Search results for: UAV network
751 Aerobic Bioprocess Control Using Artificial Intelligence Techniques
Authors: M. Caramihai, Irina Severin
Abstract:
This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.Keywords: Bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248750 A MATLAB Simulink Library for Transient Flow Simulation of Gas Networks
Authors: M. Behbahani-Nejad, A. Bagheri
Abstract:
An efficient transient flow simulation for gas pipelines and networks is presented. The proposed transient flow simulation is based on the transfer function models and MATLABSimulink. The equivalent transfer functions of the nonlinear governing equations are derived for different types of the boundary conditions. Next, a MATLAB-Simulink library is developed and proposed considering any boundary condition type. To verify the accuracy and the computational efficiency of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as TVD, method of lines, and other finite difference implicit and explicit schemes). The effects of the flow inertia and the pipeline inclination are incorporated in this simulation. It is shown that the proposed simulation has a sufficient accuracy and it is computationally more efficient than the other methods.Keywords: Gas network, MATLAB-Simulink, transfer functions, transient flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6486749 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.
Keywords: UPFC, Decoupled model, Load flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001748 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: High-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663747 Exponential Stability and Periodicity of a Class of Cellular Neural Networks with Time-Varying Delays
Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye
Abstract:
The problem of exponential stability and periodicity for a class of cellular neural networks (DCNNs) with time-varying delays is investigated. By dividing the network state variables into subgroups according to the characters of the neural networks, some sufficient conditions for exponential stability and periodicity are derived via the methods of variation parameters and inequality techniques. These conditions are represented by some blocks of the interconnection matrices. Compared with some previous methods, the method used in this paper does not resort to any Lyapunov function, and the results derived in this paper improve and generalize some earlier criteria established in the literature cited therein. Two examples are discussed to illustrate the main results.
Keywords: Cellular neural networks, exponential stability, time varying delays, partitioned matrices, periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526746 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765745 Shadow Detection for Increased Accuracy of Privacy Enhancing Methods in Video Surveillance Edge Devices
Authors: F. Matusek, G. Pujolle, R. Reda
Abstract:
Shadow detection is still considered as one of the potential challenges for intelligent automated video surveillance systems. A pre requisite for reliable and accurate detection and tracking is the correct shadow detection and classification. In such a landscape of conditions, privacy issues add more and more complexity and require reliable shadow detection. In this work the intertwining between security, accuracy, reliability and privacy is analyzed and, accordingly, a novel architecture for Privacy Enhancing Video Surveillance (PEVS) is introduced. Shadow detection and masking are dealt with through the combination of two different approaches simultaneously. This results in a unique privacy enhancement, without affecting security. Subsequently, the methodology was employed successfully in a large-scale wireless video surveillance system; privacy relevant information was stored and encrypted on the unit, without transferring it over an un-trusted network.Keywords: Video Surveillance, Intelligent Video Surveillance, Physical Security, WSSU, Privacy, Shadow Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342744 Application of Artificial Neural Network in the Investigation of Bearing Defects
Authors: S. Sendhil Kumar, M. Senthil Kumar
Abstract:
Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519743 Performance Evaluation of Cooperative Diversity in Flat Fading Channel with Error Control Coding
Authors: Oluseye Adeniyi Adeleke, Mohd Fadzli Salleh
Abstract:
Cooperative communication provides transmit diversity, even when, due to size constraints, mobile units cannot accommodate multiple antennas. A versatile cooperation method called coded cooperation has been developed, in which cooperation is implemented through channel coding with a view to controlling the errors inherent in wireless communication. In this work we evaluate the performance of coded cooperation in flat Rayleigh fading environment using a concept known as the pair wise error probability (PEP). We derive the PEP for a flat fading scenario in coded cooperation and then compare with the signal-to-noise ratio of the users in the network. Results show that an increase in the SNR leads to a decrease in the PEP. We also carried out simulations to validate the result.
