Search results for: Application based learning
14020 Hybrid Structure Learning Approach for Assessing the Phosphate Laundries Impact
Authors: Emna Benmohamed, Hela Ltifi, Mounir Ben Ayed
Abstract:
Bayesian Network (BN) is one of the most efficient classification methods. It is widely used in several fields (i.e., medical diagnostics, risk analysis, bioinformatics research). The BN is defined as a probabilistic graphical model that represents a formalism for reasoning under uncertainty. This classification method has a high-performance rate in the extraction of new knowledge from data. The construction of this model consists of two phases for structure learning and parameter learning. For solving this problem, the K2 algorithm is one of the representative data-driven algorithms, which is based on score and search approach. In addition, the integration of the expert's knowledge in the structure learning process allows the obtainment of the highest accuracy. In this paper, we propose a hybrid approach combining the improvement of the K2 algorithm called K2 algorithm for Parents and Children search (K2PC) and the expert-driven method for learning the structure of BN. The evaluation of the experimental results, using the well-known benchmarks, proves that our K2PC algorithm has better performance in terms of correct structure detection. The real application of our model shows its efficiency in the analysis of the phosphate laundry effluents' impact on the watershed in the Gafsa area (southwestern Tunisia).
Keywords: Classification, Bayesian network; structure learning, K2 algorithm, expert knowledge, surface water analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51314019 A Validity and Reliability Study of Grasha- Riechmann Student Learning Style Scale
Authors: Yaşar Baykul, Musa Gürsel, Hacı Sulak, Erhan Ertekin, Ersen Yazıcı, Osman Dülger, Yasin Aslan, Kağan Büyükkarcı
Abstract:
The reliability of the tools developed to learn the learning styles is essential to find out students- learning styles trustworthily. For this purpose, the psychometric features of Grasha- Riechman Student Learning Style Inventory developed by Grasha was studied to contribute to this field. The study was carried out on 6th, 7th, and 8th graders of 10 primary education schools in Konya. The inventory was applied twice with an interval of one month, and according to the data of this application, the reliability coefficient numbers of the 6 sub-dimensions pointed in the theory of the inventory was found to be medium. Besides, it was found that the inventory does not have a structure with 6 factors for both Mathematics and English courses as represented in the theory.Keywords: Learning styles, Grasha-Riechmann, reliability, validity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655714018 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies
Authors: Kanika Sood, Sijie Shang
Abstract:
A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.
Keywords: Bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, Natural Language Processing, online learning, sentiment analysis, teaching pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8314017 Virtual Learning Process Environment: Cohort Analytics for Learning and Learning Processes
Authors: Ayodeji Adesina, Derek Molloy
Abstract:
Traditional higher-education classrooms allow lecturers to observe students- behaviours and responses to a particular pedagogy during learning in a way that can influence changes to the pedagogical approach. Within current e-learning systems it is difficult to perform continuous analysis of the cohort-s behavioural tendency, making real-time pedagogical decisions difficult. This paper presents a Virtual Learning Process Environment (VLPE) based on the Business Process Management (BPM) conceptual framework. Within the VLPE, course designers can model various education pedagogies in the form of learning process workflows using an intuitive flow diagram interface. These diagrams are used to visually track the learning progresses of a cohort of students. This helps assess the effectiveness of the chosen pedagogy, providing the information required to improve course design. A case scenario of a cohort of students is presented and quantitative statistical analysis of their learning process performance is gathered and displayed in realtime using dashboards.
Keywords: Business process management, cohort analytics, learning processes, virtual learning environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281614016 Utilizing Virtual Worlds in Education: The Implications for Practice
Authors: Teresa Coffman, Mary Beth Klinger
Abstract:
Multi User Virtual Worlds are becoming a valuable educational tool. Learning experiences within these worlds focus on discovery and active experiences that both engage students and motivate them to explore new concepts. As educators, we need to explore these environments to determine how they can most effectively be used in our instructional practices. This paper explores the current application of virtual worlds to identify meaningful educational strategies that are being used to engage students and enhance teaching and learning.
