Search results for: Wireless Ad Hoc Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2217

Search results for: Wireless Ad Hoc Networks

267 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances

Authors: Proud Arunrangsiwed, Sarinya Kongtieng

Abstract:

Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.

Keywords: Meta-regression analysis, social networking site use, academic performance, multitasking, motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
266 DAMQ-Based Approach for Efficiently Using the Buffer Spaces of a NoC Router

Authors: Mohammad Ali Jabraeil Jamali, Ahmad khademzadeh

Abstract:

In this paper we present high performance dynamically allocated multi-queue (DAMQ) buffer schemes for fault tolerance systems on chip applications that require an interconnection network. Two virtual channels shared the same buffer space. Fault tolerant mechanisms for interconnection networks are becoming a critical design issue for large massively parallel computers. It is also important to high performance SoCs as the system complexity keeps increasing rapidly. On the message switching layer, we make improvement to boost system performance when there are faults involved in the components communication. The proposed scheme is when a node or a physical channel is deemed as faulty, the previous hop node will terminate the buffer occupancy of messages destined to the failed link. The buffer usage decisions are made at switching layer without interactions with higher abstract layer, thus buffer space will be released to messages destined to other healthy nodes quickly. Therefore, the buffer space will be efficiently used in case fault occurs at some nodes.

Keywords: DAMQ, NoC, fault tolerant, odd-even routingalgorithm, buffer space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
265 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.

Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
264 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
263 State Estimation Solution with Optimal Allocation of Phasor Measurement Units Considering Zero Injection Bus Modeling

Authors: M. Ravindra, R. Srinivasa Rao, V. Shanmukha Naga Raju

Abstract:

This paper presents state estimation with Phasor Measurement Unit (PMU) allocation to obtain complete observability of network. A matrix is designed with modeling of zero injection constraints to minimize PMU allocations. State estimation algorithm is developed with optimal allocation of PMUs to find accurate states of network. The incorporation of PMU into traditional state estimation process improves accuracy and computational performance for large power systems. The nonlinearity integrated with zero injection (ZI) constraints is remodeled to linear frame to optimize number of PMUs. The problem of optimal PMU allocation is regarded with modeling of ZI constraints, PMU loss or line outage, cost factor and redundant measurements. The proposed state estimation with optimal PMU allocation has been compared with traditional state estimation process to show its importance. MATLAB programming on IEEE 14, 30, 57, and 118 bus networks is implemented out by Binary Integer Programming (BIP) method and compared with other methods to show its effectiveness.

Keywords: Observability, phasor measurement units, synchrophasors, SCADA measurements, zero injection bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
262 Collaborative Web Platform for Rich Media Educational Material Creation

Authors: I. Alberdi, H. Iribas, A. Martin, N. Aginako

Abstract:

This paper describes a platform that faces the main research areas for e-learning educational contents. Reusability tackles the possibility to use contents in different courses reducing costs and exploiting available data from repositories. In our approach the production of educational material is based on templates to reuse learning objects. In terms of interoperability the main challenge lays on reaching the audience through different platforms. E-learning solution must track social consumption evolution where nowadays lots of multimedia contents are accessed through the social networks. Our work faces it by implementing a platform for generation of multimedia presentations focused on the new paradigm related to social media. The system produces videos-courses on top of web standard SMIL (Synchronized Multimedia Integration Language) ready to be published and shared. Regarding interfaces it is mandatory to satisfy user needs and ease communication. To overcome it the platform deploys virtual teachers that provide natural interfaces while multimodal features remove barriers to pupils with disabilities.

Keywords: Collaborative, multimedia e-learning, reusability, SMIL, virtual teacher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
261 Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines

Authors: S. Cagin, X. Fischer, E. Delacourt, N. Bourabaa, C. Morin, D. Coutellier, B. Carré, S. Loumé

Abstract:

The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).

