Search results for: cylindrical coordinates; RTE;transient; coupled conduction radiation; heat transfer; CVFEM; LBM
1046 Development of Composite Adsorbent for Waste Water Treatment Using Adsorption and Electrochemical Regeneration
Authors: H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown, H. Sattar
Abstract:
A unique combination of adsorption and electrochemical regeneration with a proprietary adsorbent material called Nyex 100 was introduced at the University of Manchester for waste water treatment applications. Nyex 100 is based on graphite intercalation compound. It is non porous and electrically conducing adsorbent material. This material exhibited very small BET surface area i.e. 2.75 m2g-1, in consequence, small adsorptive capacities for the adsorption of various organic pollutants were obtained. This work aims to develop composite adsorbent material essentially capable of electrochemical regeneration coupled with improved adsorption characteristics. An organic dye, acid violet 17 was used as standard organic pollutant. The developed composite material was successfully electrochemically regenerated using a DC current of 1 A for 60 minutes. Regeneration efficiency was maintained at around 100% for five adsorption-regeneration cycles.Keywords: Adsorption, electrically conducting adsorbent material, electrochemical regeneration, waste water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32151045 Gas Turbine Optimal PID Tuning by Genetic Algorithm using MSE
Authors: R. Oonsivilai, A. Oonsivilai
Abstract:
Realistic systems generally are systems with various inputs and outputs also known as Multiple Input Multiple Output (MIMO). Such systems usually prove to be complex and difficult to model and control purposes. Therefore, decomposition was used to separate individual inputs and outputs. A PID is assigned to each individual pair to regulate desired settling time. Suitable parameters of PIDs obtained from Genetic Algorithm (GA), using Mean of Squared Error (MSE) objective function.Keywords: Gas Turbine, PID, Genetic Algorithm, Transfer function.Mean of Squared Error
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22411044 Intelligent BRT in Tehran
Authors: P. Parvizi, S. Mohammadi
Abstract:
an intelligent BRT system is necessary when communities looking for new ways to use high capacity rapid transit at a reduced cost.This paper will describe the intelligent control system that works with Datacenter. With the help of GPS system, the data center can monitor the situation of each bus and bus station. Through RFID technology, bus station and traffic light can transfer data with bus and by Wimax communication technology all of parts can talk together; data center learns all information about the location of bus, the arrival of bus in each station and the number of passengers in station and bus.Finally, the paper presents the case study of those theories in Tehran BRT.Keywords: TehranBRT, RFID, Intelligent Transportation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24501043 Use of Detectors Technology for Gamma Ray Issued from Radioactive Isotopes and its Impact on Knowledge of Behavior of the Stationary Case of Solid Phase Holdup
Authors: Abbas Ali Mahmood Karwi
Abstract:
For gamma radiation detection, assemblies having scintillation crystals and a photomultiplier tube, also there is a preamplifier connected to the detector because the signals from photomultiplier tube are of small amplitude. After pre-amplification the signals are sent to the amplifier and then to the multichannel analyser. The multichannel analyser sorts all incoming electrical signals according to their amplitudes and sorts the detected photons in channels covering small energy intervals. The energy range of each channel depends on the gain settings of the multichannel analyser and the high voltage across the photomultiplier tube. The exit spectrum data of the two main isotopes studied ,putting data in biomass program ,process it by Matlab program to get the solid holdup image (solid spherical nuclear fuel)Keywords: Multichannel analyzer, Spectrum, Energies, Fluids holdup, Image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311042 A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title
Authors: J. Moshtagh, L. Eslami
Abstract:
Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.
