Search results for: Heterogeneous Earliest Finish Time (HEFT) algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9219

Search results for: Heterogeneous Earliest Finish Time (HEFT) algorithm

7209 Topology Optimization of Cable Truss Web for Prestressed Suspension Bridge

Authors: Vadims Goremikins, Karlis Rocens, Dmitrijs Serdjuks

Abstract:

A suspension bridge is the most suitable type of structure for a long-span bridge due to rational use of structural materials. Increased deformability, which is conditioned by appearance of the elastic and kinematic displacements, is the major disadvantage of suspension bridges. The problem of increased kinematic displacements under the action of non-symmetrical load can be solved by prestressing. The prestressed suspension bridge with the span of 200 m was considered as an object of investigations. The cable truss with the cross web was considered as the main load carrying structure of the prestressed suspension bridge. The considered cable truss was optimized by 47 variable factors using Genetic algorithm and FEM program ANSYS. It was stated, that the maximum total displacements are reduced up to 29.9% by using of the cable truss with the rational characteristics instead of the single cable in the case of the worst situated load.

Keywords: Decreasing displacements, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709
7208 Differentiation of Heart Rate Time Series from Electroencephalogram and Noise

Authors: V. I. Thajudin Ahamed, P. Dhanasekaran, Paul Joseph K.

Abstract:

Analysis of heart rate variability (HRV) has become a popular non-invasive tool for assessing the activities of autonomic nervous system. Most of the methods were hired from techniques used for time series analysis. Currently used methods are time domain, frequency domain, geometrical and fractal methods. A new technique, which searches for pattern repeatability in a time series, is proposed for quantifying heart rate (HR) time series. These set of indices, which are termed as pattern repeatability measure and pattern repeatability ratio are able to distinguish HR data clearly from noise and electroencephalogram (EEG). The results of analysis using these measures give an insight into the fundamental difference between the composition of HR time series with respect to EEG and noise.

Keywords: Approximate entropy, heart rate variability, noise, pattern repeatability, and sample entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
7207 On-Time Performance and Service Regularity of Stage Buses in Mixed Traffic

Authors: Suwardo, Madzlan B. Napiah, Ibrahim B. Kamaruddin

Abstract:

Stage bus operated in the mixed traffic might always meet many problems about low quality and reliability of services. The low quality and reliability of bus service can make the system not attractive and directly reduce the interest of using bus service. This paper presents the result of field investigation and analysis of on-time performance and service regularity of stage bus in mixed traffic. Data for analysis was collected from the field by on-board observation along the Ipoh-Lumut corridor in Perak, Malaysia. From analysis and discussion, it can be concluded that on-time performance and service regularity varies depend on station, typical day, time period, operation characteristics of bus and characteristics of traffic. The on-time performance and service regularity of stage bus in mixed traffic can be derived by using data collected by onboard survey. It is clear that on-time performance and service regularity of the existing stage bus system was low.

Keywords: mixed traffic, on-time performance, service regularity, stage bus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
7206 A New Vision of Fractal Geometry with Triangulati on Algorithm

Authors: Yasser M. Abd El-Latif, Fatma S.Abousaleh, Daoud S. S.

Abstract:

L-system is a tool commonly used for modeling and simulating the growth of fractal plants. The aim of this paper is to join some problems of the computational geometry with the fractal geometry by using the L-system technique to generate fractal plant in 3D. L-system constructs the fractal structure by applying rewriting rules sequentially and this technique depends on recursion process with large number of iterations to get different shapes of 3D fractal plants. Instead, it was reiterated a specific number of iterations up to three iterations. The vertices generated from the last stage of the Lsystem rewriting process are used as input to the triangulation algorithm to construct the triangulation shape of these vertices. The resulting shapes can be used as covers for the architectural objects and in different computer graphics fields. The paper presents a gallery of triangulation forms which application in architecture creates an alternative for domes and other traditional types of roofs.

Keywords: Computational geometry, fractal geometry, L-system, triangulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
7205 Multifunctional Cell Processing with Plasmonic Nanobubbles

Authors: Ekaterina Y. Lukianova-Hleb, Dmitri O. Lapotko

Abstract:

Cell processing techniques for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in heterogeneous cell systems. Using our novel on-demand nonstationary intracellular events instead of permanent materials, plasmonic nanobubbles, generated with a short laser pulse only in target cells, we achieved simultaneous multifunctional cell-specific processing with the rate up to 50 million cells per minute.