Keywords: Channel state information, coded cooperation, cooperative systems, pairwise-error-probability, Reed-Solomon codes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771742 The Effect of Transformer’s Vector Group on Retained Voltage Magnitude and Sag Frequency at Industrial Sites Due to Faults
Authors: M. N. Moschakis, V. V. Dafopoulos, I. G. Andritsos, E. S. Karapidakis, J. M. Prousalidis
Abstract:
This paper deals with the effect of a power transformer’s vector group on the basic voltage sag characteristics during unbalanced faults at a meshed or radial power network. Specifically, the propagation of voltage sags through a power transformer is studied with advanced short-circuit analysis. A smart method to incorporate this effect on analytical mathematical expressions is proposed. Based on this methodology, the positive effect of transformers of certain vector groups on the mitigation of the expected number of voltage sags per year (sag frequency) at the terminals of critical industrial customers can be estimated.
Keywords: Balanced and unbalanced faults, industrial design, phase shift, power quality, power systems, voltage sags (or dips).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10221741 Enabling Automated Deployment for Cluster Computing in Distributed PC Classrooms
Authors: Shuen-Tai Wang, Ying-Chuan Chen, Hsi-Ya Chang
Abstract:
The rapid improvement of the microprocessor and network has made it possible for the PC cluster to compete with conventional supercomputers. Lots of high throughput type of applications can be satisfied by using the current desktop PCs, especially for those in PC classrooms, and leave the supercomputers for the demands from large scale high performance parallel computations. This paper presents our development on enabling an automated deployment mechanism for cluster computing to utilize the computing power of PCs such as reside in PC classroom. After well deployment, these PCs can be transformed into a pre-configured cluster computing resource immediately without touching the existing education/training environment installed on these PCs. Thus, the training activities will not be affected by this additional activity to harvest idle computing cycles. The time and manpower required to build and manage a computing platform in geographically distributed PC classrooms also can be reduced by this development.
Keywords: PC cluster, automated deployment, cluster computing, PC classroom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530740 A New Approach to Design Policies for the Adoption of Alternative Fuel-Technology Powertrains
Authors: Reza Fazeli, Vitor Leal, Jorge Pinho de Sousa
Abstract:
Planning the transition period for the adoption of alternative fuel-technology powertrains is a challenging task that requires sophisticated analysis tools. In this study, a system dynamic approach was applied to analyze the bi-directional interaction between the development of the refueling station network and vehicle sales. Besides, the developed model was used to estimate the transition cost to reach a predefined target (share of alternative fuel vehicles) in different scenarios. Several scenarios have been analyzed to investigate the effectiveness and cost of incentives on the initial price of vehicles, and on the evolution of fuel and refueling stations. Obtained results show that a combined set of incentives will be more effective than just a single specific type of incentives.Keywords: adoption of Alternative Fuel Vehicles, System Dynamic Analysis, Plug-in Hybrid Vehicles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469739 Pervasive Computing in Healthcare Systems
Authors: Elham Rastegari, Amirmasood Rahmani, Saeed Setayeshi
Abstract:
The hospital and the health-care center of a community, as a place for people-s life-care and health-care settings, must provide more and better services for patients or residents. After Establishing Electronic Medical Record (EMR) system -which is a necessity- in the hospital, providing pervasive services is a further step. Our objective in this paper is to use pervasive computing in a case study of healthcare, based on EMR database that coordinates application services over network to form a service environment for medical and health-care. Our method also categorizes the hospital spaces into 3 spaces: Public spaces, Private spaces and Isolated spaces. Although, there are many projects about using pervasive computing in healthcare, but all of them concentrate on the disease recognition, designing smart cloths, or provide services only for patient. The proposed method is implemented in a hospital. The obtained results show that it is suitable for our purpose.Keywords: Pervasive computing, RFID, Health-care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008738 A Comparison of First and Second Order Training Algorithms for Artificial Neural Networks
Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil
Abstract:
Minimization methods for training feed-forward networks with Backpropagation are compared. Feedforward network training is a special case of functional minimization, where no explicit model of the data is assumed. Therefore due to the high dimensionality of the data, linearization of the training problem through use of orthogonal basis functions is not desirable. The focus is functional minimization on any basis. A number of methods based on local gradient and Hessian matrices are discussed. Modifications of many methods of first and second order training methods are considered. Using share rates data, experimentally it is proved that Conjugate gradient and Quasi Newton?s methods outperformed the Gradient Descent methods. In case of the Levenberg-Marquardt algorithm is of special interest in financial forecasting.Keywords: Backpropagation algorithm, conjugacy condition, line search, matrix perturbation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643737 Power Line Carrier Equipment Supporting IP Traffic Transmission in the Enterprise Networks of Energy Companies
Authors: M. S. Anton Merkulov
Abstract:
This article discusses the questions concerning of creating small packet networks for energy companies with application of high voltage power line carrier equipment (PLC) with functionality of IP traffic transmission. The main idea is to create converged PLC links between substations and dispatching centers where packet data and voice are transmitted in one data flow. The article contents description of basic conception of the network, evaluation of voice traffic transmission parameters, and discussion of header compression techniques in relation to PLC links. The results of exploration show us, that convergent packet PLC links can be very useful in the construction of small packet networks between substations in remote locations, such as deposits or low populated areas.