Keywords: Dead Time, Network Equivalencing, High Voltage Transmission Lines, Single Phase Auto-Reclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15801041 The Preparation of Silicon and Aluminum Extracts from Tuncbilek and Orhaneli Fly Ashes by Alkali Fusion
Authors: M. Sari Yilmaz, N. Karamahmut Mermer
Abstract:
Coal fly ash is formed as a solid waste product from the combustion of coal in coal fired power stations. Huge amounts of fly ash are produced globally every year and are predicted to increase. Nowadays, less than half of the fly ash is used as a raw material for cement manufacturing, construction and the rest of it is disposed as a waste causing yet another environmental concern. For this reason, the recycling of this kind of slurries into useful materials is quite important in terms of economical and environmental aspects. The purpose of this study is to evaluate the Orhaneli and Tuncbilek coal fly ashes for utilization in some industrial applications. Therefore the mineralogical and chemical compositions of these fly ashes were analyzed by X-ray fluorescence spectroscopy, ourier-transform infrared spectrometer, and X-ray diffraction. The silicon (Si) and aluminum (Al) in the fly ashes were activated by alkali fusion technique with sodium hydroxide. The obtained extracts were analyzed for Si and Al content by inductively coupled plasma optical emission spectrometry.Keywords: Extraction, Fly ash, Fusion, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18901040 An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101
Authors: F. Majeed, D. V. Thiel, M. Shahpari
Abstract:
An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.Keywords: Meander line antenna, RFID, Silver ink printing, Impedance matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12821039 Unified Fusion Approach with Application to SLAM
Authors: Xinde Li, Xinhan Huang, Min Wang
Abstract:
In this paper, we propose the pre-processor based on the Evidence Supporting Measure of Similarity (ESMS) filter and also propose the unified fusion approach (UFA) based on the general fusion machine coupled with ESMS filter, which improve the correctness and precision of information fusion in any fields of application. Here we mainly apply the new approach to Simultaneous Localization And Mapping (SLAM) of Pioneer II mobile robots. A simulation experiment was performed, where an autonomous virtual mobile robot with sonar sensors evolves in a virtual world map with obstacles. By comparing the result of building map according to the general fusion machine (here DSmT-based fusing machine and PCR5-based conflict redistributor considereded) coupling with ESMS filter and without ESMS filter, it shows the benefit of the selection of the sources as a prerequisite for improvement of the information fusion, and also testifies the superiority of the UFA in dealing with SLAM.Keywords: DSmT, ESMS filter, SLAM, UFA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13491038 Performance of Chaotic Lu System in CDMA Satellites Communications Systems
Authors: K. Kemih, M. Benslama
Abstract:
This paper investigates the problem of spreading sequence and receiver code synchronization techniques for satellite based CDMA communications systems. The performance of CDMA system depends on the autocorrelation and cross-correlation properties of the used spreading sequences. In this paper we propose the uses of chaotic Lu system to generate binary sequences for spreading codes in a direct sequence spread CDMA system. To minimize multiple access interference (MAI) we propose the use of genetic algorithm for optimum selection of chaotic spreading sequences. To solve the problem of transmitter-receiver synchronization, we use the passivity controls. The concept of semipassivity is defined to find simple conditions which ensure boundedness of the solutions of coupled Lu systems. Numerical results are presented to show the effectiveness of the proposed approach.Keywords: About Chaotic Lu system, synchronization, Spreading sequence, Genetic Algorithm. Passive System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17461037 Biodiesel Production from Soybean Oil over TiO2 Supported nano-ZnO
Authors: Mbala Mukenga, Edison Muzenda, Kalala Jalama, Reinout Meijboom
Abstract:
TiO2 supported nano-ZnO catalyst was prepared by deposition-precipitation and tested for the trans-esterification reaction of soybean oil to biodiesel. The TiO2 support stabilized the nano-ZnO in a dispersed form with limited crystallite size compared to the unsupported ZnO. The final ZnO dispersion and crystallite size and the material transfer resistance in the catalyst significantly influenced the supported nano-ZnO catalyst performance.Keywords: nano-ZnO, soybean oil, TiO2, trans-esterification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19961036 Thermal Securing of Electrical Contacts inside Oil Power Transformers
Authors: Ioan Rusu
Abstract:
In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.
