Search results for: optical sensor ground reaction force platform.
2076 Design and Construction Validation of Pile Performance through High Strain Pile Dynamic Tests for both Contiguous Flight Auger and Drilled Displacement Piles
Authors: S. Pirrello
Abstract:
Sydney’s booming real estate market has pushed property developers to invest in historically “no-go” areas, which were previously too expensive to develop. These areas are usually near rivers where the sites are underlain by deep alluvial and estuarine sediments. In these ground conditions, conventional bored pile techniques are often not competitive. Contiguous Flight Auger (CFA) and Drilled Displacement (DD) Piles techniques are on the other hand suitable for these ground conditions. This paper deals with the design and construction challenges encountered with these piling techniques for a series of high-rise towers in Sydney’s West. The advantages of DD over CFA piles such as reduced overall spoil with substantial cost savings and achievable rock sockets in medium strength bedrock are discussed. Design performances were assessed with PIGLET. Pile performances are validated in two stages, during constructions with the interpretation of real-time data from the piling rigs’ on-board computer data, and after construction with analyses of results from high strain pile dynamic testing (PDA). Results are then presented and discussed. High Strain testing data are presented as Case Pile Wave Analysis Program (CAPWAP) analyses.
Keywords: Contiguous flight auger, case pile wave analysis, high strain pile, drilled displacement, pile performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9832075 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7392074 Ventilation Efficiency in the Subway Environment for the Indoor Air Quality
Authors: Kyung Jin Ryu, MakhsudaJuraeva, Sang-Hyun Jeongand Dong Joo Song
Abstract:
Clean air in subway station is important to passengers. The Platform Screen Doors (PSDs) can improve indoor air quality in the subway station; however the air quality in the subway tunnel is degraded. The subway tunnel has high CO2 concentration and indoor particulate matter (PM) value. The Indoor Air Quality (IAQ) level in subway environment degrades by increasing the frequency of the train operation and the number of the train. The ventilation systems of the subway tunnel need improvements to have better air-quality. Numerical analyses might be effective tools to analyze the performance of subway twin-track tunnel ventilation systems. An existing subway twin-track tunnel in the metropolitan Seoul subway system is chosen for the numerical simulations. The ANSYS CFX software is used for unsteady computations of the airflow inside the twin-track tunnel when the train moves. The airflow inside the tunnel is simulated when one train runs and two trains run at the same time in the tunnel. The piston-effect inside the tunnel is analyzed when all shafts function as the natural ventilation shaft. The supplied air through the shafts is mixed with the pollutant air in the tunnel. The pollutant air is exhausted by the mechanical ventilation shafts. The supplied and discharged airs are balanced when only one train runs in the twin-track tunnel. The pollutant air in the tunnel is high when two trains run simultaneously in opposite direction and all shafts functioned as the natural shaft cases when there are no electrical power supplies in the shafts. The remained pollutant air inside the tunnel enters into the station platform when the doors are opened.
Keywords: indoor air quality, subway twin-track tunnel, train-induced wind
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43432073 Modeling and Simulation of Overcurrent and Earth Fault Relay with Inverse Definite Minimum Time
Authors: Win Win Tun, Han Su Yin, Ohn Zin Lin
Abstract:
Transmission networks are an important part of an electric power system. The transmission lines not only have high power transmission capacity but also they are prone of larger magnitudes. Different types of faults occur in transmission lines such as single line to ground (L-G) fault, double line to ground (L-L-G) fault, line to line (L-L) fault and three phases (L-L-L) fault. These faults are needed to be cleared quickly in order to reduce damage caused to the system and they have high impact on the electrical power system equipment’s which are connected in transmission line. The main fault in transmission line is L-G fault. Therefore, protection relays are needed to protect transmission line. Overcurrent and earth fault relay is an important relay used to protect transmission lines, distribution feeders, transformers and bus couplers etc. Sometimes these relays can be used as main protection or backup protection. The modeling of protection relays is important to indicate the effects of network parameters and configurations on the operation of relays. Therefore, the modeling of overcurrent and earth fault relay is described in this paper. The overcurrent and earth fault relays with standard inverse definite minimum time are modeled and simulated by using MATLAB/Simulink software. The developed model was tested with L-G, L-L-G, L-L and L-L-L faults with various fault locations and fault resistance (0.001Ω). The simulation results are obtained by MATLAB software which shows the feasibility of analysis of transmission line protection with overcurrent and earth fault relay.
