Search results for: Support Vector Machine Training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4061

Search results for: Support Vector Machine Training

1841 Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

Authors: Ganesh Kothapalli, Mohammed Y. Hassan

Abstract:

The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator-s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters.

Keywords: excavator, fuzzy control, hydraulics, mining, type-2

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1840 Topology-Based Character Recognition Method for Coin Date Detection

Authors: Xingyu Pan, Laure Tougne

Abstract:

For recognizing coins, the graved release date is important information to identify precisely its monetary type. However, reading characters in coins meets much more obstacles than traditional character recognition tasks in the other fields, such as reading scanned documents or license plates. To address this challenging issue in a numismatic context, we propose a training-free approach dedicated to detection and recognition of the release date of the coin. In the first step, the date zone is detected by comparing histogram features; in the second step, a topology-based algorithm is introduced to recognize coin numbers with various font types represented by binary gradient map. Our method obtained a recognition rate of 92% on synthetic data and of 44% on real noised data.

Keywords: Coin, detection, character recognition, topology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
1839 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
1838 Performance Analysis of Parallel Client-Server Model Versus Parallel Mobile Agent Model

Authors: K. B. Manwade, G. A. Patil

Abstract:

Mobile agent has motivated the creation of a new methodology for parallel computing. We introduce a methodology for the creation of parallel applications on the network. The proposed Mobile-Agent parallel processing framework uses multiple Javamobile Agents. Each mobile agent can travel to the specified machine in the network to perform its tasks. We also introduce the concept of master agent, which is Java object capable of implementing a particular task of the target application. Master agent is dynamically assigns the task to mobile agents. We have developed and tested a prototype application: Mobile Agent Based Parallel Computing. Boosted by the inherited benefits of using Java and Mobile Agents, our proposed methodology breaks the barriers between the environments, and could potentially exploit in a parallel manner all the available computational resources on the network. This paper elaborates performance issues of a mobile agent for parallel computing.

Keywords: Parallel Computing, Mobile Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
1837 Fractal - Wavelet Based Techniques for Improving the Artificial Neural Network Models

Authors: Reza Bazargan Lari, Mohammad H. Fattahi

Abstract:

Natural resources management including water resources requires reliable estimations of time variant environmental parameters. Small improvements in the estimation of environmental parameters would result in grate effects on managing decisions. Noise reduction using wavelet techniques is an effective approach for preprocessing of practical data sets. Predictability enhancement of the river flow time series are assessed using fractal approaches before and after applying wavelet based preprocessing. Time series correlation and persistency, the minimum sufficient length for training the predicting model and the maximum valid length of predictions were also investigated through a fractal assessment.

Keywords: Wavelet, de-noising, predictability, time series fractal analysis, valid length, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
1836 MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music

Authors: Brigitte Rafael, Stefan M. Oertl

Abstract:

Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.

Keywords: Pattern Recognition, Music Information Retrieval, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1835 Performance of Laboratory Experiments over the Internet: Towards an Intelligent Tutoring System on Automatic Control

Authors: Kleanthis Prekas, Maria Rangoussi, Savvas Vassiliadis, George Prekas

Abstract:

Intelligent tutoring systems constitute an evolution of computer-aided educational software. We present here the modules of an intelligent tutoring system for Automatic Control, developed in our department. Through the software application developed,students can perform complete automatic control laboratory experiments, either over the departmental local area network or over the Internet. Monitoring of access to the system (local as well as international), along with student performance statistics, has yielded strongly encouraging results (as of fall 2004), despite the advanced technical content of the presented paradigm, thus showing the potential of the system developed for education and for training.

Keywords: Automatic control, tutoring system, Internet access, laboratory experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
1834 Organizational Socialization Levels in Nurses

Authors: M. Aslan, A. Karaaslan, S. Selcuk

Abstract:

The research was conducted in order to determine the organizational socialization levels of nurses working in hospitals in the form of a descriptive study. The research population was composed of nurses employed in public and private sector hospitals in the province of Konya with 0-3 years of professional experience in the hospitals (N=1200); and the sample was composed of 495 nurses that accepted to take part in the study voluntarily. Statistical evaluation of data was conducted in SPSS.16 software. The results of the study revealed that the total score taken by nurses at the organizational socialization scale was 262.95; and this was close to the maximum score. Particularly the departmental socialization sub-dimension proved to be higher in comparison to the other two dimensions (organization socialization and task socialization). Statistically meaningful differences were found in the levels of organization socialization in relation to the status of organizational orientation training, level of education and age group.