Keywords: Power transformer, oil insulatation, electric contacts, gases, gas relay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6471035 Inferring the Dynamics of “Hidden“ Neurons from Electrophysiological Recordings
Authors: Valeri A. Makarov, Nazareth P. Castellanos
Abstract:
Statistical analysis of electrophysiological recordings obtained under, e.g. tactile, stimulation frequently suggests participation in the network dynamics of experimentally unobserved “hidden" neurons. Such interneurons making synapses to experimentally recorded neurons may strongly alter their dynamical responses to the stimuli. We propose a mathematical method that formalizes this possibility and provides an algorithm for inferring on the presence and dynamics of hidden neurons based on fitting of the experimental data to spike trains generated by the network model. The model makes use of Integrate and Fire neurons “chemically" coupled through exponentially decaying synaptic currents. We test the method on simulated data and also provide an example of its application to the experimental recording from the Dorsal Column Nuclei neurons of the rat under tactile stimulation of a hind limb.Keywords: Integrate and fire neuron, neural network models, spike trains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13401034 Modeling of Temperature Fields of Gas Turbine Blades by Considering Heat Flow and Specified Temperature
Authors: C. Ardil
Abstract:
A new mathematical model for calculating the temperature field of the profile part of the cooled blades of gas turbines is developed. The theoretical substantiation of the method is based on the application of the method of potential theory (the method of boundary integral equations). The effectiveness of the implementation of the developed mathematical model is confirmed on the basis of a computational experiment.Keywords: Modeling of temperature fields, gas turbine blades, integral methods, cooled blades, gas turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601033 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes
Authors: Aymen Laadhari
Abstract:
We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.Keywords: Finite element method, Newton method, level set, Navier-Stokes, inextensible membrane, liquid drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12941032 Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production
Authors: Nikhil, Ari Visa, Chin-Chao Chen, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.Keywords: Biohydrogen, bioprocess modeling, clusteringhybrid regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17761031 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix
Authors: Comingstarful Marthong, Deba Kumar Sarma
Abstract:
Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20501030 Next Generation Networks and Their Relation with Ad-hoc Networks
Authors: Hamid Barati, Ali Movaghar, Ali Barati, Arash Azizi Mazreah , Ehsan Shahsavari Gogheri, Faranak Mohsenzadeh
Abstract:
The communication networks development and advancement during two last decades has been toward a single goal and that is gradual change from circuit-switched networks to packed switched ones. Today a lot of networks operates are trying to transform the public telephone networks to multipurpose packed switch. This new achievement is generally called "next generation networks". In fact, the next generation networks enable the operators to transfer every kind of services (sound, data and video) on a network. First, in this report the definition, characteristics and next generation networks services and then ad-hoc networks role in the next generation networks are studied.Keywords: NGNs services, Ad-hoc Networks, NGN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16941029 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12951028 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive
Authors: K. Jayakumar, S. Thangavel
Abstract:
In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10171027 Chelate Enhanced Modified Fenton Treatment for Polycyclic Aromatic Hydrocarbons Contaminated Soils
Authors: Venny, S. Gan, H. K. Ng
Abstract:
This work focuses on the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil via Fenton treatment coupled with novel chelating agent (CA). The feasibility of chelated modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soils was investigated in laboratory scale batch experiments at natural pH. The effects of adding inorganic and organic CA are discussed. Experiments using different iron catalyst to CA ratios were conducted, resulting in hydrogen peroxide: soil: iron: CA weight ratios that varied from 0.049: 1: 0.072: 0.008 to 0.049: 1: 0.072: 0.067. The results revealed that (1) inorganic CA could provide much higher PAH removal efficiency and (2) most of the proposed CAs were more efficient than commonly utilised CAs even at mild ratio. This work highlights the potential of novel chelating agents in maintaining a suitable environment throughout the Fenton treatment, particularly in soils with high buffer capacity.Keywords: Chelating agent, Fenton, hydroxyl radicals, polycyclic aromatic hydrocarbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18771026 Two Approaches to Code Mobility in an Agent-based E-commerce System
Authors: Costin Badica, Maria Ganzha, Marcin Paprzycki
Abstract:
Recently, a model multi-agent e-commerce system based on mobile buyer agents and transfer of strategy modules was proposed. In this paper a different approach to code mobility is introduced, where agent mobility is replaced by local agent creation supplemented by similar code mobility as in the original proposal. UML diagrams of agents involved in the new approach to mobility and the augmented system activity diagram are presented and discussed.