Keywords: Transmission line, overcurrent and earth fault relay, standard inverse definite minimum time, various faults, MATLAB Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9942072 Lightweight and Seamless Distributed Scheme for the Smart Home
Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro
Abstract:
Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.Keywords: Authentication, key-session, security, wireless sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8772071 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM
Authors: Teerapon Pirom, Ura Pancharoen
Abstract:
Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.Keywords: Aliquat336, amoxicillin, HFSLM, kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17002070 The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash
Authors: Ali Shubbar, Hassnen M. Jafer, Anmar Dulaimi, William Atherton, Ali Al-Rifaie
Abstract:
This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere.
Keywords: Cementitious material, compressive strength, GGBS, HCFA, OPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10042069 Enhancing Visual Basic GUI Applications using VRML Scenes
Authors: Bala Dhandayuthapani Veerasamy
Abstract:
Rapid Application Development (RAD) enables ever expanding needs for speedy development of computer application programs that are sophisticated, reliable, and full-featured. Visual Basic was the first RAD tool for the Windows operating system, and too many people say still it is the best. To provide very good attraction in visual basic 6 applications, this paper directing to use VRML scenes over the visual basic environment.Keywords: Cortona Control, Interpolator, Route, Sensor, VisualBasic, VRML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22692068 The Security Trade-Offs in Resource Constrained Nodes for IoT Application
Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve
Abstract:
The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.Keywords: Internet of Things, IEEE 802.15.4, security cost evaluation, wireless sensor network, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14912067 Propagation of a Generalized Beam in ABCD System
Authors: Halil Tanyer Eyyuboğu
Abstract:
For a generalized Hermite sinosiodal / hyperbolic Gaussian beam passing through an ABCD system with a finite aperture, the propagation properties are derived using the Collins integral. The results are obtained in the form of intensity graphs indicating that previously demonstrated rules of reciprocity are applicable, while the existence of the aperture accelerates this transformation.
Keywords: Optical communications, Hermite-Gaussian beams, ABCD system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18752066 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.
Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11352065 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition
Authors: M. Ferguson, T. Konkova, I. Violatos
Abstract:
Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of a laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat affected zone (HAZ) experiencing rapid thermal gyrations resulting in thermal induced transformations. Inconel 718 was utilized as a work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. Thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. Interface region of the blocks were analysed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) including electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.
Keywords: Additive manufacturing, direct energy deposition, electron back-scatter diffraction, finite element analysis, Inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5022064 Influence of Garbage Leachate on Soil Reaction,Salinity and Soil Organic Matter in East of Isfahan
Authors: Ebrahim Panahpour, Ali Gholami, Amir Hossein Davami
Abstract:
During this day a considerable amount of Leachate is produced with high amounts of organic material and nutrients needed plants. This study has done in order to scrutinize the effect of Leachate compost on the pH, EC and organic matter percentage in the form of statistical Factorial plan through randomizing block design with three main and two minor treatments and also three replications during three six month periods. Major treatments include N: Irrigation with the region-s well water as a control, I: Frequent irrigation with well water and Leachate, C: Mixing Leachate and water well (25 percent leachate + 75 percent ordinary well water) and secondary treatments, include DI: surface drip irrigation and SDI: sub surface drip irrigation. Results of this study indicated significant differences between treatments and also there were mixing up with the control treatment in the reduction of pH, increasing soluble salts and also increasing the organic matter percentage. This increase is proportional to the amount of added Leachate and in the treatment also proportional to higher mixture of frequent treatment. Therefore, since creating an acidic pH increases the ability to absorb some nutrient elements such as phosphorus, iron, zinc, copper and manganese are increased and the other hand, organic materials also improve many physical and chemical properties of soil are used in Leachate trash Consider health issues as refined in the green belts around cities as a liquid fertilizer recommended.
Keywords: Leachate, compost, drip irrigation, liquid fertilizer, soil reaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22802063 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum
Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas
Abstract:
Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.