Keywords: packet PLC, VoIP, time delay, packet traffic, overhead compression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165736 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259735 Land Use around Metro Stations: A Case Study
Authors: A. Roukouni, S. Basbas, M. Giannopoulou
Abstract:
Transport and land use are two systems that are mutually influenced. Their interaction is a complex process associated with continuous feedback. The paper examines the existing land use around an under construction metro station of the new metro network of Thessaloniki, Greece, through the use of field investigations, around the station-s predefined location. Moreover, except from the analytical land use recording, a sampling questionnaire survey is addressed to several selected enterprises of the study area. The survey aims to specify the characteristics of the enterprises, the trip patterns of their employees and clients, as well as the stated preferences towards the changes the new metro station is considered to bring to the area. The interpretation of the interrelationships among selected data from the questionnaire survey takes place using the method of Principal Components Analysis for Categorical Data. The followed methodology and the survey-s results contribute to the enrichment of the relevant bibliography concerning the way the creation of a new metro station can have an impact on the land use pattern of an area, by examining the situation before the operation of the station.Keywords: land use, metro station, questionnaire survey
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113734 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036733 Life Time Based Analysis of MAC Protocols of Wireless Ad Hoc Networks in WSN Applications
Authors: R. Alageswaran, S. Selvakumar, P. Neelamegam
Abstract:
Wireless Sensor Networks (WSN) are emerging because of the developments in wireless communication technology and miniaturization of the hardware. WSN consists of a large number of low-cost, low-power, multifunctional sensor nodes to monitor physical conditions, such as temperature, sound, vibration, pressure, motion, etc. The MAC protocol to be used in the sensor networks must be energy efficient and this should aim at conserving the energy during its operation. In this paper, with the focus of analyzing the MAC protocols used in wireless Adhoc networks to WSN, simulation experiments were conducted in Global Mobile Simulator (GloMoSim) software. Number of packets sent by regular nodes, and received by sink node in different deployment strategies, total energy spent, and the network life time have been chosen as the metric for comparison. From the results of simulation, it is evident that the IEEE 802.11 protocol performs better compared to CSMA and MACA protocols.Keywords: CSMA, DCF, MACA, TelosB
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513732 FCA-based Conceptual Knowledge Discovery in Folksonomy
Authors: Yu-Kyung Kang, Suk-Hyung Hwang, Kyoung-Mo Yang
Abstract:
The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.
Keywords: Folksonomy data mining, formal concept analysis, collaborative tagging, conceptual knowledge discovery, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028731 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.
Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.
Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741730 Urban Water Management at the Time of Natural Disaster
Authors: H. Shahabi
Abstract:
since in natural accidents, facilities that relate to this vita element are underground so, it is difficult to find quickly some right, exact and definite information about water utilities. There fore, this article has done operationally in Boukan city in Western Azarbaijan of Iran and it tries to represent operation and capabilities of Geographical Information system (GIS) in urban water management at the time of natural accidents. Structure of this article is that firstly it has established a comprehensive data base related to water utilities by collecting, entering, saving and data management, then by modeling water utilities we have practically considered its operational aspects related to water utility problems in urban regions.
Keywords: Natural Disaster, Geographical Information system (GIS), Modeling and network analysis, Boukan city in Western Azerbaijan, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406729 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.
Keywords: CNN, deep-learning, facial emotion recognition, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710728 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems
Authors: Semih Demir, Anil Celebi
Abstract:
Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.
