiveness, work effort estimation methods, software product size, software product functionality, project duration, project cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
537 Common Acceptable Cuisine in Multicultural Countries: Towards Building the National Food Identity

Authors: Mohd Zulhilmi Suhaimi, Mohd Salehuddin Mohd Zahari

Abstract:

Common acceptable cuisine usually discussed in the multicultural/ethnic nation as it represents the process of sharing it among the ethnic groups. The common acceptable cuisine is also considered as a precursor in the process of constructing the national food identity within ethnic groups in the multicultural countries. The adaptation of certain ethnic cuisines through its types of food, methods of cooking, ingredients and eating decorum by ethnic groups is believed creating or enhancing the process of formation on common acceptable cuisines in a multicultural country. Malaysia as the multicultural country without doubt is continuing to experience cross-culturing processes among the ethnic groups including cuisine. This study empirically investigates the adaptation level of Malay, Chinese and Indian chefs on each other ethnic cuisine attributes toward the formation on common acceptable cuisines and national food identity.

Keywords: Common acceptable cuisine, adaptation, ethnic, food, identity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
536 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
535 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
534 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)

Authors: Wafa' S.Al-Sharafat, Reyadh Naoum

Abstract:

Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.

Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
533 Effect of Blanching on the Quality of Microwave Vacuum Dried Dill (Anethum graveolens L.)

Authors: Evita Straumite, Zanda Kruma, Ruta Galoburda, Kaiva Saulite

Abstract:

Dill (Anethum graveolens L.) is a popular herb used in many regions, including Baltic countries. Dill is widely used for flavoring foods and beverages due to its pleasant spicy aroma. The aim of this work was to determine the best blanching method for processing of dill prior to microwave vacuum drying based on sensory properties, color and volatile compounds in dried product. Two blanching mediums were used – water and steam, and for part of samples microwave pretreatment was additionally used. Evaluation of dried dill volatile aroma compounds, color changes and sensory attributes was performed. Results showed that blanching significantly influences the quality of dried dill. After evaluation of volatile aroma compounds, color and sensory properties of microwave vacuum dried dill, as the best method for dill pretreatment was established blanching at 90 °C for 30 s.

Keywords: dried dill, sensory panel, sensory properties, aroma compounds, color

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
532 Hairy Beggarticks (Bidens pilosa L. - Asteraceae) Control in Sunflower Fields Using Pre-Emergence Herbicides

Authors: Alexandre M. Brighenti

Abstract:

One of the most damaging species in sunflower crops in Brazil is the hairy beggarticks (Bidens pilosa L.). The large number of seeds, the various vegetative cycles during the year, the staggered germination and the scarcity of selective and effective herbicides to control this weed in sunflower are some of attributes that hinder the effectiveness in controlling hairy beggarticks populations. The experiment was carried out with the objectives of evaluating the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides. The treatments were as follows: S-metolachlor (1,200 and 2,400 g ai ha-1), flumioxazin (60 and 120 g ai ha-1), sulfentrazone (150 and 300 g ai ha-1) and two controls (weedy and weed-free check). Phytotoxicity on sunflower plants, percentage of control and density of hairy beggarticks plants, sunflower stand and plant height, head diameter, oil content and sunflower yield were evaluated. The herbicides flumioxazin and sulfentrazone were the most efficient in hairy beggarticks control. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha-1), flumioxazin (60 g ha-1) and sulfentrazone (150 g ha-1) were the most selective doses for sunflower crop.

Keywords: Flumioxazin, Helianthus annuus, S-metolachlor, sulfentrazone, weeds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
531 A Genetic Algorithm Based Classification Approach for Finding Fault Prone Classes

Authors: Parvinder S. Sandhu, Satish Kumar Dhiman, Anmol Goyal

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. A correlation exists between the fault-proneness of the software and the measurable attributes of the code (i.e. the static metrics) and of the testing (i.e. the dynamic metrics). Early detection of fault-prone software components enables verification experts to concentrate their time and resources on the problem areas of the software system under development. This paper introduces Genetic Algorithm based software fault prediction models with Object-Oriented metrics. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the classification of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results shows that Genetic algorithm approach can be used for finding the fault proneness in object oriented software components.

Keywords: Genetic Algorithms, Software Fault, Classification, Object Oriented Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
530 A Relational Case-Based Reasoning Framework for Project Delivery System Selection

Authors: Yang Cui, Yong Qiang Chen

Abstract:

An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.