Keywords: Microalgae, illumination, nitrate uptake, flashing light effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6482062 A Novel and Green Approach to Produce Nano- Porous Materials Zeolite A and MCM-41 from Coal Fly Ash and their Applications in Environmental Protection
Authors: K. S. Hui, K. N. Hui, Seong Kon Lee
Abstract:
Zeolite A and MCM-41 have extensive applications in basic science, petrochemical science, energy conservation/storage, medicine, chemical sensor, air purification, environmentally benign composite structure and waste remediation. However, the use of zeolite A and MCM-41 in these areas, especially environmental remediation, are restricted due to prohibitive production cost. Efficient recycling of and resource recovery from coal fly ash has been a major topic of current international research interest, aimed at achieving sustainable development of human society from the viewpoints of energy, economy, and environmental strategy. This project reported an original, novel, green and fast methods to produce nano-porous zeolite A and MCM-41 materials from coal fly ash. For zeolite A, this novel production method allows a reduction by half of the total production time while maintaining a high degree of crystallinity of zeolite A which exists in a narrower particle size distribution. For MCM-41, this remarkably green approach, being an environmentally friendly process and reducing generation of toxic waste, can produce pure and long-range ordered MCM-41 materials from coal fly ash. This approach took 24 h at 25 oC to produce 9 g of MCM-41 materials from 30 g of the coal fly ash, which is the shortest time and lowest reaction temperature required to produce pure and ordered MCM-41 materials (having the largest internal surface area) compared to the values reported in the literature. Performance evaluation of the produced zeolite A and MCM-41 materials in wastewater treatment and air pollution control were reported. The residual fly ash was also converted to zeolite Na-P1 which showed good performance in removal of multi-metal ions in wastewater. In wastewater treatment, compared to commercial-grade zeolite A, adsorbents produced from coal fly ash were effective in removing multi heavy metal ions in water and could be an alternative material for treatment of wastewater. In methane emission abatement, the zeolite A (produced from coal fly ash) achieved similar methane removal efficiency compared to the zeolite A prepared from pure chemicals. This report provides the guidance for production of zeolite A and MCM-41 from coal fly ash by a cost-effective approach which opens potential applications of these materials in environmental industry. Finally, environmental and economic aspects of production of zeolite A and MCM-41 from coal fly ash were discussed.
Keywords: Metal ions, waste water, methane, volatile organic compounds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22552061 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc
Abstract:
Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.
Keywords: numerical model, additive manufacturing, frictional heat generation, process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5162060 Experimental Investigation of Chatter Vibrations in Facing and Turning Processes
Authors: M. Siddhpura, R. Paurobally
Abstract:
This paper investigates the occurrence of regenerative chatter vibrations in facing and turning processes. Orthogonal turning (facing) and normal turning experiments are carried out under stable as well as in the presence of controlled chatter vibrations. The effects of chatter vibrations on various sensor signals are captured and analyzed using frequency domain methods, which successfully detected the chatter vibrations close to the dominant mode of the machine tool system.Keywords: Chatter vibrations, facing, turning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35702059 Use of Social Media in PR: A Change of Trend
Authors: Tang Mui Joo, Chan Eang Teng
Abstract:
The use of social media has become more defined. It has been widely used for the purpose of business. More marketers are now using social media as tools to enhance their businesses. Whereas on the other hand, there are more and more people spending their time through mobile apps to be engaged in the social media sites like YouTube, Facebook, Twitter and others. Social media has even become common in Public Relations (PR). It has become number one platform for creating and sharing content. In view to this, social media has changed the rules in PR where it brings new challenges and opportunities to the profession. Although corporate websites, chat-rooms, email customer response facilities and electronic news release distribution are now viewed as standard aspects of PR practice, many PR practitioners are still struggling with the impact of new media though the implementation of social media is potentially reducing the cost of communication. It is to the point that PR practitioners are not fully embracing new media, they are ill-equipped to do so and they have a fear of the technology. Somehow that social media has become a new style of communication that is characterized by conversation and community. It has become a platform that allows individuals to interact with one another and build relationship among each other. Therefore, in the use of business world, consumers are able to interact with those companies that have joined any social media. Based on their experiences with social networking site interactions, they are also exposed to personal interaction while communicating. This paper is to study the impact of social media to PR. This paper discovers the potential changes of PR practices in a developing country like Malaysia. Eventually the study reflects on how PR practitioners are actually using social media in the country. This paper is based on two theories in its development of this research foundation. Media Ecology Theory is to support the impact and changes to PR. Social Penetration Theory is to reflect on how the use of social media is among PRs. This research is using survey with PR practitioners in its data collection. The results have shown that PR professionals value social media more than they actually use it and the way of organizations communicate had been changed due to the transformation of social media.Keywords: New media, social media, PR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60862058 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme
Authors: Yoichi Hikino, Mutsuto Kawahara
Abstract:
The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14652057 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber
Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay
Abstract:
Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.
