Search results for: Wireless Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3104

Search results for: Wireless Network

1304 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator

Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang

Abstract:

This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.

Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
1303 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment

Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet

Abstract:

Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.

Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
1302 Optimized Data Fusion in an Intelligent Integrated GPS/INS System Using Genetic Algorithm

Authors: Ali Asadian, Behzad Moshiri, Ali Khaki Sedigh, Caro Lucas

Abstract:

Most integrated inertial navigation systems (INS) and global positioning systems (GPS) have been implemented using the Kalman filtering technique with its drawbacks related to the need for predefined INS error model and observability of at least four satellites. Most recently, a method using a hybrid-adaptive network based fuzzy inference system (ANFIS) has been proposed which is trained during the availability of GPS signal to map the error between the GPS and the INS. Then it will be used to predict the error of the INS position components during GPS signal blockage. This paper introduces a genetic optimization algorithm that is used to update the ANFIS parameters with respect to the INS/GPS error function used as the objective function to be minimized. The results demonstrate the advantages of the genetically optimized ANFIS for INS/GPS integration in comparison with conventional ANFIS specially in the cases of satellites- outages. Coping with this problem plays an important role in assessment of the fusion approach in land navigation.

Keywords: Adaptive Network based Fuzzy Inference System (ANFIS), Genetic optimization, Global Positioning System (GPS), Inertial Navigation System (INS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
1301 Reduction of Impulsive Noise in OFDM System Using Adaptive Algorithm

Authors: Alina Mirza, Sumrin M. Kabir, Shahzad A. Sheikh

Abstract:

The Orthogonal Frequency Division Multiplexing (OFDM) with high data rate, high spectral efficiency and its ability to mitigate the effects of multipath makes them most suitable in wireless application. Impulsive noise distorts the OFDM transmission and therefore methods must be investigated to suppress this noise. In this paper, a State Space Recursive Least Square (SSRLS) algorithm based adaptive impulsive noise suppressor for OFDM communication system is proposed. And a comparison with another adaptive algorithm is conducted. The state space model-dependent recursive parameters of proposed scheme enables to achieve steady state mean squared error (MSE), low bit error rate (BER), and faster convergence than that of some of existing algorithm.

Keywords: OFDM, Impulsive Noise, SSRLS, BER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
1300 Quality of Romanian Food Products on Rapid Alert System for Food and Feed Notifications

Authors: Silvius Stanciu

Abstract:

Romanian food products sold on European markets have been accused of several non-conformities of quality and safety. Most products incriminated last period were those of animal origin, especially meat and meat products. The study proposed an analysis of the notifications made by network members through Rapid Alert System for Food and Feed on products originating in Romania. As a source of information, the Rapid Alert System portal and the official communications of the National Sanitary Veterinary and Food Safety Authority were used. The research results showed that nearly a quarter of network notifications were rejected and were withdrawn by the European Authority. Although national authorities present these issues as success stories of national quality policies, the large number of notifications related to the volume of exported products is worrying. The paper is of practical and applicative importance for both the business environment and the academic environment, laying the basis for a wider research on the quality differences between Romanian and imported products.

Keywords: Food, quality, Rapid Alert System for Food and Feed, RASFF, Romania.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
1299 An Organizational Strategic Analysis for Dynamics of Generating Firms- Alliance Networks

Authors: Takao Sakakura, Kazunori Fujimoto

Abstract:

This paper proposes an analytical method for the dynamics of generating firms- alliance networks along with business phases. Dynamics in network developments have previously been discussed in the research areas of organizational strategy rather than in the areas of regional cluster, where the static properties of the networks are often discussed. The analytical method introduces the concept of business phases into innovation processes and uses relationships called prior experiences; this idea was developed in organizational strategy to investigate the state of networks from the viewpoints of tradeoffs between link stabilization and node exploration. This paper also discusses the results of the analytical method using five cases of the network developments of firms. The idea of Embeddedness helps interpret the backgrounds of the analytical results. The analytical method is useful for policymakers of regional clusters to establish concrete evaluation targets and a viewpoint for comparisons of policy programs.