Keywords: Diesel engine, Design optimization, Model reduction, Neural network, NTF algorithm, Scavenging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
260 Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm

Authors: K. Varesi

Abstract:

This paper proposes a Particle Swarm Optimization (PSO) based technique for the optimal allocation of Distributed Generation (DG) units in the power systems. In this paper our aim is to decide optimal number, type, size and location of DG units for voltage profile improvement and power loss reduction in distribution network. Two types of DGs are considered and the distribution load flow is used to calculate exact loss. Load flow algorithm is combined appropriately with PSO till access to acceptable results of this operation. The suggested method is programmed under MATLAB software. Test results indicate that PSO method can obtain better results than the simple heuristic search method on the 30-bus and 33- bus radial distribution systems. It can obtain maximum loss reduction for each of two types of optimally placed multi-DGs. Moreover, voltage profile improvement is achieved.

Keywords: Distributed Generation (DG), Optimal Allocation, Particle Swarm Optimization (PSO), Power Loss Minimization, Voltage Profile Improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3169
259 Application of Neural Networks for 24-Hour-Ahead Load Forecasting

Authors: Fatemeh Mosalman Yazdi

Abstract:

One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported.

Keywords: Artificial neural network, Holiday forecasting, pickand valley load forecasting, Short-term load-forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
258 Transfer of Information Heritage between Algerian Veterinarians and Breeders: Assessment of Information and Communication Technology Using Mobile Phone

Authors: R. Bernaoui, P. Ohly

Abstract:

Our research shows the use of the mobile phone that consolidates the relationship between veterinarians, and that between breeders and veterinarians. On the other hand it asserts that the tool in question is a means of economic development. The results of our survey reveal a positive return to the veterinary community, which shows that the mobile phone has become an effective means of sustainable development through the transfer of a rapid and punctual information inheritance via social networks; including many Internet applications. Our results show that almost all veterinarians use the mobile phone for interprofessional communication. We therefore believe that the use of the mobile phone by livestock operators has greatly improved the working conditions, just as the use of this tool contributes to a better management of the exploitation as long as it allows limit travel but also save time. These results show that we are witnessing a growth in the use of mobile telephony technologies that impact is as much in terms of sustainable development. Allowing access to information, especially technical information, the mobile phone, and Information and Communication of Technology (ICT) in general, give livestock sector players not only security, by limiting losses, but also an efficiency that allows them a better production and productivity.

Keywords: Algeria, Breeder-veterinarian, Digital Heritage, Networking, Mobile phone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
257 An Implementation of EURORADIO Protocol for ERTMS Systems

Authors: Gabriele Cecchetti, Anna Lina Ruscelli, Filippo Cugini, Piero Castoldi

Abstract:

European Rail Traffic Management System (ERTMS) is the European reference for interoperable and safer signaling systems to efficiently manage trains running. If implemented, it allows trains cross seamlessly intra-European national borders. ERTMS has defined a secure communication protocol, EURORADIO, based on open communication networks. Its RadioInfill function can improve the reaction of the signaling system to changes in line conditions, avoiding unnecessary braking: its advantages in terms of power saving and travel time has been analyzed. In this paper a software implementation of the EURORADIO protocol with RadioInfill for ERTMS Level 1 using GSM-R is illustrated as part of the SR-Secure Italian project. In this building-blocks architecture the EURORADIO layers communicates together through modular Application Programm Interfaces. Security coding rules and railway industry requirements specified by EN 50128 standard have been respected. The proposed implementation has successfully passed conformity tests and has been tested on a computer-based simulator.