Keywords: Virtual Environments, MUVEs, Constructivist, Distance Learning, Learner Centered.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188014015 Learning Process Enhancement for Robot Behaviors
Authors: Saeed Mohammed Baneamoon, Rosalina Abdul Salam, Abdullah Zawawi Hj. Talib
Abstract:
Designing a simulated system and training it to optimize its tasks in simulated environment helps the designers to avoid problems that may appear when designing the system directly in real world. These problems are: time consuming, high cost, high errors percentage and low efficiency and accuracy of the system. The proposed system will investigate and improve the efficiency and accuracy of a simulated robot to choose correct behavior to perform its task. In this paper, machine learning, which uses genetic algorithm, is adopted. This type of machine learning is called genetic-based machine learning in which a distributed classifier system is used to improve the efficiency and accuracy of the robot. Consequently, it helps the robot to achieve optimal action.Keywords: Machine Learning, Genetic-Based MachineLearning, Learning Classifier System, Behaviors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152914014 Decision Rule Induction in a Learning Content Management System
Authors: Nittaya Kerdprasop, Narin Muenrat, Kittisak Kerdprasop
Abstract:
A learning content management system (LCMS) is an environment to support web-based learning content development. Primary function of the system is to manage the learning process as well as to generate content customized to meet a unique requirement of each learner. Among the available supporting tools offered by several vendors, we propose to enhance the LCMS functionality to individualize the presented content with the induction ability. Our induction technique is based on rough set theory. The induced rules are intended to be the supportive knowledge for guiding the content flow planning. They can also be used as decision rules to help content developers on managing content delivered to individual learner.Keywords: Decision rules, Knowledge induction, Learning content management system, Rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156814013 An E-Learning Tool for The Self-Study of Mathematics for the CPE Examination
Authors: Sameerchand Pudaruth, Nawsheen Bibi Jannnoo
Abstract:
In this paper, we give an overview of an online elearning tool which has been developed for kids aged from nine to eleven years old in Mauritius for the self-study of Mathematics in order to prepare them for the CPE examination. The software does not intend to render obsolete the existing pedagogical approaches. Nowadays, the teaching-learning process is mainly focused towards the class-room model. Moreover, most of the e-learning platforms that exist are simply static ways of delivering resources using the internet. There is nearly no interaction between the learner and the tool. Our application will enable students to practice exercises online and also work out sample examination papers. Another interesting feature is that the kid will not have to wait for someone to correct the work as the correction will be done online and on the spot. Additional feedback is also provided for some exercises.Keywords: CPE, e-learning, Mauritius, primary education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 215914012 The Effects of a Digital Dialogue Game on Higher Education Students’ Argumentation-Based Learning
Authors: Omid Noroozi
Abstract:
Digital dialogue games have opened up opportunities for learning skills by engaging students in complex problem solving that mimic real world situations, without importing unwanted constraints and risks of the real world. Digital dialogue games can be motivating and engaging to students for fun, creative thinking, and learning. This study explored how undergraduate students engage with argumentative discourse activities which have been designed to intensify debate. A pre-test, post-test design was used with students who were assigned to groups of four and asked to debate a controversial topic with the aim of exploring various 'pros and cons' on the 'Genetically Modified Organisms (GMOs)'. Findings reveal that the Digital dialogue game can facilitate argumentation-based learning. The digital Dialogue game was also evaluated positively in terms of students’ satisfaction and learning experiences.Keywords: Argumentation, dialogue, digital game, learning, motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120014011 An Ontology for Smart Learning Environments in Music Education
Authors: Konstantinos Sofianos, Michail Stefanidakis
Abstract:
Nowadays, despite the great advances in technology, most educational frameworks lack a strong educational design basis. E-learning has become prevalent, but it faces various challenges such as student isolation and lack of quality in the learning process. An intelligent learning system provides a student with educational material according to their learning background and learning preferences. It records full information about the student, such as demographic information, learning styles, and academic performance. This information allows the system to be fully adapted to the student’s needs. In this paper, we propose a framework and an ontology for music education, consisting of the learner model and all elements of the learning process (learning objects, teaching methods, learning activities, assessment). This framework can be integrated into an intelligent learning system and used for music education in schools for the development of professional skills and beyond.
Keywords: Intelligent learning systems, e-learning, music education, ontology, semantic web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46514010 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 351914009 Designing a Football Team of Robots from Beginning to End
Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi
Abstract:
The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.
Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185314008 Learning Objects Content Presentation Adaptation Model Considering Students' Learning Styles
Authors: Zenaide Carvalho da Silva, Andrey Ricardo Pimentel, Leandro Rodrigues Ferreira
Abstract:
Learning styles (LSs) correspond to the individual preferences of a person regarding the modes and forms in which he/she prefers to learn throughout the teaching/learning process. The content presentation of learning objects (LOs) using knowledge about the students’ LSs offers them digital educational resources tailored to their individual learning preferences. In this context, the most relevant characteristics of the LSs along with the most appropriate forms of LOs' content presentation were mapped and associated. Such was performed in order to define the composition of an adaptive model of LO's content presentation considering the LSs, which was called Adaptation of Content Presentation of Learning Objects Considering Learning Styles (ACPLOLS). LO prototypes were created with interfaces that were adapted to students' LSs. These prototypes were based on a model created for validation of the approaches that were used, which were established through experiments with the students. The results of subjective measures of students' emotional responses demonstrated that the ACPLOLS has reached the desired results in relation to the adequacy of the LOs interface, in accordance with the Felder-Silverman LSs Model.
Keywords: Adaptation, interface, learning styles, learning objects, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53514007 Dynamic Network Routing Method Based on Chromosome Learning
Authors: Xun Liang
Abstract:
In this paper, we probe into the traffic assignment problem by the chromosome-learning-based path finding method in simulation, which is to model the driver' behavior in the with-in-a-day process. By simply making a combination and a change of the traffic route chromosomes, the driver at the intersection chooses his next route. The various crossover and mutation rules are proposed with extensive examples.
Keywords: Chromosome learning, crossover, mutation, traffic path finding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134814006 Adaptive Few-Shot Deep Metric Learning
Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian
Abstract:
Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.
Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90914005 Genetic Algorithm Based Deep Learning Parameters Tuning for Robot Object Recognition and Grasping
Authors: Delowar Hossain, Genci Capi
Abstract:
This paper concerns with the problem of deep learning parameters tuning using a genetic algorithm (GA) in order to improve the performance of deep learning (DL) method. We present a GA based DL method for robot object recognition and grasping. GA is used to optimize the DL parameters in learning procedure in term of the fitness function that is good enough. After finishing the evolution process, we receive the optimal number of DL parameters. To evaluate the performance of our method, we consider the object recognition and robot grasping tasks. Experimental results show that our method is efficient for robot object recognition and grasping.
Keywords: Deep learning, genetic algorithm, object recognition, robot grasping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213414004 System and Method for Providing Web-Based Remote Application Service
Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang
Abstract:
With the development of virtualization technologies, a new type of service named cloud computing service is produced. Cloud users usually encounter the problem of how to use the virtualized platform easily over the web without requiring the plug-in or installation of special software. The object of this paper is to develop a system and a method enabling process interfacing within an automation scenario for accessing remote application by using the web browser. To meet this challenge, we have devised a web-based interface that system has allowed to shift the GUI application from the traditional local environment to the cloud platform, which is stored on the remote virtual machine. We designed the sketch of web interface following the cloud virtualization concept that sought to enable communication and collaboration among users. We describe the design requirements of remote application technology and present implementation details of the web application and its associated components. We conclude that this effort has the potential to provide an elastic and resilience environment for several application services. Users no longer have to burden the system maintenances and reduce the overall cost of software licenses and hardware. Moreover, this remote application service represents the next step to the mobile workplace, and it lets user to use the remote application virtually from anywhere.
Keywords: Virtualization technology, virtualized platform, web interface, remote application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99914003 Creative Technology as Open Ended Learning Tool: A Case Study of Design School in Malaysia
Authors: Sri Kusumawati Md Daud, Fauzan Mustaffa, Hanafizan Hussain, Md Najib Osman
Abstract:
Does open ended creative technology give positive impact in learning design? Although there are many researchers had examined on the impact of technology on design education but there are very few conclusive researches done on the impact of open ended used of software to learning design. This paper sought to investigate a group of student-s experience on relatively wider range of software application within the context of design project. A typography design project was used to create a learning environment with the aim of inculcate design skills into the learners and increase their creative problem-solving and critical thinking skills. The methods used in this study were questionnaire survey and personal observation which will be focus on the individual and group response during the completion of the task.