Keywords: Regional Clusters, Alliance Networks, Innovation Processes, Prior Experiences, Embeddedness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
1298 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400 ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
1297 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
1296 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: Video surveillance, disentanglement, face detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
1295 Availability Strategy of Medical Information for Telemedicine Services

Authors: Rozo D. Juan Felipe, Ramírez L. Leonardo Juan, Puerta A. Gabriel Alberto

Abstract:

The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.

Keywords: Availability, medical information, QoS, strategy, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
1294 A Review on Terrestrial Multimedia Communication using OFDM Technology

Authors: Shweta Shah, Upena Dalal

Abstract:

The development of wireless communication technologies has changed our living style in global level. After the international success of mobile telephony standards, the location and time independent voice connection has become a default method in daily telecommunications. As for today, highly advanced multimedia messaging plays a key role in value added service handling. Along with evolving data services, the need for more complex applications can be seen, including the mobile usage of broadcast technologies. Here performance of a system design for terrestrial multimedia content is examined with emphasis on mobile reception. This review paper has accommodated the understanding of physical layer role and the flavour of terrestrial channel effects on the terrestrial multimedia transmission using OFDM keeping DVB-H as benchmark standard.

Keywords: Digital Video Broadcast-Handhelds, Multimedia, OFDM, Physical Layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
1293 Downlink Scheduling and Radio Resource Allocation in Adaptive OFDMA Wireless Communication Systems for User-Individual QoS

Authors: Lu Yanhui, Wang Chunming, Yin Changchuan, Yue Guangxin

Abstract:

In this paper, we address the problem of adaptive radio resource allocation (RRA) and packet scheduling in the downlink of a cellular OFDMA system, and propose a downlink multi-carrier proportional fair (MPF) scheduler and its joint with adaptive RRA algorithm to distribute radio resources among multiple users according to their individual QoS requirements. The allocation and scheduling objective is to maximize the total throughput, while at the same time maintaining the fairness among users. The simulation results demonstrate that the methods presented provide for user more explicit fairness relative to RRA algorithm, but the joint scheme achieves the higher sum-rate capacity with flexible parameters setting compared with MPF scheduler.

Keywords: OFDMA, adaptive radio resource allocation, scheduling, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1292 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia

Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi

Abstract:

Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.

Keywords: Artificial neural networks, short-term load forecasting, back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
1291 Market Acceptance of a Murabaha-Based Finance Structure within a Social Network of Non-Islamic Small and Medium Enterprise Owners in African Procurement

Authors: Craig M. Allen

Abstract:

Twenty two African entrepreneurs with Small and Medium Enterprises (SMEs) in a single social network centered around a non-Muslim population in a smaller African country, selected an Islamic financing structure, a form of Murabaha, based solely on market rationale. These entrepreneurs had all won procurement contracts from major purchasers of goods within their country and faced difficulty arranging traditional bank financing to support their supply-chain needs. The Murabaha-based structure satisfied their market-driven demand and provided an attractive alternative to the traditional bank-offered lending products. The Murabaha-styled trade-financing structure was not promoted with any religious implications, but solely as a market solution to the existing problems associated with bank-related financing. This indicates the strong market forces that draw SMEs to financing structures that are traditionally considered within the framework of Islamic finance.

Keywords: Africa, entrepreneurs, Islamic finance, market acceptance, Murabaha, SMEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
1290 An Improved ICI Self-Cancellation Scheme for Multi-Carrier Communication Systems

Authors: Arvind Kumar, Rajoo Pandey

Abstract:

For broadband wireless mobile communication systems the orthogonal frequency division multiplexing (OFDM) is a suitable modulation scheme. The frequency offset between transmitter and receiver local oscillator is main drawback of OFDM systems, which causes intercarrier interference (ICI) in the subcarriers of the OFDM system. This ICI degrades the bit error rate (BER) performance of the system. In this paper an improved self-ICI cancellation scheme is proposed to improve the system performance. The proposed scheme is based on discrete Fourier transform-inverse discrete Fourier transform (DFT-IDFT). The simulation results show that there is satisfactory improvement in the bit error rate (BER) performance of the present scheme.

Keywords: OFDM, Intercarrier Interference, InterferenceCoefficients, DFT based Self-ICI Cancellation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1289 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability

Authors: Pradeep Kumar, Abdul Wahid

Abstract:

Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.

Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1288 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: Clustering, data mining, DBSCAN, k-means, k-medoids, sensor data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
1287 Numerical Experiments for the Purpose of Studying Space-Time Evolution of Various Forms of Pulse Signals in the Collisional Cold Plasma

Authors: N. Kh. Gomidze, I. N. Jabnidze, K. A. Makharadze

Abstract:

The influence of inhomogeneities of plasma and statistical characteristics on the propagation of signal is very actual in wireless communication systems. While propagating in the media, the deformation and evaluation of the signal in time and space take place and on the receiver we get a deformed signal. The present article is dedicated to studying the space-time evolution of rectangular, sinusoidal, exponential and bi-exponential impulses via numerical experiment in the collisional, cold plasma. The presented method is not based on the Fourier-presentation of the signal. Analytically, we have received the general image depicting the space-time evolution of the radio impulse amplitude that gives an opportunity to analyze the concrete results in the case of primary impulse.

Keywords: Collisional, cold plasma, rectangular pulse signal, impulse envelope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
1286 Enhancement of Stereo Video Pairs Using SDNs To Aid In 3D Reconstruction

Authors: Lewis E. Hibell, Honghai Liu, David J. Brown

Abstract:

This paper presents the results of enhancing images from a left and right stereo pair in order to increase the resolution of a 3D representation of a scene generated from that same pair. A new neural network structure known as a Self Delaying Dynamic Network (SDN) has been used to perform the enhancement. The advantage of SDNs over existing techniques such as bicubic interpolation is their ability to cope with motion and noise effects. SDNs are used to generate two high resolution images, one based on frames taken from the left view of the subject, and one based on the frames from the right. This new high resolution stereo pair is then processed by a disparity map generator. The disparity map generated is compared to two other disparity maps generated from the same scene. The first is a map generated from an original high resolution stereo pair and the second is a map generated using a stereo pair which has been enhanced using bicubic interpolation. The maps generated using the SDN enhanced pairs match more closely the target maps. The addition of extra noise into the input images is less problematic for the SDN system which is still able to out perform bicubic interpolation.

Keywords: Genetic Evolution, Image Enhancement, Neuron Networks, Stereo Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
1285 Anomaly Detection using Neuro Fuzzy system

Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani

Abstract:

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Keywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
1284 State Estimation Solution with Optimal Allocation of Phasor Measurement Units Considering Zero Injection Bus Modeling

Authors: M. Ravindra, R. Srinivasa Rao, V. Shanmukha Naga Raju

Abstract:

This paper presents state estimation with Phasor Measurement Unit (PMU) allocation to obtain complete observability of network. A matrix is designed with modeling of zero injection constraints to minimize PMU allocations. State estimation algorithm is developed with optimal allocation of PMUs to find accurate states of network. The incorporation of PMU into traditional state estimation process improves accuracy and computational performance for large power systems. The nonlinearity integrated with zero injection (ZI) constraints is remodeled to linear frame to optimize number of PMUs. The problem of optimal PMU allocation is regarded with modeling of ZI constraints, PMU loss or line outage, cost factor and redundant measurements. The proposed state estimation with optimal PMU allocation has been compared with traditional state estimation process to show its importance. MATLAB programming on IEEE 14, 30, 57, and 118 bus networks is implemented out by Binary Integer Programming (BIP) method and compared with other methods to show its effectiveness.

Keywords: Observability, phasor measurement units, synchrophasors, SCADA measurements, zero injection bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
1283 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels

Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra

Abstract:

In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.

Keywords: Alternative energy, solar tracker, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
1282 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2339
1281 Artificial Intelligence in Penetration Testing of a Connected and Autonomous Vehicle Network

Authors: Phillip Garrad, Saritha Unnikrishnan

Abstract:

The increase in connected and autonomous vehicles (CAV) creates more opportunities for cyber-attacks. Cyber-attacks can be performed with malicious intent or for research and testing purposes. As connected vehicles approach full autonomy, the possible impact of these cyber-attacks also grows. This review analyses the challenges faced in CAV cybersecurity testing. This includes access and cost of the representative test setup and lack of experts in the field A review of potential solutions to overcome these challenges is presented. Studies have demonstrated Artificial Intelligence (AI) as a promising technique to reduce runtime, enhance effectiveness and comprehensively cover all the standard test aspects in penetration testing in other industries. However, this review has identified a significant gap in the systematic implementation of AI for penetration testing in the CAV cybersecurity domain. The expectation from this review is to investigate potential AI algorithms, which can demonstrate similar improvements in runtime and efficiency for a CAV model. If proven to be an effective means of penetration test for CAV, this methodology may be used on a full CAV test network.