Keywords: Clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464727 Energy-Aware Routing in Mobile Wireless Sensor Networks
Authors: R. Geetha, G. Umarani Srikanth, S. Prabhu
Abstract:
Wireless sensor networks are resource constrained networks, where energy is the major resource in such networks. Therefore, energy conservation is major aspect in the deployment of Wireless Sensor Network. This work makes use of an extended Greedy Perimeter Stateless Routing (eGPSR) protocol that mainly focuses on energy efficient data transmission. This data transmission is based on the fact that the message that is sent to a distant node consumes more energy than the message that is sent to a short range transmission. Every cluster contains a head set that consists of many virtual cluster heads. Routing is decided by head set members. The energy level of the received signal is the major constraint to choose head set from its members. The experimental result shows that the use of eGPSR in routing has improved throughput with comparatively less delay.
Keywords: eGPSR, energy efficiency, routing, wireless sensor networks, WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926726 Improving Performance of World Wide Web by Adaptive Web Traffic Reduction
Authors: Achuthsankar S. Nair, J. S. Jayasudha
Abstract:
The ever increasing use of World Wide Web in the existing network, results in poor performance. Several techniques have been developed for reducing web traffic by compressing the size of the file, saving the web pages at the client side, changing the burst nature of traffic into constant rate etc. No single method was adequate enough to access the document instantly through the Internet. In this paper, adaptive hybrid algorithms are developed for reducing web traffic. Intelligent agents are used for monitoring the web traffic. Depending upon the bandwidth usage, user-s preferences, server and browser capabilities, intelligent agents use the best techniques to achieve maximum traffic reduction. Web caching, compression, filtering, optimization of HTML tags, and traffic dispersion are incorporated into this adaptive selection. Using this new hybrid technique, latency is reduced to 20 – 60 % and cache hit ratio is increased 40 – 82 %.Keywords: Bandwidth, Congestion, Intelligent Agents, Prefetching, Web Caching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743725 Cognitive Radio Networks (CRN): Resource Allocation Techniques Based On DNA-inspired Computing
Authors: Santosh Kumar Singh, Krishna Chandra Roy, Vibhakar Pathak
Abstract:
Spectrum is a scarce commodity, and considering the spectrum scarcity faced by the wireless-based service providers led to high congestion levels. Technical inefficiencies from pooled, since all networks share a common pool of channels, exhausting the available channels will force networks to block the services. Researchers found that cognitive radio (CR) technology may resolve the spectrum scarcity. A CR is a self-configuring entity in a wireless networking that senses its environment, tracks changes, and frequently exchanges information with their networks. However, CRN facing challenges and condition become worst while tracks changes i.e. reallocation of another under-utilized channels while primary network user arrives. In this paper, channels or resource reallocation technique based on DNA-inspired computing algorithm for CRN has been proposed.
Keywords: Ad hoc networks, channels reallocation, cognitive radio, DNA local sequence alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787724 Support Vector Machine Approach for Classification of Cancerous Prostate Regions
Authors: Metehan Makinacı
Abstract:
The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.
Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792723 Problem Solving Techniques with Extensive Computational Network and Applying in an Educational Software
Abstract:
Knowledge bases are basic components of expert systems or intelligent computational programs. Knowledge bases provide knowledge, events that serve deduction activity, computation and control. Therefore, researching and developing of models for knowledge representation play an important role in computer science, especially in Artificial Intelligence Science and intelligent educational software. In this paper, the extensive deduction computational model is proposed to design knowledge bases whose attributes are able to be real values or functional values. The system can also solve problems based on knowledge bases. Moreover, the models and algorithms are applied to produce the educational software for solving alternating current problems or solving set of equations automatically.Keywords: Educational software, artificial intelligence, knowledge base systems, knowledge representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593722 Link Availability Estimation for Modified AOMDV Protocol
Authors: R. Prabha, N. Ramaraj
Abstract:
Routing in adhoc networks is a challenge as nodes are mobile, and links are constantly created and broken. Present ondemand adhoc routing algorithms initiate route discovery after a path breaks, incurring significant cost to detect disconnection and establish a new route. Specifically, when a path is about to be broken, the source is warned of the likelihood of a disconnection. The source then initiates path discovery early, avoiding disconnection totally. A path is considered about to break when link availability decreases. This study modifies Adhoc On-demand Multipath Distance Vector routing (AOMDV) so that route handoff occurs through link availability estimation.Keywords: Mobile Adhoc Network (MANET), Routing, Adhoc On-demand Multipath Distance Vector routing (AOMDV), Link Availability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617