Keywords: Agent system, agent mobility, code mobility, e-commerce, UML formalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14331025 Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain
Authors: Sergio Pissanetzky
Abstract:
The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.
Keywords: AI, artificial intelligence, complex system, object oriented, OO, refactoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20881024 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process
Authors: Vinod Kumar, Jatinder Kumar
Abstract:
The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.Keywords: Stress, MRR, Flow, Ultrasonic Machining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28091023 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm
Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou
Abstract:
Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and Weight on Bit (WOB) used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036 m3/h and -2.374 m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. The best combination of funnel viscosity, final shear force and drilling time is obtained through quantitative calculation. The minimum loss rate of lost circulation wells in Shunbei area is 10 m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.
Keywords: Drilling fluid, loss rate, main controlling factors, Unmanned Intervention Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991022 Using Non-Linear Programming Techniques in Determination of the Most Probable Slip Surface in 3D Slopes
Authors: M. M. Toufigh, A. R. Ahangarasr, A. Ouria
Abstract:
Among many different methods that are used for optimizing different engineering problems mathematical (numerical) optimization techniques are very important because they can easily be used and are consistent with most of engineering problems. Many studies and researches are done on stability analysis of three dimensional (3D) slopes and the relating probable slip surfaces and determination of factors of safety, but in most of them force equilibrium equations, as in simplified 2D methods, are considered only in two directions. In other words for decreasing mathematical calculations and also for simplifying purposes the force equilibrium equation in 3rd direction is omitted. This point is considered in just a few numbers of previous studies and most of them have only given a factor of safety and they haven-t made enough effort to find the most probable slip surface. In this study shapes of the slip surfaces are modeled, and safety factors are calculated considering the force equilibrium equations in all three directions, and also the moment equilibrium equation is satisfied in the slip direction, and using nonlinear programming techniques the shape of the most probable slip surface is determined. The model which is used in this study is a 3D model that is composed of three upper surfaces which can cover all defined and probable slip surfaces. In this research the meshing process is done in a way that all elements are prismatic with quadrilateral cross sections, and the safety factor is defined on this quadrilateral surface in the base of the element which is a part of the whole slip surface. The method that is used in this study to find the most probable slip surface is the non-linear programming method in which the objective function that must get optimized is the factor of safety that is a function of the soil properties and the coordinates of the nodes on the probable slip surface. The main reason for using non-linear programming method in this research is its quick convergence to the desired responses. The final results show a good compatibility with the previously used classical and 2D methods and also show a reasonable convergence speed.Keywords: Non-linear programming, numerical optimization, slope stability, 3D analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171021 Application of Micro-continuum Approach in the Estimation of Snow Drift Density, Velocity and Mass Transport in Hilly Bound Cold Regions
Authors: Mahmoud Zarrini, R. N. Pralhad
Abstract:
We estimate snow velocity and snow drift density on hilly terrain under the assumption that the drifting snow mass can be represented using a micro-continuum approach (i.e. using a nonclassical mechanics approach assuming a class of fluids for which basic equations of mass, momentum and energy have been derived). In our model, the theory of coupled stress fluids proposed by Stokes [1] has been employed for the computation of flow parameters. Analyses of bulk drift velocity, drift density, drift transport and mass transport of snow particles have been carried out and computations made, considering various parametric effects. Results are compared with those of classical mechanics (logarithmic wind profile). The results indicate that particle size affects the flow characteristics significantly.