Keywords: Relational Cased-based Reasoning, Case-based Reasoning, Project delivery system, Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
529 Selection of Best Band Combination for Soil Salinity Studies using ETM+ Satellite Images (A Case study: Nyshaboor Region,Iran)

Authors: Sanaeinejad, S. H.; A. Astaraei, . P. Mirhoseini.Mousavi, M. Ghaemi,

Abstract:

One of the main environmental problems which affect extensive areas in the world is soil salinity. Traditional data collection methods are neither enough for considering this important environmental problem nor accurate for soil studies. Remote sensing data could overcome most of these problems. Although satellite images are commonly used for these studies, however there are still needs to find the best calibration between the data and real situations in each specified area. Neyshaboor area, North East of Iran was selected as a field study of this research. Landsat satellite images for this area were used in order to prepare suitable learning samples for processing and classifying the images. 300 locations were selected randomly in the area to collect soil samples and finally 273 locations were reselected for further laboratory works and image processing analysis. Electrical conductivity of all samples was measured. Six reflective bands of ETM+ satellite images taken from the study area in 2002 were used for soil salinity classification. The classification was carried out using common algorithms based on the best composition bands. The results showed that the reflective bands 7, 3, 4 and 1 are the best band composition for preparing the color composite images. We also found out, that hybrid classification is a suitable method for identifying and delineation of different salinity classes in the area.

Keywords: Soil salinity, Remote sensing, Image processing, ETM+, Nyshaboor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
528 Assisted Approach as a Tool for Increasing Attention When Using the iPad in a Special Elementary School: Action Research

Authors: Vojtěch Gybas, Libor Klubal, Kateřina Kostolányová

Abstract:

Nowadays, mobile touch technologies, such as tablets, are an integral part of teaching and learning in many special elementary schools. Many special education teachers tend to choose an iPad tablet with iOS. The reason is simple; the iPad has a function for pupils with special educational needs. If we decide to use tablets in teaching, in general, first we should try to stimulate the cognitive abilities of the pupil at the highest level, while holding the pupil’s attention on the task, when working with the device. This paper will describe how student attention can be increased by eliminating the working environment of selected applications, while using iPads with pupils in a special elementary school. Assisted function approach is highly effective at eliminating unwanted touching by a pupil when working on the desktop iPad, thus actively increasing the pupil´s attention while working on specific educational applications. During the various stages of the action, the research was conducted via data collection and interpretation. After a phase of gaining results and ideas for practice and actions, we carried out the check measurement, this time using the tool-assisted approach. In both cases, the pupils worked in the Math Board application and the resulting differences were evident.

Keywords: Special elementary school, mobile touch device, iPad, attention, math board.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1287
527 Objective and Subjective Preconditions for Entrepreneurship – From the Point of View of Enterprise Risk Management

Authors: Maria Luskova, Maria Hudakova, Katarina Buganova

Abstract:

Established objective and subjective preconditions for entrepreneurship, forming the business organically related whole, are the necessary condition of successful entrepreneurial activities. Objective preconditions for entrepreneurship are developed by market economy that should stimulate entrepreneurship by allowing the use of economic opportunities for all those who want to do business in respective field while providing guarantees to all owners and creating a stable business environment for entrepreneurs. Subjective preconditions of entrepreneurship are formed primarily by personal characteristics of the entrepreneur. These are his properties, abilities, skills, physiological and psychological preconditions which may be inherited, inborn or sequentially developed and obtained during his life on the basis of education and influences of surrounding environment. The paper is dealing with issues of objective and subjective preconditions for entrepreneurship and provides their analysis in view of the current situation in Slovakia. It presents risks of the business environment in Slovakia that the Slovak managers considered the most significant in 2014 and defines the dominant attributes of the entrepreneur in the current business environment in Slovakia.

Keywords: Entrepreneurship, innovations, opportunity, risk, uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2783
526 A Survey on Life Science Database Citation Frequency in Scientific Literatures

Authors: Hendry Muljadi, Jiro Araki, Satoru Miyazaki, Asao Fujiyama

Abstract:

There are so many databases of various fields of life sciences available online. To find well-used databases, a survey to measure life science database citation frequency in scientific literatures is done. The survey is done by measuring how many scientific literatures which are available on PubMed Central archive cited a specific life science database. This paper presents and discusses the results of the survey.

Keywords: Life science, database, metadatabase, PubMedCentral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
525 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering

Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel

Abstract:

Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.

Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
524 Utilization of Bioactive Components Produced from Fermented Soybean (Natto) in Beef Burger

Authors: F. M. Abu-Salem, M. H. Mahmoud, A. Y. Gibriel, M. H. El-Kalyoubi, A. A. Abou-Arab Arab

Abstract:

Soybean Natto powder was added to the burger in order to enhance the oxidative stability as well as decreases the microbial spoilage. The soybean bioactives compound (soybean Natto) as antioxidant and antimicrobial were added at level of 1, 2 and 3%. Chemical analysis and physical properties were affected by soybean Natto addition. All the tested soybean Natto additives showed strong antioxidant properties. The microbiological indicators were significantly (P < 0.05) affected by the addition of the soybean Natto. Decreasing trends of different extent were also observed in samples of the treatments for total viable counts, Coliform, Staphylococcus aureus, yeast and molds. Storage period was significantly (P < 0.05) affected on microbial counts in all samples Staphylococcus aureus were the most sensitive microbe followed by Coliform group of the sample containing soybean Natto. Sensory attributes were also performed, added soybean Natto exhibits beany flavor which was clear about samples of 3% soybean Natto.

Keywords: Antioxidant, antimicrobial, bioactive peptide, antioxidant peptides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2346