Keywords: Delivery, cell separation, graft, laser, plasmonic nanobubble, cell therapy, gold nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
7204 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
7203 SPH Method used for Flow Predictions at a Turgo Impulse Turbine: Comparison with Fluent

Authors: Phoevos K. Koukouvinis, John S. Anagnostopoulos, Dimitris E. Papantonis

Abstract:

This work is an attempt to use the standard Smoothed Particle Hydrodynamics methodology for the simulation of the complex unsteady, free-surface flow in a rotating Turgo impulse water turbine. A comparison of two different geometries was conducted. The SPH method due to its mesh-less nature is capable of capturing the flow features appearing in the turbine, without diffusion at the water/air interface. Furthermore results are compared with a commercial CFD package (Fluent®) and the SPH algorithm proves to be capable of providing similar results, in much less time than the mesh based CFD program. A parametric study was also performed regarding the turbine inlet angle.

Keywords: Smoothed Particle Hydrodynamics, Mesh-lessmethods, Impulse turbines, Turgo turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2649
7202 Calcination Temperature of Nano MgO Effect on Base Transesterification of Palm Oil

Authors: Abdul Rahim Yacob, Mohd Khairul Asyraf Amat Mustajab, Nur Syazeila Samadi

Abstract:

Nano MgO has been synthesized by hydration and dehydration method by modifies the commercial MgO. The prepared MgO had been investigated as a heterogeneous base catalyst for transesterification process for biodiesel production using palm oil. TGA, FT-IR and XRD results obtained from this study lie each other and proved in the formation of nano MgO from decomposition of Mg(OH)2. This study proved that the prepared nano MgO was a better base transesterification catalyst compared to commercial MgO. The nano MgO calcined at 600ºC had gives the highest conversion of 51.3% of palm oil to biodiesel.

Keywords: Hydration-dehydration method, nano MgO, transesterification, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
7201 Automatic Text Summarization

Authors: Mohamed Abdel Fattah, Fuji Ren

Abstract:

This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.

Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
7200 Generating Frequent Patterns through Intersection between Transactions

Authors: M. Jamali, F. Taghiyareh

Abstract:

The problem of frequent itemset mining is considered in this paper. One new technique proposed to generate frequent patterns in large databases without time-consuming candidate generation. This technique is based on focusing on transaction instead of concentrating on itemset. This algorithm based on take intersection between one transaction and others transaction and the maximum shared items between transactions computed instead of creating itemset and computing their frequency. With applying real life transactions and some consumption is taken from real life data, the significant efficiency acquire from databases in generation association rules mining.

Keywords: Association rules, data mining, frequent patterns, shared itemset.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
7199 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms

Authors: T. S. Chou, K. K. Yen, J. Luo

Abstract:

The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.

Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
7198 A Novel QoS Optimization Architecture for 4G Networks

Authors: Aaqif Afzaal Abbasi, Javaid Iqbal, Akhtar Nawaz Malik

Abstract:

4G Communication Networks provide heterogeneous wireless technologies to mobile subscribers through IP based networks and users can avail high speed access while roaming across multiple wireless channels; possible by an organized way to manage the Quality of Service (QoS) functionalities in these networks. This paper proposes the idea of developing a novel QoS optimization architecture that will judge the user requirements and knowing peak times of services utilization can save the bandwidth/cost factors. The proposed architecture can be customized according to the network usage priorities so as to considerably improve a network-s QoS performance.

Keywords: QoS, Network Coverage Boundary, ServicesArchives Units (SAU), Cumulative Services Archives Units (CSAU).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
7197 Combining Ant Colony Optimization and Dynamic Programming for Solving a Dynamic Facility Layout Problem

Authors: A. Udomsakdigool, S. Bangsaranthip

Abstract:

This paper presents an algorithm which combining ant colony optimization in the dynamic programming for solving a dynamic facility layout problem. The problem is separated into 2 phases, static and dynamic phase. In static phase, ant colony optimization is used to find the best ranked of layouts for each period. Then the dynamic programming (DP) procedure is performed in the dynamic phase to evaluate the layout set during multi-period planning horizon. The proposed algorithm is tested over many problems with size ranging from 9 to 49 departments, 2 and 4 periods. The experimental results show that the proposed method is an alternative way for the plant layout designer to determine the layouts during multi-period planning horizon.