Keywords: Snow velocity, snow drift density, mass transport of snow particles, snow avalanche.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17551020 Analysis and Design of a Novel Active Soft Switched Phase-Shifted Full Bridge Converter
Authors: Naga Brahmendra Yadav Gorla, Dr. Lakshmi Narasamma N
Abstract:
This paper proposes an active soft-switching circuit for bridge converters aiming to improve the power conversion efficiency. The proposed circuit achieves loss-less switching for both main and auxiliary switches without increasing the main switch current/voltage rating. A winding coupled to the primary of power transformer ensures ZCS for the auxiliary switches during their turn-off. A 350 W, 100 kHz phase shifted full bridge (PSFB) converter is built to validate the analysis and design. Theoretical loss calculations for proposed circuit is presented. The proposed circuit is compared with passive soft switched PSFB in terms of efficiency and loss in duty cycle.Keywords: soft switching, passive soft switching, ZVS, ZCS, PSFB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27221019 Determination of the Element Contents in Turkish Coffee and Effect of Sugar Addition
Authors: M. M. Fercan, A. S. Kipcak, O. Dere Ozdemir, M. B. Piskin, E. Moroydor Derun
Abstract:
Coffee is a widely consumed beverage with many components such as caffeine, flavonoids, phenolic compounds, and minerals. Coffee consumption continues to increase due to its physiological effects, its pleasant taste, and aroma. Robusta and Arabica are two basic types of coffee beans. The coffee bean used for Turkish coffee is Arabica. There are many elements in the structure of coffee and have various effect on human health such as Sodium (Na), Boron (B), Magnesium (Mg) and Iron (Fe). In this study, the amounts of Mg, Na, Fe, and B contents in Turkish coffee are determined and effect of sugar addition is investigated for conscious consumption. The analysis of the contents of coffees was determined by using inductively coupled plasma optical emission spectrometry (ICP-OES). From the results of the experiments the Mg, Na, Fe and B contents of Turkish coffee after sugar addition were found as 19.83, 1.04, 0.02, 0.21 ppm, while without using sugar these concentrations were found 21.46, 0.81, 0.008 and 0.16 ppm. In addition, element contents were calculated for 1, 3 and 5 cups of coffee in order to investigate the health effects.Keywords: Health effect, ICP-OES, sugar, Turkish coffee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18511018 Balance of Rural and Urban Structures
Authors: Ehrenstorfer Barbara, Peherstorfer Tanja, Nový Jan
Abstract:
Urbanization and regionalization are two different approaches when it comes to economical structures and development, infrastructure and mobility, quality of life and living, education, social cohesion and many other topics. At first glance, the structures associated with urbanization and regionalization seems to be contradicting. This paper discusses possibilities of transfer and cooperation between rural and urban structures. An empirical investigation contributed to reveal scenarios of supposable forms of exchange and cooperation of remote rural areas and big cities.Keywords: Learning Regions, Quality of Life and Living, Regional and Rural Development, Social Innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371017 Automat Control of the Aircrafts- Lateral Movement using the Dynamic Inversion
Authors: Mihai Lungu, Romulus Lungu, Lucian Grigorie
Abstract:
The paper presents a new system for the automat control of the aircrafts- flight in lateral plane using the cinematic model and the dynamic inversion. Starting from the equations of the aircrafts- lateral movement, the authors use two axes systems and obtained a control law that cancels the lateral deviation of the flying objects from the runway line. This system makes the aircrafts- direction angle to follow the direction angle of the runway line. Simulations in Matlab/Simulink have been done for different aircraft-s initial points and direction angles. The inconvenience of this system is the long duration of the “transient regime". That is why this system can be used independently, but the results are not very good; thus, it can be a part (subsystem) of other systems. The main system that cancels the lateral deviation from the runway line is based on dynamic inversion and uses, as subsystem, the control system for the lateral movement using the cinematic model. Using complex Matlab/Simulink models, the authors obtained the time evolution of the direction angle and the time evolution of the aircraft lateral deviation with respect to the runway line, for different values of the initial direction angle and for different wind types. The system has a very good behavior for all initial direction angles and wind types.Keywords: Direction angle, Dynamic inversion, Lateraldeviation, Lateral movement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936