Keywords: ERTMS, ETCS signalling, EURORADIO protocol, radio infill function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4431
256 A Two-Stage Multi-Agent System to Predict the Unsmoothed Monthly Sunspot Numbers

Authors: Mak Kaboudan

Abstract:

A multi-agent system is developed here to predict monthly details of the upcoming peak of the 24th solar magnetic cycle. While studies typically predict the timing and magnitude of cycle peaks using annual data, this one utilizes the unsmoothed monthly sunspot number instead. Monthly numbers display more pronounced fluctuations during periods of strong solar magnetic activity than the annual sunspot numbers. Because strong magnetic activities may cause significant economic damages, predicting monthly variations should provide different and perhaps helpful information for decision-making purposes. The multi-agent system developed here operates in two stages. In the first, it produces twelve predictions of the monthly numbers. In the second, it uses those predictions to deliver a final forecast. Acting as expert agents, genetic programming and neural networks produce the twelve fits and forecasts as well as the final forecast. According to the results obtained, the next peak is predicted to be 156 and is expected to occur in October 2011- with an average of 136 for that year.

Keywords: Computational techniques, discrete wavelet transformations, solar cycle prediction, sunspot numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
255 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria

Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi

Abstract:

In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: ater management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
254 Secure Hashing Algorithm and Advance Encryption Algorithm in Cloud Computing

Authors: Jaimin Patel

Abstract:

Cloud computing is one of the most sharp and important movement in various computing technologies. It provides flexibility to users, cost effectiveness, location independence, easy maintenance, enables multitenancy, drastic performance improvements, and increased productivity. On the other hand, there are also major issues like security. Being a common server, security for a cloud is a major issue; it is important to provide security to protect user’s private data, and it is especially important in e-commerce and social networks. In this paper, encryption algorithms such as Advanced Encryption Standard algorithms, their vulnerabilities, risk of attacks, optimal time and complexity management and comparison with other algorithms based on software implementation is proposed. Encryption techniques to improve the performance of AES algorithms and to reduce risk management are given. Secure Hash Algorithms, their vulnerabilities, software implementations, risk of attacks and comparison with other hashing algorithms as well as the advantages and disadvantages between hashing techniques and encryption are given.

Keywords: Cloud computing, encryption algorithm, secure hashing algorithm, brute force attack, birthday attack, plaintext attack, man-in-the-middle attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
253 Road Safety in Great Britain: An Exploratory Data Analysis

Authors: Jatin Kumar Choudhary, Naren Rayala, Abbas Eslami Kiasari, Fahimeh Jafari

Abstract:

Great Britain has one of the safest road networks in the world. However, the consequences of any death or serious injury are devastating for loved ones, as well as for those who help the severely injured. This paper aims to analyse Great Britain's road safety situation and show the response measures for areas where the total damage caused by accidents can be significantly and quickly reduced. For the past 30 years, the UK has had a good record in reducing fatalities over the past 30 years, there is still a considerable number of road deaths. The government continues to scale back road deaths empowering responsible road users by identifying and prosecuting the parameters that make the roads less safe. This study represents an exploratory analysis with deep insights which could provide policy makers with invaluable insights into how accidents happen and how they can be mitigated. We use STATS19 data published by the UK government. Since we need more information about locations which is not provided in STATA19, we first expand the features of the dataset using OpenStreetMap and Visual Crossing. This paper also provides a discussion regarding new road safety methods.

Keywords: Road safety, data analysis, OpenStreetMap, feature expanding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348
252 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process

Authors: Hen Friman

Abstract:

Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.

Keywords: Renewable energy, solar energy, decentralized facilities, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136
251 Clinical Decision Support for Disease Classification based on the Tests Association

Authors: Sung Ho Ha, Seong Hyeon Joo, Eun Kyung Kwon

Abstract:

Until recently, researchers have developed various tools and methodologies for effective clinical decision-making. Among those decisions, chest pain diseases have been one of important diagnostic issues especially in an emergency department. To improve the ability of physicians in diagnosis, many researchers have developed diagnosis intelligence by using machine learning and data mining. However, most of the conventional methodologies have been generally based on a single classifier for disease classification and prediction, which shows moderate performance. This study utilizes an ensemble strategy to combine multiple different classifiers to help physicians diagnose chest pain diseases more accurately than ever. Specifically the ensemble strategy is applied by using the integration of decision trees, neural networks, and support vector machines. The ensemble models are applied to real-world emergency data. This study shows that the performance of the ensemble models is superior to each of single classifiers.