Keywords: Ant colony optimization, Dynamicprogramming, Dynamic facility layout planning, Metaheuristic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
7196 Performance Analysis of Flooding Attack Prevention Algorithm in MANETs

Authors: Revathi Venkataraman, M. Pushpalatha, T. Rama Rao

Abstract:

The lack of any centralized infrastructure in mobile ad hoc networks (MANET) is one of the greatest security concerns in the deployment of wireless networks. Thus communication in MANET functions properly only if the participating nodes cooperate in routing without any malicious intention. However, some of the nodes may be malicious in their behavior, by indulging in flooding attacks on their neighbors. Some others may act malicious by launching active security attacks like denial of service. This paper addresses few related works done on trust evaluation and establishment in ad hoc networks. Related works on flooding attack prevention are reviewed. A new trust approach based on the extent of friendship between the nodes is proposed which makes the nodes to co-operate and prevent flooding attacks in an ad hoc environment. The performance of the trust algorithm is tested in an ad hoc network implementing the Ad hoc On-demand Distance Vector (AODV) protocol.

Keywords: AODV, Flooding, MANETs, trust estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
7195 Coordinated Design of PSS and STATCOM for Power System Stability Improvement Using Bacteria Foraging Algorithm

Authors: Kyaw Myo Lin, Wunna Swe, Pyone Lai Swe

Abstract:

This paper presents the coordinated controller design of static synchronous compensator (STATCOM) and power system stabilizers (PSSs) for power system stability improvement. Coordinated design problem of STATCOM-based controller with multiple PSSs is formulated as an optimization problem and optimal controller parameters are obtained using bacteria foraging optimization algorithm. By minimizing the proposed objective function, in which the speed deviations between generators are involved; stability performance of the system is improved. The nonlinear simulation results show that coordinated design of STATCOM-based controller and PSSs improve greatly the system damping oscillations and consequently stability improvement.

Keywords: Bacteria Foraging, Coordinated Design, Power System Stability, PSSs, STATCOM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2929
7194 Maximizing Sum-Rate for Multi-User Two-Way Relaying Networks with ANC Protocol

Authors: Muhammad Abrar, Xiang Gui, Amal Punchihewa

Abstract:

In this paper we study the resource allocation problem for an OFDMA based cooperative two-way relaying (TWR) network. We focus on amplify and forward (AF) analog network coding (ANC) protocol. An optimization problem for two basic resources namely, sub-carrier and power is formulated for multi-user TWR networks. A joint optimal optimization problem is investigated and two-step low complexity sub-optimal resource allocation algorithm is proposed for multi-user TWR networks with ANC protocol. The proposed algorithm has been evaluated in term of total achievable system sum-rate and achievable individual sum-rate for each userpair. The good tradeoff between system sum-rate and fairness is observed in the two-step proportional resource allocation scheme.

Keywords: Relay Network, Relay Protocols, Resource Allocation, Two –way relaying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
7193 Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification

Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman

Abstract:

A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.

Keywords: Clustering Validation, Particle Swarm Optimization, Unsupervised Clustering, Unsupervised Image Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
7192 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: Electrochemical remediation, pollution, soil contamination, total petroleum hydrocarbons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
7191 University of Jordan Case Tool (Uj-Case- Tool) for Database Reverse Engineering

Authors: Fawaz A. Masoud, Heba_tallah Khattab, Mahmoud Al-Karazoon

Abstract:

The database reverse engineering problems and solving processes are getting mature, even though, the academic community is facing the complex problem of knowledge transfer, both in university and industrial contexts. This paper presents a new CASE tool developed at the University of Jordan which addresses an efficient support of this transfer, namely UJ-CASE-TOOL. It is a small and self-contained application exhibiting representative problems and appropriate solutions that can be understood in a limited time. It presents an algorithm that describes the developed academic CASE tool which has been used for several years both as an illustration of the principles of database reverse engineering and as an exercise aimed at academic and industrial students.

Keywords: Reverse engineering, ERD, DBRE, case tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
7190 Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Authors: Swanti Satsangi, Ashish Gulati, Prem Kumar Kalra, C. Patvardhan

Abstract:

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Keywords: Ancillas, Boolean functions, Genetic algorithm, Oracles, Quantum circuits, Scratch bit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
7189 Time Series Forecasting Using Independent Component Analysis

Authors: Theodor D. Popescu

Abstract:

The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each component, depending on its time structure. The paper gives also a review of the main algorithms for independent component analysis in the case of instantaneous mixture models, using second and high-order statistics. The method has been applied in simulation to an artificial multivariate time series with five components, generated from three sources and a mixing matrix, randomly generated.

