Search results for: selection combining.
1171 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.
Keywords: Cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431170 Combining Ant Colony Optimization and Dynamic Programming for Solving a Dynamic Facility Layout Problem
Authors: A. Udomsakdigool, S. Bangsaranthip
Abstract:
This paper presents an algorithm which combining ant colony optimization in the dynamic programming for solving a dynamic facility layout problem. The problem is separated into 2 phases, static and dynamic phase. In static phase, ant colony optimization is used to find the best ranked of layouts for each period. Then the dynamic programming (DP) procedure is performed in the dynamic phase to evaluate the layout set during multi-period planning horizon. The proposed algorithm is tested over many problems with size ranging from 9 to 49 departments, 2 and 4 periods. The experimental results show that the proposed method is an alternative way for the plant layout designer to determine the layouts during multi-period planning horizon.Keywords: Ant colony optimization, Dynamicprogramming, Dynamic facility layout planning, Metaheuristic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19481169 Simultaneous Clustering and Feature Selection Method for Gene Expression Data
Authors: T. Chandrasekhar, K. Thangavel, E. N. Sathishkumar
Abstract:
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. It is used to identify the co-expressed genes in specific cells or tissues that are actively used to make proteins. This method is used to analysis the gene expression, an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying co-expressed genes, biologically relevant groupings of genes and samples. In this work K-Means algorithms has been applied for clustering of Gene Expression Data. Further, rough set based Quick reduct algorithm has been applied for each cluster in order to select the most similar genes having high correlation. Then the ACV measure is used to evaluate the refined clusters and classification is used to evaluate the proposed method. They could identify compact clusters with feature selection method used to genes are selected.
Keywords: Clustering, Feature selection, Gene expression data, Quick reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19691168 Application of Association Rule Mining in Supplier Selection Criteria
Authors: A. Haery, N. Salmasi, M. Modarres Yazdi, H. Iranmanesh
Abstract:
In this paper the application of rule mining in order to review the effective factors on supplier selection is reviewed in the following three sections 1) criteria selecting and information gathering 2) performing association rule mining 3) validation and constituting rule base. Afterwards a few of applications of rule base is explained. Then, a numerical example is presented and analyzed by Clementine software. Some of extracted rules as well as the results are presented at the end.Keywords: Association rule mining, data mining, supplierselection criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19281167 Active Segment Selection Method in EEG Classification Using Fractal Features
Authors: Samira Vafaye Eslahi
Abstract:
BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.
Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21221166 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37391165 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Authors: Ebrahim Farahmand, Ali Mahani
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.Keywords: Clustering of WSNs, healthcare monitoring, weight-based clustering, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15581164 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm
Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna
Abstract:
Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34821163 Investigation of the Main Trends of Tourist Expenses in Georgia
Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili
Abstract:
The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors. We used mixed technique of selection that implies rules of random and proportional selection. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from the major Georgian airports. Techniques of statistical observation were prepared. A representative population of foreign visitors and a rule of selection of respondents were determined. We have a trend of growth of tourist numbers and share of tourists from post-soviet countries constantly increases. Level of satisfaction with tourist facilities and quality of service has grown, but still we have a problem of disparity between quality of service and prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher.
Keywords: Tourist, expenses, methods, statistics, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9501162 Analyzing Periurban Fringe with Rough Set
Authors: Benedetto Manganelli, Beniamino Murgante
Abstract:
The distinction among urban, periurban and rural areas represents a classical example of uncertainty in land classification. Satellite images, geostatistical analysis and all kinds of spatial data are very useful in urban sprawl studies, but it is important to define precise rules in combining great amounts of data to build complex knowledge about territory. Rough Set theory may be a useful method to employ in this field. It represents a different mathematical approach to uncertainty by capturing the indiscernibility. Two different phenomena can be indiscernible in some contexts and classified in the same way when combining available information about them. This approach has been applied in a case of study, comparing the results achieved with both Map Algebra technique and Spatial Rough Set. The study case area, Potenza Province, is particularly suitable for the application of this theory, because it includes 100 municipalities with different number of inhabitants and morphologic features.
Keywords: Land Classification, Map Algebra, Periurban Fringe, Rough Set, Urban Planning, Urban Sprawl.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271161 P-ACO Approach to Assignment Problem in FMSs
Authors: I. Mahdavi, A. Jazayeri, M. Jahromi, R. Jafari, H. Iranmanesh
Abstract:
One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.