Keywords: Asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanized.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7752056 Effect of Spray Stand-off on Elasticity Modulus of Thermally Sprayed Coatings
Authors: M.Jalali Azizpour, S.Norouzi, H.mohammadi Majd, M.M.Rabieh, D.Sajedipour, A. Jaderi
Abstract:
The mechanical and tribological properties in WC-Co coatings are strongly affected by hardness and elasticity specifications. The results revealed the effect of spraying distance on microhardness and elasticity modulus of coatings. The metallurgical studies have been made on coated samples using optical microscopy, scanning electron microscopy (SEM).Keywords: Elasticity modulus, HVOF, Micro-indentation, Thermal spray, WC-Co
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16952055 Degradation of Amitriptyline Hydrochloride, Methyl Salicylate and 2-Phenoxyethanol in Water Systems by the Combination UV/Cl2
Authors: F. Javier Benitez, Francisco J. Real, Juan Luis Acero, Francisco Casas
Abstract:
Three emerging contaminants (amitriptyline hydrochloride, methyl salicylate and 2-phenoxyethanol) frequently found in waste-waters were selected to be individually degraded in ultra-pure water by the combined advanced oxidation process constituted by UV radiation and chlorine. The influence of pH, initial chlorine concentration and nature of the contaminants was firstly explored. The trend for the reactivity of the selected compounds was deduced: amitriptyline hydrochloride > methyl salicylate > 2-phenoxyethanol. A later kinetic study was carried out and focused on the specific evaluation of the first-order rate constants and the determination of the partial contribution to the global reaction of the direct photochemical pathway and the radical pathway. A comparison between the rate constant values among photochemical experiments without and with the presence of Cl2 reveals a clear increase in the oxidation efficiency of the combined process with respect to the photochemical reaction alone. In a second stage, the simultaneous oxidation of mixtures of the selected contaminants in several types of water (ultrapure water, surface water from a reservoir, and two secondary effluents) was also performed by the same combination UV/Cl2 under more realistic operating conditions. The efficiency of this combined system UV/Cl2 was compared to other oxidants such as the UV/S2O82- and UV/H2O2 AOPs. Results confirmed that the UV/Cl2 system provides higher elimination efficiencies among the AOPs tested.
Keywords: Emerging contaminants, amitriptyline, methyl salicylate, 2-phenoxyethanol, chlorination, photolysis, rate constants, UV/chlorine advanced oxidation process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15542054 Comparison of Microwave-Assisted and Conventional Leaching for Extraction of Copper from Chalcopyrite Concentrate
Authors: Ayfer Kilicarslan, Kubra Onol, Sercan Basit, Muhlis Nezihi Saridede
Abstract:
Chalcopyrite (CuFeS2) is the most common primary mineral used for the commercial production of copper. The low dissolution efficiency of chalcopyrite in sulfate media has prevented an efficient industrial leaching of this mineral in sulfate media. Ferric ions, bacteria, oxygen and other oxidants have been used as oxidizing agents in the leaching of chalcopyrite in sulfate and chloride media under atmospheric or pressure leaching conditions. Two leaching methods were studied to evaluate chalcopyrite (CuFeS2) dissolution in acid media. First, the conventional oxidative acid leaching method was carried out using sulfuric acid (H2SO4) and potassium dichromate (K2Cr2O7) as oxidant at atmospheric pressure. Second, microwave-assisted acid leaching was performed using the microwave accelerated reaction system (MARS) for same reaction media. Parameters affecting the copper extraction such as leaching time, leaching temperature, concentration of H2SO4 and concentration of K2Cr2O7 were investigated. The results of conventional acid leaching experiments were compared to the microwave leaching method. It was found that the copper extraction obtained under high temperature and high concentrations of oxidant with microwave leaching is higher than those obtained conventionally. 81% copper extraction was obtained by the conventional oxidative acid leaching method in 180 min, with the concentration of 0.3 mol/L K2Cr2O7 in 0.5M H2SO4 at 50 ºC, while 93.5% copper extraction was obtained in 60 min with microwave leaching method under same conditions.Keywords: Extraction, copper, microwave-assisted leaching, chalcopyrite, potassium dichromate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28462053 Thermal Method for Testing Small Chemisorbents Samples on the Base of Potassium Superoxide
Authors: Pavel V. Balabanov, Daria A. Liubimova, Aleksandr P. Savenkov
Abstract:
The increase of technogenic and natural accidents, accompanied by air pollution, for example, by combustion products, leads to the necessity of respiratory protection. This work is devoted to the development of a calorimetric method and a device which allows investigating quickly the kinetics of carbon dioxide sorption by chemisorbents on the base of potassium superoxide in order to assess the protective properties of respiratory protective closed circuit apparatus. The features of the traditional approach for determining the sorption properties in a thin layer of chemisorbent are described, as well as methods and devices, which can be used for the sorption kinetics study. The authors developed an approach (as opposed to the traditional approach) based on the power measurement of internal heat sources in the chemisorbent layer. The emergence of the heat sources is a result of exothermic reaction of carbon dioxide sorption. This approach eliminates the necessity of chemical analysis of samples and can significantly reduce the time and material expenses during chemisorbents testing. Error of determining the volume fraction of adsorbed carbon dioxide by the developed method does not exceed 12%. Taking into account the efficiency of the method, we consider that it is a good alternative to traditional methods of chemical analysis under the assessment of the protection sorbents quality.
