Search results for: Work exchange network
5020 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data
Authors: Rohan Putatunda, Aryya Gangopadhyay
Abstract:
Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).
Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4365019 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24615018 Comparative Study of Evolutionary Model and Clustering Methods in Circuit Partitioning Pertaining to VLSI Design
Authors: K. A. Sumitra Devi, N. P. Banashree, Annamma Abraham
Abstract:
Partitioning is a critical area of VLSI CAD. In order to build complex digital logic circuits its often essential to sub-divide multi -million transistor design into manageable Pieces. This paper looks at the various partitioning techniques aspects of VLSI CAD, targeted at various applications. We proposed an evolutionary time-series model and a statistical glitch prediction system using a neural network with selection of global feature by making use of clustering method model, for partitioning a circuit. For evolutionary time-series model, we made use of genetic, memetic & neuro-memetic techniques. Our work focused in use of clustering methods - K-means & EM methodology. A comparative study is provided for all techniques to solve the problem of circuit partitioning pertaining to VLSI design. The performance of all approaches is compared using benchmark data provided by MCNC standard cell placement benchmark net lists. Analysis of the investigational results proved that the Neuro-memetic model achieves greater performance then other model in recognizing sub-circuits with minimum amount of interconnections between them.
Keywords: VLSI, circuit partitioning, memetic algorithm, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16425017 A Reliable Secure Multicast Key Distribution Scheme for Mobile Adhoc Networks
Authors: D. SuganyaDevi, G. Padmavathi
Abstract:
Reliable secure multicast communication in mobile adhoc networks is challenging due to its inherent characteristics of infrastructure-less architecture with lack of central authority, high packet loss rates and limited resources such as bandwidth, time and power. Many emerging commercial and military applications require secure multicast communication in adhoc environments. Hence key management is the fundamental challenge in achieving reliable secure communication using multicast key distribution for mobile adhoc networks. Thus in designing a reliable multicast key distribution scheme, reliability and congestion control over throughput are essential components. This paper proposes and evaluates the performance of an enhanced optimized multicast cluster tree algorithm with destination sequenced distance vector routing protocol to provide reliable multicast key distribution. Simulation results in NS2 accurately predict the performance of proposed scheme in terms of key delivery ratio and packet loss rate under varying network conditions. This proposed scheme achieves reliability, while exhibiting low packet loss rate with high key delivery ratio compared with the existing scheme.Keywords: Key Distribution, Mobile Adhoc Network, Multicast and Reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16415016 Factors Affecting the Wages of Native Workers in Thailand's Construction Industry
Authors: C. Noknoi, W. Boripunt, K. Boomid, S. Suwitphanwong
Abstract:
This research studies the factors influencing the wages of native workers in Thailand's construction industry. The sample used comprised some 156 native construction workers from Songkhla Province, Thailand. The utilized research instrument was a questionnaire, with the data being analyzed according to frequency, percentage, and regression analysis. The results revealed that in general, native Thai construction workers are generally married males aged between 26 and 37 years old. They typically have four to six years of education, are employed as laborers with an average salary of 4,000–9,200 baht per month, and have fewer than five years of work experience. Most Thai workers work five days a week. Each establishment typically has 10–30 employees, with fewer than 10 of these being migrant workers in general. Most Thai workers are at a 20% to 40% risk from work, and they have never changed employer. The average wage of Thai workers was found to be 10,843.03 baht per month with a standard deviation of 4,898.31 baht per month. Hypothesis testing revealed that position, work experience, and the number of times they had switched employer were the factors most affecting the wages of native Thai construction workers. These three factors alone explain the salaries of Thai construction workers at 51.9%.
Keywords: Construction industry, native workers, Thailand, wages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9245015 Analysis of Patterns in TV Commercials that Recognize NGO Image
Authors: J. Areerut, F. Samuel
Abstract:
The purpose of this research is to analyze the pattern of television commercials and how they encourage non-governmental organizations to build their image in Thailand. It realizes how public relations can impact an organization's image. It is a truth that bad public relations management can cause hurt a reputation. On the other hand, a very small amount of work in public relations helps your organization to be recognized broadly and eventually accepted even wider. The main idea in this paper is to study and analyze patterns of television commercials that could impact non-governmental organization's images in a greater way. This research uses questionnaires and content analysis to summarize results. The findings show the aspects of how patterns of television commercials that are suited to non-governmental organization work in Thailand. It will be useful for any non-governmental organization that wishes to build their image through television commercials and also for further work based on this research.