Keywords: Diagnosis intelligence, ensemble approach, data mining, emergency department

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
250 Social Media Impact on Startup Entrepreneurial Intention: Evidence from Greece

Authors: Panagiotis I. Mallios, Vassilis S. Moustakis

Abstract:

The research reported herein presents a conceptual model that explores the relationship between social media factors and entrepreneurial intention, with a focus on the Greek startup ecosystem. The significance of the study is that social media gained importance in explaining the entrepreneurial process, and through them, nascent and potential entrepreneurs seem to get inspired and motivated to initiate their businesses. The research methodology employed in this study included a qualitative research approach, utilizing in-depth interviews with a sample of 15 startup entrepreneurs providing valuable retrospective information. The data collected were analyzed using the content analysis method. The major findings of the study are that social media factors such as usefulness, influence, and credibility have a significant impact on entrepreneurial intention. We also found that social media can be a powerful tool for entrepreneurs to access resources, knowledge and networks that can help them in their venture creation. Overall, this research contributes to the entrepreneurship literature by uncovering the relationship between social media factors and entrepreneurial intention and has implications for entrepreneurial education, policymakers, and official partners, highlighting the potential of social media to enhance the startup ecosystem.

Keywords: Entrepreneurial intention, entrepreneurship, social media, startup ecosystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162
249 A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (Multi Layer Perceptron) method.

Keywords: Adaptive Control, Morlet Wavelets, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
248 Control Chart Pattern Recognition Using Wavelet Based Neural Networks

Authors: Jun Seok Kim, Cheong-Sool Park, Jun-Geol Baek, Sung-Shick Kim

Abstract:

Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characteristics. The procedure of proposed control chart pattern recognizer comprises three stages. First, multi-resolution wavelet analysis is used to generate time-shape and time-frequency coefficients that have detail information about the patterns. Second, distance based features are extracted by a bi-directional Kohonen network to make reduced and robust information. Third, a back-propagation network classifier is trained by these features. The accuracy of the proposed method is shown by the performance evaluation with numerical results.

Keywords: Control chart pattern recognition, Multi-resolution wavelet analysis, Bi-directional Kohonen network, Back-propagation network, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
247 Sustainability through Self-Restriction: Livelihood Strategies of Urban Households in Kazakhstan

Authors: Daurenbek Kuleimenov

Abstract:

Urban life is characterized by rapid changes and high influence of market institutions on livelihood strategies of households to get sustainability, especially in countries of former Soviet Union challenged transformation of economy to the market type. Moving from socialistic worldviews to capitalistic ones which as usual regulated by free markets has been enough big challenge for households in urban area, which have to face with adaptation to new systems. Influence of market institutions on everyday life and planning system of households can destroy traditional household dispositions of the sustainable managing of a family budget. New changes of economy system can lead to splitting up large social networks and appearing new risky livelihood strategies of households. Urban households from Astana that is the capital city of Kazakhstan were interviewed within international research project “Livelihoods Strategies of Private Households in Central Asia. A Rural-Urban Comparison in Kazakhstan and Kyrgyzstan”, which enables to explore urgent issues of livelihood strategies of urban households in current Kazakhstan under influence of the spreading of market institutions from the micro level research focus of their everyday life.

Keywords: Market institutions, Sustainability, Transformation economy, Urban households.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
246 Gender and Advertisements: A Content Analysis of Pakistani Prime Time Advertisements

Authors: Aaminah Hassan

Abstract:

Advertisements carry a great potential to influence our lives because they are crafted to meet particular ends. Stereotypical representation in advertisements is capable of forming unconscious attitudes among people towards any gender and their abilities. This study focuses on gender representation in Pakistani prime time advertisements. For this purpose, 13 advertisements were selected from three different categories of foods and beverages, cosmetics, cell phones and cellular networks from the prime time slots of one of the leading Pakistani entertainment channel, ‘Urdu 1’. Both quantitative and qualitative analyses are carried out for range of variables like gender, age, roles, activities, setting, appearance and voice overs. The results revealed that gender representation in advertisements is stereotypical. Moreover, in few instances, the portrayal of women is not only culturally inappropriate but is demeaning to the image of women as well. Their bodily charm is used to promote products. Comparing different entertainment channels for their prime time advertisements and broadening the scope of this research will yield greater implications for the researchers who want to carry out the similar research. It is hoped that the current study would help in the promotion of media literacy among the viewers and media authorities in Pakistan.