Keywords: Carbon dioxide chemisorption, exothermic reaction, internal heat sources, respiratory protective apparatus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16962052 Using Data Fusion for Biometric Verification
Authors: Richard A. Wasniowski
Abstract:
A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.Keywords: Multimodal, biometric, recognition, fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17692051 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend
Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes
Abstract:
This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.Keywords: Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13152050 Integration of Multi-Source Data to Monitor Coral Biodiversity
Authors: K. Jitkue, W. Srisang, C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
This study aims at using multi-source data to monitor coral biodiversity and coral bleaching. We used coral reef at Racha Islands, Phuket as a study area. There were three sources of data: coral diversity, sensor based data and satellite data.Keywords: Coral reefs, Remote sensing, Sea surfacetemperatue, Satellite imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532049 Bridge Analysis Structure under Human Induced Dynamic Load
Authors: O. Kratochvíl, J. Križan
Abstract:
The paper deals with the analysis of the dynamic response of footbridges under human - induced dynamic loads. This is a frequently occurring and often dominant load for footbridges as it stems from the very purpose of a footbridge - to convey pedestrian. Due to the emergence of new materials and advanced engineering technology, slender footbridges are increasingly becoming popular to satisfy the modern transportation needs and the aesthetical requirements of the society. These structures however are always lively with low stiffness, low mass, low damping and low natural frequencies. As a consequence, they are prone to vibration induced by human activities and can suffer severe vibration serviceability problems, particularly in the lateral direction. Pedestrian bridges are designed according to first and second limit states, these are the criteria involved in response to static design load. However, it is necessary to assess the dynamic response of bridge design load on pedestrians and assess it impact on the comfort of the user movement. Usually the load is considered a person or a small group which can be assumed in perfect motion synchronization. Already one person or small group can excite significant vibration of the deck. In order to calculate the dynamic response to the movement of people, designer needs available and suitable computational model and criteria. For the calculation program ANSYS based on finite element method was used.Keywords: Footbridge, dynamic analysis, vibration serviceability of footbridges, lateral vibration, stiffness, dynamic force, walking force, slender suspension footbridges, natural frequencies and vibration modes, rhythm jumping, normal walking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26652048 Towards a Systematic Evaluation of Web Design
Authors: Ivayla Trifonova, Naoum Jamous, Holger Schrödl
Abstract:
A good web design is a prerequisite for a successful business nowadays, especially since the internet is the most common way for people to inform themselves. Web design includes the optical composition, the structure, and the user guidance of websites. The importance of each website leads to the question if there is a way to measure its usefulness. The aim of this paper is to suggest a methodology for the evaluation of web design. The desired outcome is to have an evaluation that is concentrated on a specific website and its target group.
Keywords: Evaluation methodology, factor analysis, target group, web design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12662047 Child Homicide Victimization and Community Context: A Research Note
Authors: Bohsiu Wu
Abstract:
Among serious crimes, child homicide is a rather rare event. However, the killing of children stirs up a special type of emotion in society that pales other criminal acts. This study examines the relevancy of three possible community-level explanations for child homicide: social deprivation, female empowerment, and social isolation. The social deprivation hypothesis posits that child homicide results from lack of resources in communities. The female empowerment hypothesis argues that a higher female status translates into a higher level of capability to prevent child homicide. Finally, the social isolation hypothesis regards child homicide as a result of lack of social connectivity. Child homicide data, aggregated by US postal ZIP codes in California from 1990 to 1999, were analyzed with a negative binomial regression. The results of the negative binomial analysis demonstrate that social deprivation is the most salient and consistent predictor among all other factors in explaining child homicide victimization at the ZIP-code level. Both social isolation and female labor force participation are weak predictors of child homicide victimization across communities. Further, results from the negative binomial regression show that it is the communities with a higher, not lower, degree of female labor force participation that are associated with a higher count of child homicide. It is possible that poor communities with a higher level of female employment have a lesser capacity to provide the necessary care and protection for the children. Policies aiming at reducing social deprivation and strengthening female empowerment possess the potential to reduce child homicide in the community.
Keywords: Child homicide, deprivation, empowerment, isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690