Keywords: Learning Tool, Creative Technology, Software, Software Skills, Typography Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161414002 A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning
Authors: Sepideh Fazeli, Fariba Bahrami
Abstract:
Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders.Keywords: Brain modeling, computer models, language acquisition, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159014001 A Case Study in Using the Can-Sized Satellite Platforms for Interdisciplinary Problem-Based Learning in Aeronautical and Electronic Engineering
Authors: Michael Johnson, Vincenzo Oliveri
Abstract:
This work considers an interdisciplinary Problem-Based Learning (PBL) project developed by lecturers from the Aeronautical and Electronic and Computer Engineering departments at the University of Limerick. This “CANSAT” project utilises the CanSat can-sized satellite platform in order to allow students from aeronautical and electronic engineering to engage in a mixed format (online/face-to-face), interdisciplinary PBL assignment using a real-world platform and application. The project introduces students to the design, development, and construction of the CanSat system over the course of a single semester, enabling student(s) to apply their aeronautical and technical skills/capabilities to the realisation of a working CanSat system. In this case study, the CanSat kits are used to pivot the real-world, discipline-relevant PBL goal of designing, building, and testing the CanSat system with payload(s) from a traditional module-based setting to an online PBL setting. Feedback, impressions, benefits, and challenges identified through the semester are presented. Students found the project to be interesting and rewarding, with the interdisciplinary nature of the project appealing to them. Challenges and difficulties encountered are also addressed, with solutions developed between the students and facilitators to overcoming these discussed.
Keywords: Problem-Based Learning, Online PBL, Electronic Engineering, Aeronautical Engineering, Interdisciplinary Project, CanSat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46914000 Tagging by Combining Rules- Based Method and Memory-Based Learning
Authors: Tlili-Guiassa Yamina
Abstract:
Many natural language expressions are ambiguous, and need to draw on other sources of information to be interpreted. Interpretation of the e word تعاون to be considered as a noun or a verb depends on the presence of contextual cues. To interpret words we need to be able to discriminate between different usages. This paper proposes a hybrid of based- rules and a machine learning method for tagging Arabic words. The particularity of Arabic word that may be composed of stem, plus affixes and clitics, a small number of rules dominate the performance (affixes include inflexional markers for tense, gender and number/ clitics include some prepositions, conjunctions and others). Tagging is closely related to the notion of word class used in syntax. This method is based firstly on rules (that considered the post-position, ending of a word, and patterns), and then the anomaly are corrected by adopting a memory-based learning method (MBL). The memory_based learning is an efficient method to integrate various sources of information, and handling exceptional data in natural language processing tasks. Secondly checking the exceptional cases of rules and more information is made available to the learner for treating those exceptional cases. To evaluate the proposed method a number of experiments has been run, and in order, to improve the importance of the various information in learning.Keywords: Arabic language, Based-rules, exceptions, Memorybased learning, Tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162313999 Ontology Development of e-Learning Moodle for Social Learning Network Analysis
Authors: Norazah Yusof, Andi Besse Firdausiah Mansur
Abstract:
Social learning network analysis has drawn attention for most researcher on e-learning research domain. This is due to the fact that it has the capability to identify the behavior of student during their social interaction inside e-learning. Normally, the social network analysis (SNA) is treating the students' interaction merely as node and edge with less meaning. This paper focuses on providing an ontology structure of e-learning Moodle that can enrich the relationships among students, as well as between the students and the teacher. This ontology structure brings great benefit to the future development of e-learning system.Keywords: Ontology, e-learning, © Learning Network, Moodle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 316213998 Goal-Based Request Cloud Resource Broker in Medical Application
Authors: Mohamad Izuddin Nordin, Azween Abdullah, Mahamat Issa Hassan
Abstract:
In this paper, cloud resource broker using goalbased request in medical application is proposed. To handle recent huge production of digital images and data in medical informatics application, the cloud resource broker could be used by medical practitioner for proper process in discovering and selecting correct information and application. This paper summarizes several reviewed articles to relate medical informatics application with current broker technology and presents a research work in applying goal-based request in cloud resource broker to optimize the use of resources in cloud environment. The objective of proposing a new kind of resource broker is to enhance the current resource scheduling, discovery, and selection procedures. We believed that it could help to maximize resources allocation in medical informatics application.Keywords: Broker, Cloud Computing, Medical Informatics, Resources Discovery, Resource Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205913997 Make Up Flash: Web Application for the Improvement of Physical Appearance in Images Based on Recognition Methods
Authors: Stefania Arguelles Reyes, Octavio José Salcedo Parra, Alberto Acosta López
Abstract:
This paper presents a web application for the improvement of images through recognition. The web application is based on the analysis of picture-based recognition methods that allow an improvement on the physical appearance of people posting in social networks. The basis relies on the study of tools that can correct or improve some features of the face, with the help of a wide collection of user images taken as reference to build a facial profile. Automatic facial profiling can be achieved with a deeper study of the Object Detection Library. It was possible to improve the initial images with the help of MATLAB and its filtering functions. The user can have a direct interaction with the program and manually adjust his preferences.