Keywords: Advertisements, content analysis, gender, prime time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1105
245 A Blue Print of a Unified Communications and Integrated Collaborations System in the Health Sector of Developing Countries: A Case of Uganda

Authors: Excellence Favor, Bakari M. M. Mwinyiwiwa, Damian D. Haule, Fakih H. Omar

Abstract:

Access to information is the key to the empowerment of everybody despite where they are living. This research is to be carried out in respect of the people living in developing countries, considering their plight and complex geographical, demographic, social-economic conditions surrounding the areas they live, which hinder access to information and of professionals providing services such as medical workers, which has led to high death rates and development stagnation. Research on Unified Communications and Integrated Collaborations (UCIC) system in the health sector of developing countries comes in to create a possible solution of bridging the digital canyon among the communities. The aim is to deliver services in a seamless manner to assist health workers situated anywhere to be accessed easily and access information which will help in service delivery. The proposed UCIC provides the most immersive Telepresence experience for one-to-one or many-tomany meetings. Extending to locations anywhere in the world, the transformative platform delivers Ultra-low operating costs through the use of general purpose networks and using special lenses and track systems.

Keywords: Developing countries, Unified communications and integrated collaborations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
244 An Efficient Algorithm for Delay Delay-variation Bounded Least Cost Multicast Routing

Authors: Manas Ranjan Kabat, Manoj Kumar Patel, Chita Ranjan Tripathy

Abstract:

Many multimedia communication applications require a source to transmit messages to multiple destinations subject to quality of service (QoS) delay constraint. To support delay constrained multicast communications, computer networks need to guarantee an upper bound end-to-end delay from the source node to each of the destination nodes. This is known as multicast delay problem. On the other hand, if the same message fails to arrive at each destination node at the same time, there may arise inconsistency and unfairness problem among users. This is related to multicast delayvariation problem. The problem to find a minimum cost multicast tree with delay and delay-variation constraints has been proven to be NP-Complete. In this paper, we propose an efficient heuristic algorithm, namely, Economic Delay and Delay-Variation Bounded Multicast (EDVBM) algorithm, based on a novel heuristic function, to construct an economic delay and delay-variation bounded multicast tree. A noteworthy feature of this algorithm is that it has very high probability of finding the optimal solution in polynomial time with low computational complexity.

Keywords: EDVBM, Heuristic algorithm, Multicast tree, QoS routing, Shortest path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
243 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.

Keywords: Challenges, IPTV Service, Requirements, Software Defined Networking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
242 Transformation of Industrial Policy towards Industry 4.0 and Its Impact on Firms' Competition

Authors: Arūnas Burinskas

Abstract:

Although Europe is on the threshold of a new industrial revolution called Industry 4.0, many believe that this will increase the flexibility of production, the mass adaptation of products to consumers and the speed of their service; it will also improve product quality and dramatically increase productivity. However, as expected, all the benefits of Industry 4.0 face many of the inevitable changes and challenges they pose. One of them is the inevitable transformation of current competition and business models. This article examines the possible results of competitive conversion from the classic Bertrand and Cournot models to qualitatively new competition based on innovation. Ability to deliver a new product quickly and the possibility to produce the individual design (through flexible and quickly configurable factories) by reducing equipment failures and increasing process automation and control is highly important. This study shows that the ongoing transformation of the competition model is changing the game. This, together with the creation of complex value networks, means huge investments that make it particularly difficult for small and medium-sized enterprises. In addition, the ongoing digitalization of data raises new concerns regarding legal obligations, intellectual property, and security.