Keywords: Cybersecurity, connected vehicles, software simulation, artificial intelligence, penetration testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
1280 Just-In-Time for Reducing Inventory Costs throughout a Supply Chain: A Case Study

Authors: Faraj Farhat El Dabee, Rajab Abdullah Hokoma

Abstract:

Supply Chain Management (SCM) is the integration between manufacturer, transporter and customer in order to form one seamless chain that allows smooth flow of raw materials, information and products throughout the entire network that help in minimizing all related efforts and costs. The main objective of this paper is to develop a model that can accept a specified number of spare-parts within the supply chain, simulating its inventory operations throughout all stages in order to minimize the inventory holding costs, base-stock, safety-stock, and to find the optimum quantity of inventory levels, thereby suggesting a way forward to adapt some factors of Just-In-Time to minimizing the inventory costs throughout the entire supply chain. The model has been developed using Micro- Soft Excel & Visual Basic in order to study inventory allocations in any network of the supply chain. The application and reproducibility of this model were tested by comparing the actual system that was implemented in the case study with the results of the developed model. The findings showed that the total inventory costs of the developed model are about 50% less than the actual costs of the inventory items within the case study.

Keywords: Holding Costs, Inventory, JIT, Modeling, SCM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3486
1279 A Bi-Objective Stochastic Mathematical Model for Agricultural Supply Chain Network

Authors: Mohammad Mahdi Paydar, Armin Cheraghalipour, Mostafa Hajiaghaei-Keshteli

Abstract:

Nowadays, in advanced countries, agriculture as one of the most significant sectors of the economy, plays an important role in its political and economic independence. Due to farmers' lack of information about products' demand and lack of proper planning for harvest time, annually the considerable amount of products is corrupted. Besides, in this paper, we attempt to improve these unfavorable conditions via designing an effective supply chain network that tries to minimize total costs of agricultural products along with minimizing shortage in demand points. To validate the proposed model, a stochastic optimization approach by using a branch and bound solver of the LINGO software is utilized. Furthermore, to accumulate the data of parameters, a case study in Mazandaran province placed in the north of Iran has been applied. Finally, using ɛ-constraint approach, a Pareto front is obtained and one of its Pareto solutions as best solution is selected. Then, related results of this solution are explained. Finally, conclusions and suggestions for the future research are presented.

Keywords: Perishable products, stochastic optimization, agricultural supply chain, ɛ-constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
1278 A Subjectively Influenced Router for Vehicles in a Four-Junction Traffic System

Authors: Anilkumar Kothalil Gopalakrishnan

Abstract:

A subjectively influenced router for vehicles in a fourjunction traffic system is presented. The router is based on a 3-layer Backpropagation Neural Network (BPNN) and a greedy routing procedure. The BPNN detects priorities of vehicles based on the subjective criteria. The subjective criteria and the routing procedure depend on the routing plan towards vehicles depending on the user. The routing procedure selects vehicles from their junctions based on their priorities and route them concurrently to the traffic system. That is, when the router is provided with a desired vehicles selection criteria and routing procedure, it routes vehicles with a reasonable junction clearing time. The cost evaluation of the router determines its efficiency. In the case of a routing conflict, the router will route the vehicles in a consecutive order and quarantine faulty vehicles. The simulations presented indicate that the presented approach is an effective strategy of structuring a subjective vehicle router.

Keywords: Backpropagation Neural Network, Backpropagationalgorithm, Greedy routing procedure, Subjective criteria, Vehiclepriority, Cost evaluation, Route generation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
1277 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria

Authors: I. Grigoratos, R. Monteiro

Abstract:

Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.

Keywords: Conversion equation, magnitude of completeness, seismic events, seismic hazard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
1276 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.

Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
1275 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972