Keywords: Television Commercial (TVC), Organization Image, Non-Governmental Organization: NGO, Public Relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23925014 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7725013 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.
Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16915012 Implementation of Neural Network Based Electricity Load Forecasting
Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw
Abstract:
This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.Keywords: Neural network, Load forecast, Time series, wavelettransform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25025011 Vocational Teaching Method: A Conceptual Model in Teaching Automotive Practical Work
Authors: Adnan Ahmad, Yusri Kamin, Asnol Dahar Minghat, Mohd. Khir Nordin, Dayana Farzeha, Ahmad Nabil
Abstract:
The purpose of this study is to identify the teaching method practices of the practical work subject in Vocational Secondary School. This study examined the practice of Vocational Teaching Method in Automotive Practical Work. The quantitative method used the sets of the questionnaire. 283 students and 63 teachers involved from ten VSS involved in this research. Research finding showed in conducting the introduction session teachers prefer used the demonstration method and questioning technique. While in deliver the content of practical task, teachers applied group monitoring and problem solving approach. To conclude the task of automotive practical work, teachers choose re-explain and report writing to make sure students really understand all the process of teaching. VTM-APW also involved the competency-based concept to embed in the model. Derived from factors investigated, research produced the combination of elements in teaching skills and vocational skills which could be used as the best teaching method in automotive practical work for school level. As conclusion this study has concluded that the VTM-APW model is able to apply in teaching to make an improvement with current practices in Vocational Secondary School. Hence, teachers are suggested to use this method to enhance student's knowledge in Automotive and teachers will deliver skills to the current and future workforce relevant with the required competency skilled in workplace.
Keywords: Vocational Teaching Method, Practical Task, Teacher Preferences, Student Preferences.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39415010 How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective
Authors: Malte Brettel, Niklas Friederichsen, Michael Keller, Marius Rosenberg
Abstract:
The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the process- and supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-Physical-Systems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decision-makers to assess their need for transformation towards Industry 4.0 practices.
Keywords: Industry 4.0., Mass Customization, Production networks, Virtual Process-Chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317985009 Modeling Prices of Electricity Futures at EEX
Authors: Robest Flasza, Milan Rippel, Jan Solc
Abstract:
The main aim of this paper is to develop and calibrate an econometric model for modeling prices of long term electricity futures contracts. The calibration of our model is performed on data from EEX AG allowing us to capture the specific features of German electricity market. The data sample contains several structural breaks which have to be taken into account for modeling. We model the data with an ARIMAX model which reveals high correlation between the price of electricity futures contracts and prices of LT futures contracts of fuels (namely coal, natural gas and crude oil). Besides this, also a share price index of representative electricity companies traded on Xetra, spread between 10Y and 1Y German bonds and exchange rate between EUR and USD appeared to have significant explanatory power over these futures contracts on EEX.Keywords: electricity futures, EEX, ARIMAX, emissionallowances
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20195008 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing
Abstract:
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28435007 Adoption of iPads Paving the Way to Changes in the Knowledge Practices within a School of Vocational Teacher Education
Authors: Päivi Aarreniemi-Jokipelto, Merja Alanko-Turunen
Abstract:
The possibilities of mobile technology generate new demands for vocational teacher trainers to transform their approach to work and to incorporate its usage into their ordinary educational practice. This paper presents findings of a focus discussion group (FDG) session on the usage of iPads within a school of vocational teacher education (SoVTE). It aims to clarify how the teacher trainers are using iPads and what has changed in their work during the usage of iPads. The analytical framework bases on content analysis and expansive learning cycle. It was not only found what kind of a role iPads played in their daily practices but it brought also into attention how a cultural change regarding the usage of social media and mobile technology was desperately needed in the whole work community. Thus, the FGD was abducted for developing the knowledge practices of the community of the SoVTE.Keywords: iPad, mobile learning, vocational teacher education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18335006 Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red
Authors: N. F .Hamedani, A.R. Mahjoub, A. A. khodadadi, Y. Mortazavi, F.Farzaneh
Abstract:
ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.Keywords: Photo catalyst, Nano crystals, Zinc Oxide
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17035005 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: Distributed Generation(DG), Interconnected mode, Islanding mode, Maximum power point tracking (MPPT), Power Quality (PQ), Unified power quality conditioner (UPQC), Photovoltaic array (PV).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23885004 Mouse Pointer Tracking with Eyes
Authors: H. Mhamdi, N. Hamrouni, A. Temimi, M. Bouhlel
Abstract:
In this article, we expose our research work in Human-machine Interaction. The research consists in manipulating the workspace by eyes. We present some of our results, in particular the detection of eyes and the mouse actions recognition. Indeed, the handicaped user becomes able to interact with the machine in a more intuitive way in diverse applications and contexts. To test our application we have chooses to work in real time on videos captured by a camera placed in front of the user.Keywords: Computer vision, Face and Eyes Detection, Mouse pointer recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21335003 Comparative Analysis of Different Control Strategies for Electro-hydraulic Servo Systems
Authors: Ismail Algelli Sassi Ehtiwesh, Željko Đurović
Abstract:
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the control strategy that may be used for the control of the servomechanism system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy (classical feedback (PID) & neural network) using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with classical control.Keywords: Electro-hydraulic systems, PID, Neural network controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18425002 Long Term Evolution Multiple-Input Multiple-Output Network in Unmanned Air Vehicles Platform
Authors: Ashagrie Getnet Flattie
Abstract:
Line-of-sight (LOS) information, data rates, good quality, and flexible network service are limited by the fact that, for the duration of any given connection, they experience severe variation in signal strength due to fading and path loss. Wireless system faces major challenges in achieving wide coverage and capacity without affecting the system performance and to access data everywhere, all the time. In this paper, the cell coverage and edge rate of different Multiple-input multiple-output (MIMO) schemes in 20 MHz Long Term Evolution (LTE) system under Unmanned Air Vehicles (UAV) platform are investigated. After some background on the enormous potential of UAV, MIMO, and LTE in wireless links, the paper highlights the presented system model which attempts to realize the various benefits of MIMO being incorporated into UAV platform. The performances of the three MIMO LTE schemes are compared with the performance of 4x4 MIMO LTE in UAV scheme carried out to evaluate the improvement in cell radius, BER, and data throughput of the system in different morphology. The results show that significant performance gains such as bit error rate (BER), data rate, and coverage can be achieved by using the presented scenario.Keywords: BER, LTE, MIMO, path loss, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13965001 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements
Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach
Abstract:
In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16715000 Enabling the Physical Elements of a Pedestrian Friendly District around a Rail Station for Supporting Transit Oriented Development
Authors: Dyah Titisari Widyastuti
Abstract:
Rail-station area development that is based on the concept of TOD (Transit Oriented Development) is principally oriented to pedestrian accessibility for daily mobility. The aim of this research is elaborating how far the existing physical elements of a rail-station district could facilitate pedestrian mobility and establish a pedestrian friendly district toward implementation of a TOD concept. This research was conducted through some steps: (i) mapping the rail-station area pedestrian sidewalk and pedestrian network as well as activity nodes and transit nodes, (ii) assessing the level of pedestrian sidewalk connectivity joining trip origin and destination. The research area coverage in this case is limited to walking distance of the rail station (around 500 meters or 10-15 minutes walking). The findings of this research on the current condition of the street and pedestrian sidewalk network and connectivity, show good preference for the foot modal share (more than 50%) is achieved. Nevertheless, it depends on the distance from the trip origin to destination.
Keywords: Accessibility of daily mobility, pedestrian friendly district, rail-station district, Transit Oriented Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8864999 Selection and Design of an Axial Flow Fan
Authors: D. Almazo, C. Rodríguez, M. Toledo
Abstract:
This work presents a methodology for the selection and design of propeller oriented to the experimental verification of theoretical results. The problem of propeller selection and design usually present itself in the following manner: a certain air volume and static pressure are required for a certain system. Once the necessity of fan design on a theoretical basis has been recognized, it is possible to determinate the dimensions for a fan unit so that it will perform in accordance with a certain set of specifications. The same procedures in this work then can be applied in other propeller selection.Keywords: airfoil, axial flow, blade, fan, hub, mathematical algorithm, propeller design, simulation, wheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136054998 Supergrid Modeling and Operation and Control of Multi Terminal DC Grids for the Deployment of a Meshed HVDC Grid in South Asia
Authors: Farhan Beg, Raymond Moberly
Abstract:
The Indian subcontinent is facing a massive challenge with regards to energy security in its member countries; to provide reliable electricity to facilitate development across various sectors of the economy and consequently achieve the developmental targets. The instability of the current precarious situation is observable in the frequent system failures and blackouts.
The deployment of interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the Indian sub-continent is proposed in this paper. Not only enabling energy security in the subcontinent it will also provide a platform for Renewable Energy Sources (RES) integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on Voltage Source High Voltage Direct Current (VSC- HVDC) converters for the Supergrid modeling. Various control schemes for the control of voltage and power are utilized for the regulation of the network parameters. A 3 terminal Multi Terminal Direct Current (MTDC) network is used for the simulations.