Keywords: Nurses, Newcomers, Organizational Socialization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
1833 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
1832 Multi-Agent Systems for Intelligent Clustering

Authors: Jung-Eun Park, Kyung-Whan Oh

Abstract:

Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.

Keywords: Intelligent Clustering, Multi-Agent System, PCA, SOM, VC(Variance Criterion)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
1831 Instability Problem of Turbo-Machines with Radial Distortion Problems

Authors: Yasuo Obikane, Sofiane Khelladi

Abstract:

In the upstream we place a piece of ring and rotate it with 83Hz, 166Hz, 333Hz,and 666H to find the effect of the periodic distortion.In the experiment this type of the perturbation will not allow since the mechanical failure of any parts of the equipment in the upstream will destroy the blade system. This type of study will be only possible by CFD. We use two pumps NS32 (ENSAM) and three blades pump (Tamagawa Univ). The benchmark computations were performed without perturbation parts, and confirm the computational results well agreement in head-flow rate. We obtained the pressure fluctuation growth rate that is representing the global instability of the turbo-system. The fluctuating torque components were 0.01Nm(5000rpm), 0.1Nm(10000rmp), 0.04Nm(20000rmp), 0.15Nm( 40000rmp) respectively. Only for 10000rpm(166Hz) the output toque was random, and it implies that it creates unsteady flow by separations on the blades, and will reduce the pressure loss significantly

Keywords: inlet distorsion, perturbation, turbo-machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1830 A Novel Technique for Ferroresonance Identification in Distribution Networks

Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor

Abstract:

Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.

Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1829 A Fuzzy Model and Tool to Analyze SIVD Diseases Using TMS

Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana

Abstract:

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia and to measure the positive effect, if any, of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Keywords: TMS, SIVD, Electromiography , Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
1828 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

Authors: Vinod Kumar, Jatinder Kumar

Abstract:

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

Keywords: Stress, MRR, Flow, Ultrasonic Machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
1827 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the main gas flow due to shock waves, which produces a desirable side force more lucratively for vectoring. The results from the parametric studies of the case on hand reveal that the shock induced self-impinging supersonic secondary double jet is more efficient in certain locations at the divergent region of a CD nozzle than a case with supersonic single jet with same mass flow rate. We observed that the best axial location of the self-impinging supersonic secondary double jet nozzle with a given jet interaction angle, built-in to a CD nozzle having area ratio 1.797, is 0.991 times the primary nozzle throat diameter from the throat location. We also observed that the flexible steering is possible after invoking ON/OFF facility to the secondary nozzles for meeting the onboard mission requirements. Through our case studies we concluded that the supersonic self-impinging secondary double jet at predesigned jet interaction angle and location can provide more flexible steering options facilitating with 8.81% higher thrust vectoring efficiency than the conventional supersonic single secondary jet without compromising the payload capability of any supersonic aerospace vehicle.

Keywords: Fluidic thrust vectoring, rocket steering, self-impinging secondary supersonic jet, TVC in aerospace vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
1826 Bifurcation Analysis in a Two-neuron System with Different Time Delays

Authors: Changjin Xu

Abstract:

In this paper, we consider a two-neuron system with time-delayed connections between neurons. By analyzing the associated characteristic transcendental equation, its linear stability is investigated and Hopf bifurcation is demonstrated. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Some numerical simulation results are given to support the theoretical predictions. Finally, main conclusions are given.

Keywords: Two-neuron system, delay, stability, Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
1825 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process

Authors: S. Ghorbani, N. I. Polushin

Abstract:

The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.

Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
1824 A Case Study on How Outreach Programmes Form and Develop the Biomedical Engineering Community in Hong Kong

Authors: Sum Lau, Wing Chung Cleo Lau, Wing Yan Chu, Long Ching Ip, Wan Yin Lo, Jo Long Sam Yau, Ka Ho Hui, Sze Yi Mak

Abstract:

Biomedical engineering (BME) is an interdisciplinary subject where knowledge about biology and medicine is applied to novel applications, solving clinical problems. This subject is crucial for cities such as Hong Kong where the burden on the medical system is rising due to reasons like ageing population. Hong Kong, who is actively boosting technological advancements in recent years, sets BME, or biotechnology as a major category, as reflected in the 2018-19 Budget where biotechnology was one of the four pillars for development. Over the years, while resources in terms of money and space have been provided, there has been a lack of talents, expressed by both the academia and industry. While exogenous factors, such as COVID-19, may have hindered talents from outside Hong Kong to come, endogenous factors should also be considered. In particular, since there are already a few local universities offering BME programmes, their curriculum or style of education requires to be reviewed to intensify the network of the BME community and support post-academic career development. It was observed that while undergraduate (UG) studies focus on knowledge teaching with some technical training and postgraduate (PG) programmes concentrate on upstream research, the programmes are generally confined to the academic sector and lack connections to the industry. In light of that, a “Biomedical Innovation and Outreach Programme 2022” (“B.I.O.2022”) was held to connect students and professors from academia with clinicians and engineers from the industry, serving as a comparative approach to conventional education methods (UG and PG programmes from tertiary institutions). Over 100 participants, including undergraduates, postgraduates, secondary school students, researchers, engineers, and clinicians, took part in various outreach events such as conference and site visits, all held from June to July 2022. As a case study, this programme aimed to tackle the aforementioned problems with the theme of “4Cs” (connection, communication, collaboration, and commercialisation). The effectiveness of the programme is investigated by its ability to serve as adult and continuing education, and the effectiveness of causing social change to tackle current societal challenges, with the focus on tackling the lack of talents engaging in BME. In this study, B.I.O. 2022 is found to be able to complement the traditional educational methods, particularly in terms of knowledge exchange between the academia and the industry. With enhanced communications between participants from different career stages, there were students who followed up to visit or even work with the professionals after the programme. Furthermore, connections between the academia and industry could foster the generation of new knowledge, which ultimately pointed to commercialisation, adding value to the BME industry while filling the gap in terms of human resources. With the continuation of events like B.I.O. 2022, it provides a promising starting point for development and relationship strengthening of a BME community in Hong Kong, and shows potential as an alternative way of adult education or learning with societal benefits.

Keywords: Biomedical engineering, adult education, social change, comparative methods, lifelong learning, innovation, professional community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 437
1823 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: Retrieval, generative, deep learning, response generation, knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
1822 Rail Corridors between Minimal Use of Train and Unsystematic Tightening of Population: A Methodological Essay

Authors: A. Benaiche

Abstract:

In the current situation, the automobile has become the main means of locomotion. It allows traveling long distances, encouraging urban sprawl. To counteract this trend, the train is often proposed as an alternative to the car. Simultaneously, the favoring of urban development around public transport nodes such as railway stations is one of the main issues of the coordination between urban planning and transportation and the keystone of the sustainable urban development implementation. In this context, this paper focuses on the study of the spatial structuring dynamics around the railway. Specifically, it is a question of studying the demographic dynamics in rail corridors of Nantes, Angers and Le Mans (Western France) basing on the radiation of railway stations. Consequently, the methodology is concentrated on the knowledge of demographic weight and gains of these corridors, the index of urban intensity and the mobility behaviors (workers’ travels, scholars' travels, modal practices of travels). The perimeter considered to define the rail corridors includes the communes of urban area which have a railway station and communes with an access time to the railway station is less than fifteen minutes by car (time specified by the Regional Transport Scheme of Travelers). The main tools used are the statistical data from the census of population, the basis of detailed tables and databases on mobility flows. The study reveals that the population is not tightened along rail corridors and train use is minimal despite the presence of a nearby railway station. These results lead to propose guidelines to make the train, a real vector of mobility across the rail corridors.

Keywords: Coordination between urban planning and transportation, Rail corridors, Railway stations, Travels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
1821 Computer Vision Applied to Flower, Fruit and Vegetable Processing

Authors: Luis Gracia, Carlos Perez-Vidal, Carlos Gracia

Abstract:

This paper presents the theoretical background and the real implementation of an automated computer system to introduce machine vision in flower, fruit and vegetable processing for recollection, cutting, packaging, classification, or fumigation tasks. The considerations and implementation issues presented in this work can be applied to a wide range of varieties of flowers, fruits and vegetables, although some of them are especially relevant due to the great amount of units that are manipulated and processed each year over the world. The computer vision algorithms developed in this work are shown in detail, and can be easily extended to other applications. A special attention is given to the electromagnetic compatibility in order to avoid noisy images. Furthermore, real experimentation has been carried out in order to validate the developed application. In particular, the tests show that the method has good robustness and high success percentage in the object characterization.