Keywords: Flexible manufacturing system, Production planning, Machine tool selection, Operation allocation, Multiobjective optimization, Metaheuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19111160 An MCDM Approach to Selection Scheduling Rule in Robotic Flexibe Assembly Cells
Authors: Khalid Abd, Kazem Abhary, Romeo Marian
Abstract:
Multiple criteria decision making (MCDM) is an approach to ranking the solutions and finding the best one when two or more solutions are provided. In this study, MCDM approach is proposed to select the most suitable scheduling rule of robotic flexible assembly cells (RFACs). Two MCDM approaches, Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) are proposed for solving the scheduling rule selection problem. The AHP method is employed to determine the weights of the evaluation criteria, while the TOPSIS method is employed to obtain final ranking order of scheduling rules. Four criteria are used to evaluate the scheduling rules. Also, four scheduling policies of RFAC are examined to choose the most appropriate one for this purpose. A numerical example illustrates applications of the suggested methodology. The results show that the methodology is practical and works in RFAC settings.
Keywords: AHP, TOPSIS, Scheduling rules selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18131159 The Problems of Employment Form Selection of Capital Group Management Team Members in the Light of Chosen Company Management Theories
Authors: D. Bąk-Grabowska, A. Jagoda
Abstract:
Managing a capital group is a complex and specific process. It creates special conditions for the introduction of team work organization of managers. The selection of a manager employment form is a problem which gets complicated in case of management teams. The considered possibilities are an employment-based and non-employment managerial contract, which can be based on a thorough action or on formulating definite expectations regarding the results of a manager’s work. The problem of selection between individual and collegiate settlement of managers’ work has been pointed out. The deliberations were based on the assumptions of chosen company management theories, including transactional cost, agency theory, nexus of contracts theory, stewardship theory and theories referring directly to management teams, i.e. Upper echelons theory.
Keywords: Capital group, employment forms, management teams, managers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14211158 Enhancing Competition in Public Procurement for Sustained Growth: Applying a Double Selection Model to Road Procurement Auctions
Authors: Antonio Estache, Atsushi Iimi
Abstract:
Limited competition has been a serious concern in infrastructure procurement. Importantly, however, there are normally a number of potential bidders initially showing interest in proposed projects. This paper focuses on tackling the question why these initially interested bidders fade out. An empirical problem is that no bids of fading-out firms are observable. They could decide not to enter the process at the beginning of the tendering or may be technically disqualified at any point in the selection process. The paper applies the double selection model to procurement data from road development projects in developing countries and shows that competition ends up restricted, because bidders are self-selective and auctioneers also tend to limit participation depending on the size of contracts.Limited competition would likely lead to high infrastructure procurement costs, threatening fiscal sustainability and economic growth.
Keywords: Auction theory, endogenous bidder entry, infrastructure development, public procurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181157 Statistical Genetic Algorithm
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Adaptive Genetic Algorithms extend the Standard Gas to use dynamic procedures to apply evolutionary operators such as crossover, mutation and selection. In this paper, we try to propose a new adaptive genetic algorithm, which is based on the statistical information of the population as a guideline to tune its crossover, selection and mutation operators. This algorithms is called Statistical Genetic Algorithm and is compared with traditional GA in some benchmark problems.Keywords: Genetic Algorithms, Statistical Information ofthe Population, PAUX, SSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17601156 Node Pair Selection Scheme in Relay-Aided Communication Based On Stable Marriage Problem
Authors: Tetsuki Taniguchi, Yoshio Karasawa
Abstract:
This paper describes a node pair selection scheme in relay-aided multiple source multiple destination communication system based on stable marriage problem. A general case is assumed in which all of source, relay and destination nodes are equipped with multiantenna and carry out multistream transmission. Based on several metrics introduced from inter-node channel condition, the preference order is determined about all source-relay and relay-destination relations, and then the node pairs are determined using Gale-Shapley algorithm. The computer simulations show that the effectiveness of node pair selection is larger in multihop communication. Some additional aspects which are different from relay-less case are also investigated.
Keywords: Relay, multiple input multiple output (MIMO), multiuser, amplify and forward, stable marriage problem, Gale-Shapley algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381155 Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs
Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto
Abstract:
In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drugs activity prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601154 Tweets to Touchdowns: Predicting National Football League Achievement from Social Media Optimism
Authors: Rohan Erasala, Ian McCulloh
Abstract:
The National Football League (NFL) Draft is a chance for every NFL team to select their next superstar. As a result, teams heavily invest in scouting, and millions of fans partake in the online discourse surrounding the draft. This paper investigates the potential correlations between positive sentiment in individual draft selection threads from the subreddit r/NFL and if these data can be used to make successful player recommendations. It is hypothesized that there will be limited correlations and nonviable recommendations made from these threads. The hypothesis is tested using sentiment analysis of draft thread comments and analyzing correlation and precision at k of top scores. The results indicate weak correlations between the percentage of positive comments in a draft selection thread and a player’s approximate value, but potentially viable recommendations from looking at players whose draft selection threads have the highest percentage of positive comments.