Keywords: Application, MATLAB, make up, model, recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57013996 Embodied Cognition and Its Implications in Education: An Overview of Recent Literature
Authors: Panagiotis Kosmas, Panayiotis Zaphiris
Abstract:
Embodied Cognition (EC) as a learning paradigm is based on the idea of an inseparable link between body, mind, and environment. In recent years, the advent of theoretical learning approaches around EC theory has resulted in a number of empirical studies exploring the implementation of the theory in education. This systematic literature overview identifies the mainstream of EC research and emphasizes on the implementation of the theory across learning environments. Based on a corpus of 43 manuscripts, published between 2013 and 2017, it sets out to describe the range of topics covered under the umbrella of EC and provides a holistic view of the field. The aim of the present review is to investigate the main issues in EC research related to the various learning contexts. Particularly, the study addresses the research methods and technologies that are utilized, and it also explores the integration of body into the learning context. An important finding from the overview is the potential of the theory in different educational environments and disciplines. However, there is a lack of an explicit pedagogical framework from an educational perspective for a successful implementation in various learning contexts.
Keywords: Embodied cognition, embodied learning, education, technology, schools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173013995 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: [email protected]
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.
Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40413994 RP-ADAS: Relative Position-Advanced Drive Assistant System based on VANET (GNSS)
Authors: Hun-Jung Lim, Tai-Myoung Chung
Abstract:
Few decades ago, electronic and sensor technologies are merged into vehicles as the Advanced Driver Assistance System(ADAS). However, sensor-based ADASs have limitations about weather interference and a line-of-sight nature problem. In our project, we investigate a Relative Position based ADAS(RP-ADAS). We divide the RP-ADAS into four main research areas: GNSS, VANET, Security/Privacy, and Application. In this paper, we research the GNSS technologies and determine the most appropriate one. With the performance evaluation, we figure out that the C/A code based GPS technologies are inappropriate for 'which lane-level' application. However, they can be used as a 'which road-level' application.Keywords: Relative Positioning, VANET, GNSS, ADAS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239213993 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success
Authors: P. Paliadelis, A. Jones, G. Campbell
Abstract:
This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.
Keywords: Capability framework, human skills, work-integrated learning, credentialing, digital badging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4713992 IDEL - A simple Instructional Design Tool for E-Learning
Authors: A. Zimnas, D. Kleftouris, N. Valkanos
Abstract:
Today-s Information and Knowledge Society has placed new demands on education and a new paradigm of education is required. Learning, facilitated by educational systems and the pedagogic process, is globally undergoing dramatic changes. The aim of this paper is the development of a simple Instructional Design tool for E-Learning, named IDEL (Instructional Design for Electronic Learning), that provides the educators with facilities to create their own courses with the essential educational material and manage communication with students. It offers flexibility in the way of learning and provides ease in employment and reusability of resources. IDEL is a web-based Instructional System and is designed to facilitate course design process in accordance with the ADDIE model and the instructional design principles with emphasis placed on the use of technology enhanced learning. An example case of using the ADDIE model to systematically develop a course and its implementation with the aid of IDEL is given and some results from student evaluation of the tool and the course are reported.Keywords: Education, E-learning, Instructional Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206413991 Distributed Case Based Reasoning for Intelligent Tutoring System: An Agent Based Student Modeling Paradigm
Authors: O. P. Rishi, Rekha Govil, Madhavi Sinha
Abstract:
Online learning with Intelligent Tutoring System (ITS) is becoming very popular where the system models the student-s learning behavior and presents to the student the learning material (content, questions-answers, assignments) accordingly. In today-s distributed computing environment, the tutoring system can take advantage of networking to utilize the model for a student for students from other similar groups. In the present paper we present a methodology where using Case Based Reasoning (CBR), ITS provides student modeling for online learning in a distributed environment with the help of agents. The paper describes the approach, the architecture, and the agent characteristics for such system. This concept can be deployed to develop ITS where the tutor can author and the students can learn locally whereas the ITS can model the students- learning globally in a distributed environment. The advantage of such an approach is that both the learning material (domain knowledge) and student model can be globally distributed thus enhancing the efficiency of ITS with reducing the bandwidth requirement and complexity of the system.
Keywords: CBR, ITS, student modeling, distributed system, intelligent agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163