Keywords: Bertrand and Cournot Competition, competition model, Industry 4.0, industrial organization, monopolistic competition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473
241 Power Generation Scheduling of Thermal Units Considering Gas Pipelines Constraints

Authors: Sara Mohtashami, Habib Rajabi Mashhadi

Abstract:

With the growth of electricity generation from gas energy gas pipeline reliability can substantially impact the electric generation. A physical disruption to pipeline or to a compressor station can interrupt the flow of gas or reduce the pressure and lead to loss of multiple gas-fired electric generators, which could dramatically reduce the supplied power and threaten the power system security. Gas pressure drops during peak loading time on pipeline system, is a common problem in network with no enough transportation capacity which limits gas transportation and causes many problem for thermal domain power systems in supplying their demand. For a feasible generation scheduling planning in networks with no sufficient gas transportation capacity, it is required to consider gas pipeline constraints in solving the optimization problem and evaluate the impacts of gas consumption in power plants on gas pipelines operating condition. This paper studies about operating of gas fired power plants in critical conditions when the demand of gas and electricity peak together. An integrated model of gas and electric model is used to consider the gas pipeline constraints in the economic dispatch problem of gas-fueled thermal generator units.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
240 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
239 Integration of Hydropower and Solar Photovoltaic Generation into Distribution System: Case of South Sudan

Authors: A. Amogpai

Abstract:

Hydropower and solar photovoltaic (PV) generation are crucial in sustainability and transitioning from fossil fuel to clean energy. Integrating renewable energy sources such as hydropower and solar PV into the distributed networks contributes to achieving energy balance, pollution mitigation, and cost reduction. Frequent power outages and a lack of load reliability characterize the current South Sudan electricity distribution system. The country’s electricity demand is 300 MW; however, the installed capacity is around 212.4 MW. Insufficient funds to build new electricity facilities and expand generation are the reasons for the gap in installed capacity. The South Sudan Ministry of Energy and Dams gave a contract to an Egyptian Elsewedy Electric Company that completed the construction of a solar PV plant in 2023. The plant has a 35 MWh battery storage and 20 MW solar PV system capacity. The construction of Juba Solar PV Park started in 2022 to increase the current installed capacity in Juba City to 53 MW. The plant will begin serving 59000 residents in Juba and save 10,886.2 t of carbon dioxide (CO2) annually.

Keywords: Renewable energy, hydropower, solar energy, photovoltaic, South Sudan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23
238 Individuals’ Inner Wellbeing during the COVID-19 Pandemic: A Quantitative Comparison of Social Connections and Close Relationships between the UK and India

Authors: Maria Spanoudaki, Pauldy C. J. Otermans, Dev Aditya

Abstract:

Relationships form an integral part of our everyday wellbeing. In this study, the focus is on Inner Wellbeing which can be described as an individuals' thoughts and feelings about what they can do and be. Relationships can come in many forms and can be divided into Social Connections (thoughts and feelings about the social network people can establish and rely on), and Close Relationships (thoughts and feeling about the emotional support people can receive from significant others or their close, intimate circle). The purpose of this study is to compare the Social Connections and Close Relationship dimensions of Inner Wellbeing during the COVID-19 pandemic between the UK and India. As part of the study, 392 participants in the UK and 205 participants India completed an online questionnaire using the Inner Wellbeing scale. Factor analyses showed that the construct of Inner Wellbeing can be described as one factor for the UK sample whereas it can be described as two factors (one focusing on positive items and one focusing on negative items) for the Indian sample. Results showed that during COVID-19, Social Connections were significantly different in the UK compared to India, whereas there is no significant difference for Close Relationships. The implications on relationships and wellbeing are discussed in detail.

Keywords: Social networks, relationship maintenance, relationship satisfaction, inner wellbeing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837