Keywords: National Football League, NFL, NFL Draft, sentiment analysis, Reddit, social media, NLP, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391153 Improving Worm Detection with Artificial Neural Networks through Feature Selection and Temporal Analysis Techniques
Authors: Dima Stopel, Zvi Boger, Robert Moskovitch, Yuval Shahar, Yuval Elovici
Abstract:
Computer worm detection is commonly performed by antivirus software tools that rely on prior explicit knowledge of the worm-s code (detection based on code signatures). We present an approach for detection of the presence of computer worms based on Artificial Neural Networks (ANN) using the computer's behavioral measures. Identification of significant features, which describe the activity of a worm within a host, is commonly acquired from security experts. We suggest acquiring these features by applying feature selection methods. We compare three different feature selection techniques for the dimensionality reduction and identification of the most prominent features to capture efficiently the computer behavior in the context of worm activity. Additionally, we explore three different temporal representation techniques for the most prominent features. In order to evaluate the different techniques, several computers were infected with five different worms and 323 different features of the infected computers were measured. We evaluated each technique by preprocessing the dataset according to each one and training the ANN model with the preprocessed data. We then evaluated the ability of the model to detect the presence of a new computer worm, in particular, during heavy user activity on the infected computers.Keywords: Artificial Neural Networks, Feature Selection, Temporal Analysis, Worm Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311152 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification
Authors: C. Gunavathi, K. Premalatha
Abstract:
Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.
Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45451151 Nest Site Selection by Persian Ground Jay (Podoces pleskei) in Bafgh Protected Area, Iran
Authors: S. Rasekhinia, S. Aghanajafizadeh, K. Eslami
Abstract:
We studied the selection of nest sites by Persian ground Jay (Podoces pleskei), in a semi -desert central Iran. Habitat variables such as plant species number, height of plant species, vegetation percent and distance to water sources of nest sites were compared with randomly selected non- used sites. The results showed that the most important factors influencing nesting site selection were total vegetation percent and number of shrubs (Zgophyllum eurypterum and Atraphaxis spinosa). The mean vegetation percent of 20 area selected by Persian Ground Jay was (4.41+ 0.17), which was significantly larger than that of the non – selected area (2.08 + 0.06). The number of Zygophyllum eurypterum (1.13+ 0.01) and Atraphaxis spinosa (1.36+ 0.10) were also significantly higher compared with the control area (0.43+ 0.07) and (0.58+ 0.9) respectively.Keywords: Persian Ground Jay, Habitat variables, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19501150 Welding Process Selection for Storage Tank by Integrated Data Envelopment Analysis and Fuzzy Credibility Constrained Programming Approach
Authors: Rahmad Wisnu Wardana, Eakachai Warinsiriruk, Sutep Joy-A-Ka
Abstract:
Selecting the most suitable welding process usually depends on experiences or common application in similar companies. However, this approach generally ignores many criteria that can be affecting the suitable welding process selection. Therefore, knowledge automation through knowledge-based systems will significantly improve the decision-making process. The aims of this research propose integrated data envelopment analysis (DEA) and fuzzy credibility constrained programming approach for identifying the best welding process for stainless steel storage tank in the food and beverage industry. The proposed approach uses fuzzy concept and credibility measure to deal with uncertain data from experts' judgment. Furthermore, 12 parameters are used to determine the most appropriate welding processes among six competitive welding processes.
Keywords: Welding process selection, data envelopment analysis, fuzzy credibility constrained programming, storage tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8021149 Modeling and Optimization of Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms
Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong
Abstract:
This paper deals with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system’s efficiency and productivity. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. The novel proposed chromosome representation produces only feasible solutions which minimize a computational time needed by GA to push its population toward feasible search space or repair infeasible chromosomes. The proposed RCGA improves the FMS performance by considering two objectives, maximizing system throughput and maintaining the balance of the system (minimizing system unbalance). The resulted objective values are compared to the optimum values produced by branch-and-bound method. The experiments show that the proposed RCGA could reach near optimum solutions in a reasonable amount of time.
Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26341148 Linguistic, Pragmatic and Evolutionary Factors in Wason Selection Task
Authors: Olimpia Matarazzo, Fabrizio Ferrara
Abstract:
In two studies we tested the hypothesis that the appropriate linguistic formulation of a deontic rule – i.e. the formulation which clarifies the monadic nature of deontic operators - should produce more correct responses than the conditional formulation in Wason selection task. We tested this assumption by presenting a prescription rule and a prohibition rule in conditional vs. proper deontic formulation. We contrasted this hypothesis with two other hypotheses derived from social contract theory and relevance theory. According to the first theory, a deontic rule expressed in terms of cost-benefit should elicit a cheater detection module, sensible to mental states attributions and thus able to discriminate intentional rule violations from accidental rule violations. We tested this prevision by distinguishing the two types of violations. According to relevance theory, performance in selection task should improve by increasing cognitive effect and decreasing cognitive effort. We tested this prevision by focusing experimental instructions on the rule vs. the action covered by the rule. In study 1, in which 480 undergraduates participated, we tested these predictions through a 2 x 2 x 2 x 2 (type of the rule x rule formulation x type of violation x experimental instructions) between-subjects design. In study 2 – carried out by means of a 2 x 2 (rule formulation x type of violation) between-subjects design - we retested the hypothesis of rule formulation vs. the cheaterdetection hypothesis through a new version of selection task in which intentional vs. accidental rule violations were better discriminated. 240 undergraduates participated in this study. Results corroborate our hypothesis and challenge the contrasting assumptions. However, they show that the conditional formulation of deontic rules produces a lower performance than what is reported in literature.Keywords: Deontic reasoning; Evolutionary, linguistic, logical, pragmatic factors; Wason selection task
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16151147 Supervisory Board in the Governance of Cooperatives: Disclosing Power Elements in the Selection of Directors
Authors: Kari Huhtala, Iiro Jussila
Abstract:
The supervisory board is assumed to use power in the governance of a firm, but the actual use of power has been scantly investigated. The research question of the paper is “How does the supervisory board use power in the selection of the board of directors”. The data stem from 11 large Finnish agricultural cooperatives. The research approach was qualitative including semi-structured interviews of the board of directors and supervisory board chairpersons. The results were analyzed and interpreted against theories of social power. As a result, the use of power is approached from two perspectives: (1) formal position-based authority and (2) informal power. Central elements of power were the mandate of the supervisory board, the role of the supervisory board, the supervisory board chair, the nomination committee, collaboration between the supervisory board and the board of directors, the role of regions and the role of the board of directors. The study contributes to the academic discussion on corporate governance in cooperatives and on the supervisory board in the context of the two-tier model. Additional research of the model in other countries and of other types of cooperatives would further academic understanding of supervisory boards.
Keywords: Board, cooperative, supervisory board, selection, director, power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9101146 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification
Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine
Abstract:
Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15551145 Methods for Data Selection in Medical Databases: The Binary Logistic Regression -Relations with the Calculated Risks
Authors: Cristina G. Dascalu, Elena Mihaela Carausu, Daniela Manuc
Abstract:
The medical studies often require different methods for parameters selection, as a second step of processing, after the database-s designing and filling with information. One common task is the selection of fields that act as risk factors using wellknown methods, in order to find the most relevant risk factors and to establish a possible hierarchy between them. Different methods are available in this purpose, one of the most known being the binary logistic regression. We will present the mathematical principles of this method and a practical example of using it in the analysis of the influence of 10 different psychiatric diagnostics over 4 different types of offences (in a database made from 289 psychiatric patients involved in different types of offences). Finally, we will make some observations about the relation between the risk factors hierarchy established through binary logistic regression and the individual risks, as well as the results of Chi-squared test. We will show that the hierarchy built using the binary logistic regression doesn-t agree with the direct order of risk factors, even if it was naturally to assume this hypothesis as being always true.Keywords: Databases, risk factors, binary logisticregression, hierarchy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13311144 Proposal of a Model Supporting Decision-Making Based On Multi-Objective Optimization Analysis on Information Security Risk Treatment
Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.
Keywords: Information security risk treatment, Selection of risk measures, Risk acceptanceand Multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17231143 Analysis of Wi-Fi Access Networks Situation in the City Area
Authors: A. Statkus, S. Paulikas
Abstract:
With increasing number of wireless devices like laptops, Wi-Fi Web Cams, network extenders, etc., a new kind of problems appeared, mostly related to poor Wi-Fi throughput or communication problems. In this paper an investigation on wireless networks and it-s saturation in Vilnius City and its surrounding is presented, covering the main problems of wireless saturation and network load during day. Also an investigation on wireless channel selection and noise levels were made, showing the impact of neighbor AP to signal and noise levels and how it changes during the day.Keywords: IEEE 802.11b/g/n, wireless saturation, client activity, channel selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16511142 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods
Authors: Adel Aloraini
Abstract:
Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.
Keywords: Causal interactions , banks, feature selection, regularizere,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751