Keywords: Super grid, Wind and Solar energy, High Voltage Direct Current, Electricity management, Load Flow Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28174997 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks
Authors: Siddhartha Chauhan, Nitin Kumar Kotania
Abstract:
Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network.
Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.
Keywords: Buffer overflow problem, Mobile sink, Virtual grid, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18314996 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8394995 Comparison of Injuries and Accidents Globally and in Finland
Authors: R. Pääkkönen, L. Korpinen
Abstract:
We tried statistically to determine the biggest risks for accidents and injuries in Finland compared to other countries. We have a very high incidence of domestic falls and accidental poisoning compared to other European countries. On the other side, we have a relatively low number of accidents in traffic or at work globally, and in European scale, because we have worked hard to diminish these forms of accidents. In Finland, there is work to be done to improve attitudes and actions against domestic accidents.
Keywords: Injuries, accident, comparison, Finland.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16524994 Malicious Route Defending Reliable-Data Transmission Scheme for Multi Path Routing in Wireless Network
Authors: S. Raja Ratna, R. Ravi
Abstract:
Securing the confidential data transferred via wireless network remains a challenging problem. It is paramount to ensure that data are accessible only by the legitimate users rather than by the attackers. One of the most serious threats to organization is jamming, which disrupts the communication between any two pairs of nodes. Therefore, designing an attack-defending scheme without any packet loss in data transmission is an important challenge. In this paper, Dependence based Malicious Route Defending DMRD Scheme has been proposed in multi path routing environment to prevent jamming attack. The key idea is to defend the malicious route to ensure perspicuous transmission. This scheme develops a two layered architecture and it operates in two different steps. In the first step, possible routes are captured and their agent dependence values are marked using triple agents. In the second step, the dependence values are compared by performing comparator filtering to detect malicious route as well as to identify a reliable route for secured data transmission. By simulation studies, it is observed that the proposed scheme significantly identifies malicious route by attaining lower delay time and route discovery time; it also achieves higher throughput.
Keywords: Attacker, Dependence, Jamming, Malicious.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17564993 Investigating Student Behavior in Adopting Online Formative Assessment Feedback
Authors: Peter Clutterbuck, Terry Rowlands, Owen Seamons
Abstract:
In this paper we describe one critical research program within a complex, ongoing multi-year project (2010 to 2014 inclusive) with the overall goal to improve the learning outcomes for first year undergraduate commerce/business students within an Information Systems (IS) subject with very large enrolment. The single research program described in this paper is the analysis of student attitudes and decision making in relation to the availability of formative assessment feedback via Web-based real time conferencing and document exchange software (Adobe Connect). The formative assessment feedback between teaching staff and students is in respect of an authentic problem-based, team-completed assignment. The analysis of student attitudes and decision making is investigated via both qualitative (firstly) and quantitative (secondly) application of the Theory of Planned Behavior (TPB) with a two statistically-significant and separate trial samples of the enrolled students. The initial qualitative TPB investigation revealed that perceived self-efficacy, improved time-management, and lecturer-student relationship building were the major factors in shaping an overall favorable student attitude to online feedback, whilst some students expressed valid concerns with perceived control limitations identified within the online feedback protocols. The subsequent quantitative TPB investigation then confirmed that attitude towards usage, subjective norms surrounding usage, and perceived behavioral control of usage were all significant in shaping student intention to use the online feedback protocol, with these three variables explaining 63 percent of the variance in the behavioral intention to use the online feedback protocol. The identification in this research of perceived behavioral control as a significant determinant in student usage of a specific technology component within a virtual learning environment (VLE) suggests that VLEs could now be viewed not as a single, atomic entity, but as a spectrum of technology offerings ranging from the mature and simple (e.g., email, Web downloads) to the cutting-edge and challenging (e.g., Web conferencing and real-time document exchange). That is, that all VLEs should not be considered the same. The results of this research suggest that tertiary students have the technological sophistication to assess a VLE in this more selective manner.
Keywords: Formative assessment feedback, virtual learning environment, theory of planned behavior, perceived behavioral control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20924992 Forecasting the Sea Level Change in Strait of Hormuz
Authors: Hamid Goharnejad, Amir Hossein Eghbali
Abstract:
Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.Keywords: Climate change scenarios, sea-level rise, strait of Hormuz, artificial neural network, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24304991 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973