Keywords: Image processing, Vision system, Automation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3321
1820 Correlation-based Feature Selection using Ant Colony Optimization

Authors: M. Sadeghzadeh, M. Teshnehlab

Abstract:

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant colony optimization, Classification, Datamining, Feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
1819 Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions

Authors: K. M. Faraoun, A. Boukelif

Abstract:

In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a back propagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.

Keywords: Neural networks, Intrusion detection, learningenhancement, K-means clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609
1818 Methodology for Quantifying the Meaning of Information in Biological Systems

Authors: Richard L. Summers

Abstract:

The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems is fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.

Keywords: Semiotic meaning, Shannon information, Lyapunov, living systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
1817 Modeling and Simulation of Flow Shop Scheduling Problem through Petri Net Tools

Authors: Joselito Medina Marin, Norberto Hernández Romero, Juan Carlos Seck Tuoh Mora, Erick S. Martinez Gomez

Abstract:

The Flow Shop Scheduling Problem (FSSP) is a typical problem that is faced by production planning managers in Flexible Manufacturing Systems (FMS). This problem consists in finding the optimal scheduling to carry out a set of jobs, which are processed in a set of machines or shared resources. Moreover, all the jobs are processed in the same machine sequence. As in all the scheduling problems, the makespan can be obtained by drawing the Gantt chart according to the operations order, among other alternatives. On this way, an FMS presenting the FSSP can be modeled by Petri nets (PNs), which are a powerful tool that has been used to model and analyze discrete event systems. Then, the makespan can be obtained by simulating the PN through the token game animation and incidence matrix. In this work, we present an adaptive PN to obtain the makespan of FSSP by applying PN analytical tools.

Keywords: Flow-shop scheduling problem, makespan, Petri nets, state equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
1816 The Intensity of Load Experienced by Female Basketball Players during Competitive Games

Authors: Tomáš Vencúrik, Jiří Nykodým

Abstract:

This study compares the intensity of game load among player positions and between the 1st and the 2nd half of the games. Two guards, three forwards, and three centers (female basketball players) participated in this study. The heart rate (HR) and its development were monitored during two competitive games. Statistically insignificant differences in the intensity of game load were recorded between guards, forwards, and centers below and above 85% of the maximal heart rate (HRmax) and in the mean HR as % of HRmax (87.81±3.79%, 87.02±4.37%, and 88.76±3.54%, respectively). Moreover, when the 1st and the 2nd half of the games were compared in the mean HR (87.89±4.18% vs. 88.14±3.63% of HRmax), no statistical significance was recorded. This information can be useful for coaching staff, to manage and to precisely plan the training process.

Keywords: Game load, heart rate, player positions, the 1st and the 2nd half of the games.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
1815 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
1814 Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.

Keywords: CBIR, Color Global Histogram, Color Local Histogram, Weak Segmentation, Euclidean Distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1813 Virtual Mechanical Engineering Education – A Case Study

Authors: S. H. R. Lo

Abstract:

Virtual engineering technology has undergone rapid progress in recent years and is being adopted increasingly by manufacturing companies of many engineering disciplines. There is an increasing demand from industry for qualified virtual engineers. The qualified virtual engineers should have the ability of applying engineering principles and mechanical design methods within the commercial software package environment. It is a challenge to the engineering education in universities which traditionally tends to lack the integration of knowledge and skills required for solving real world problems. In this paper, a case study shows some recent development of a MSc Mechanical Engineering course at Department of Engineering and Technology in MMU, and in particular, two units Simulation of Mechanical Systems(SMS) and Computer Aided Fatigue Analysis(CAFA) that emphasize virtual engineering education and promote integration of knowledge acquisition, skill training and industrial application.

Keywords: Computational modelling and simulation, mechanical engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
1812 Automata Theory Approach for Solving Frequent Pattern Discovery Problems

Authors: Renáta Iváncsy, István Vajk

Abstract:

The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.

Keywords: Frequent pattern discovery, graph mining, pushdownautomaton, sequence mining, state machine, tree mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626