Keywords: Independent Component Analysis, second order statistics, simulation, time series forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
7188 Takagi-Sugeno Fuzzy Controller for a 3-DOF Stabilized Platform with Adaptive Decoupling Scheme

Authors: S. Leghmizi, S. Liu, F. Naeim

Abstract:

This paper presents a fuzzy control system for a three degree of freedom (3-DOF) stabilized platform with explicit decoupling scheme. The system under consideration is a system with strong interactions between three channels. By using the concept of decentralized control, a control structure is developed that is composed of three control loops, each of which is associated with a single-variable fuzzy controller and a decoupling unit. Takagi-Sugeno (TS) fuzzy control algorithm is used to implement the fuzzy controller. The decoupling units design is based on the adaptive theory reasoning. Simulation tests were established using Simulink of Matlab. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this paper.

Keywords: 3-DOF platform of a ship carried antenna, the concept of decentralized control, Takagi-Sugeno (TS) fuzzy control algorithm, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
7187 Hit-or-Miss Transform as a Tool for Similar Shape Detection

Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer

Abstract:

This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.

Keywords: Hit-or/and-Miss Operator/Transform, HMT, binary morphological operation, shape detection, binary images processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5137
7186 Generating 3D Anisotropic Centroidal Voronoi Tessellations

Authors: Alexandre Marin, Alexandra Bac, Laurent Astart

Abstract:

New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Element Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular polyhedral meshes have many advantages. One way to build such meshes consists in constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, i.e. elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: first, we present a gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.

Keywords: Anisotropic Voronoi Diagrams, Meshes for Numerical Simulations, Optimisation, Volumic Polyhedral Meshing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80
7185 Meta Model Based EA for Complex Optimization

Authors: Maumita Bhattacharya

Abstract:

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Keywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
7184 Design and Implementation of Rule-based Expert System for Fault Management

Authors: Su Myat Marlar Soe, May Paing Paing Zaw

Abstract:

It has been defined that the “network is the system". This implies providing levels of service, reliability, predictability and availability that are commensurate with or better than those that individual computers provide today. To provide this requires integrated network management for interconnected networks of heterogeneous devices covering both the local campus. In this paper we are addressing a framework to effectively deal with this issue. It consists of components and interactions between them which are required to perform the service fault management. A real-world scenario is used to derive the requirements which have been applied to the component identification. An analysis of existing frameworks and approaches with respect to their applicability to the framework is also carried out.

Keywords: To diagnose the possible network faults by using thepredetermined rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
7183 2D Graphical Analysis of Wastewater Influent Capacity Time Series

Authors: Monika Chuchro, Maciej Dwornik

Abstract:

The extraction of meaningful information from image could be an alternative method for time series analysis. In this paper, we propose a graphical analysis of time series grouped into table with adjusted colour scale for numerical values. The advantages of this method are also discussed. The proposed method is easy to understand and is flexible to implement the standard methods of pattern recognition and verification, especially for noisy environmental data.

Keywords: graphical analysis, time series, seasonality, noisy environmental data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
7182 A Probabilistic Reinforcement-Based Approach to Conceptualization

Authors: Hadi Firouzi, Majid Nili Ahmadabadi, Babak N. Araabi

Abstract:

Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.

Keywords: Concept learning, probabilistic decision making, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
7181 Finding Sparse Features in Face Detection Using Genetic Algorithms

Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani

Abstract:

Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.

Keywords: Face Detection, Genetic Algorithms, Sparse Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
7180 Orthogonal Functions Approach to LQG Control

Authors: B. M. Mohan, Sanjeeb Kumar Kar

Abstract:

In this paper a unified approach via block-pulse functions (BPFs) or shifted Legendre polynomials (SLPs) is presented to solve the linear-quadratic-Gaussian (LQG) control problem. Also a recursive algorithm is proposed to solve the above problem via BPFs. By using the elegant operational properties of orthogonal functions (BPFs or SLPs) these computationally attractive algorithms are developed. To demonstrate the validity of the proposed approaches a numerical example is included.

Keywords: Linear quadratic Gaussian control, linear quadratic estimator, linear quadratic regulator, time-invariant systems, orthogonal functions, block-pulse functions, shifted legendre polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869