Search results for: molecular aggregate approach.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5464

Search results for: molecular aggregate approach.

3724 Bubble Point Pressures of CO2+Ethyl Palmitate by a Cubic Equation of State and the Wong-Sandler Mixing Rule

Authors: M. A. Sedghamiz, S. Raeissi

Abstract:

This study presents three different approaches to estimate bubble point pressures for the binary system of CO2 and ethyl palmitate fatty acid ethyl ester. The first method involves the Peng-Robinson (PR) Equation of State (EoS) with the conventional mixing rule of Van der Waals. The second approach involves the PR EOS together with the Wong Sandler (WS) mixing rule, coupled with the UNIQUAC GE model. In order to model the bubble point pressures with this approach, the volume and area parameter for ethyl palmitate were estimated by the Hansen group contribution method. The last method involved the Peng-Robinson, combined with the Wong-Sandler method, but using NRTL as the GE model. Results using the Van der Waals mixing rule clearly indicated that this method has the largest errors among all three methods, with errors in the range of 3.96-6.22%. The PR-WS-UNIQUAC method exhibited small errors, with average absolute deviations between 0.95 to 1.97 percent. The PR-WS-NRTL method led to the least errors, where average absolute deviations ranged between 0.65-1.7%.

Keywords: Bubble pressure, Gibbs excess energy model, mixing rule, CO2 solubility, ethyl palmitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
3723 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the workpiece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: Dexel, process stability, material removal, milling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
3722 Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach

Authors: Ifeyinwa E. Achumba, Djamel Azzi, Rinat Khusainov

Abstract:

There are three approaches to complete Bayesian Network (BN) model construction: total expert-centred, total datacentred, and semi data-centred. These three approaches constitute the basis of the empirical investigation undertaken and reported in this paper. The objective is to determine, amongst these three approaches, which is the optimal approach for the construction of a BN-based model for the performance assessment of students- laboratory work in a virtual electronic laboratory environment. BN models were constructed using all three approaches, with respect to the focus domain, and compared using a set of optimality criteria. In addition, the impact of the size and source of the training, on the performance of total data-centred and semi data-centred models was investigated. The results of the investigation provide additional insight for BN model constructors and contribute to literature providing supportive evidence for the conceptual feasibility and efficiency of structure and parameter learning from data. In addition, the results highlight other interesting themes.

Keywords: Bayesian networks, model construction, parameterlearning, structure learning, performance index, model comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
3721 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading

Authors: Eda Gök

Abstract:

Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.

Keywords: Flexural loading, non-local continuum mechanics, Peridynamic theory, solid structures, tensile loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
3720 Classifying Biomedical Text Abstracts based on Hierarchical 'Concept' Structure

Authors: Rozilawati Binti Dollah, Masaki Aono

Abstract:

Classifying biomedical literature is a difficult and challenging task, especially when a large number of biomedical articles should be organized into a hierarchical structure. In this paper, we present an approach for classifying a collection of biomedical text abstracts downloaded from Medline database with the help of ontology alignment. To accomplish our goal, we construct two types of hierarchies, the OHSUMED disease hierarchy and the Medline abstract disease hierarchies from the OHSUMED dataset and the Medline abstracts, respectively. Then, we enrich the OHSUMED disease hierarchy before adapting it to ontology alignment process for finding probable concepts or categories. Subsequently, we compute the cosine similarity between the vector in probable concepts (in the “enriched" OHSUMED disease hierarchy) and the vector in Medline abstract disease hierarchies. Finally, we assign category to the new Medline abstracts based on the similarity score. The results obtained from the experiments show the performance of our proposed approach for hierarchical classification is slightly better than the performance of the multi-class flat classification.

Keywords: Biomedical literature, hierarchical text classification, ontology alignment, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
3719 New Features for Specific JPEG Steganalysis

Authors: Johann Barbier, Eric Filiol, Kichenakoumar Mayoura

Abstract:

We present in this paper a new approach for specific JPEG steganalysis and propose studying statistics of the compressed DCT coefficients. Traditionally, steganographic algorithms try to preserve statistics of the DCT and of the spatial domain, but they cannot preserve both and also control the alteration of the compressed data. We have noticed a deviation of the entropy of the compressed data after a first embedding. This deviation is greater when the image is a cover medium than when the image is a stego image. To observe this deviation, we pointed out new statistic features and combined them with the Multiple Embedding Method. This approach is motivated by the Avalanche Criterion of the JPEG lossless compression step. This criterion makes possible the design of detectors whose detection rates are independent of the payload. Finally, we designed a Fisher discriminant based classifier for well known steganographic algorithms, Outguess, F5 and Hide and Seek. The experiemental results we obtained show the efficiency of our classifier for these algorithms. Moreover, it is also designed to work with low embedding rates (< 10-5) and according to the avalanche criterion of RLE and Huffman compression step, its efficiency is independent of the quantity of hidden information.

Keywords: Compressed frequency domain, Fisher discriminant, specific JPEG steganalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
3718 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
3717 An Approach for Data Analysis, Evaluation and Correction: A Case Study from Man-Made River Project in Libya

Authors: Nasser M. Amaitik, Nabil A. Alfagi

Abstract:

The world-s largest Pre-stressed Concrete Cylinder Pipe (PCCP) water supply project had a series of pipe failures which occurred between 1999 and 2001. This has led the Man-Made River Authority (MMRA), the authority in charge of the implementation and operation of the project, to setup a rehabilitation plan for the conveyance system while maintaining the uninterrupted flow of water to consumers. At the same time, MMRA recognized the need for a long term management tool that would facilitate repair and maintenance decisions and enable taking the appropriate preventive measures through continuous monitoring and estimation of the remaining life of each pipe. This management tool is known as the Pipe Risk Management System (PRMS) and now in operation at MMRA. Both the rehabilitation plan and the PRMS require the availability of complete and accurate pipe construction and manufacturing data This paper describes a systematic approach of data collection, analysis, evaluation and correction for the construction and manufacturing data files of phase I pipes which are the platform for the PRMS database and any other related decision support system.

Keywords: Asbuilt, History, IMD, MMRA, PDBMS & PRMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
3716 Application of De-Laval Nozzle Transonic Flow Field Computation Approaches

Authors: A. Haddad, H. Kbab

Abstract:

A supersonic expansion cannot be achieved within a convergent-divergent nozzle if the flow velocity does not reach that of the sound at the throat. The computation of the flow field characteristics at the throat is thus essential to the nozzle developed thrust value and therefore to the aircraft or rocket it propels. Several approaches were developed in order to describe the transonic expansion, which takes place through the throat of a De-Laval convergent-divergent nozzle. They all allow reaching good results but showing a major shortcoming represented by their inability to describe the transonic flow field for nozzles having a small throat radius. The approach initially developed by Kliegel & Levine uses the velocity series development in terms of the normalized throat radius added to unity instead of solely the normalized throat radius or the traditional small disturbances theory approach. The present investigation carries out the application of these three approaches for different throat radiuses of curvature. The method using the normalized throat radius added to unity shows better results when applied to geometries integrating small throat radiuses.

Keywords: De-Laval nozzles, transonic calculations, transonic flow, supersonic nozzle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3286
3715 Combined Safety and Cybersecurity Risk Assessment for Intelligent Distributed Grids

Authors: Anders Thorsèn, Behrooz Sangchoolie, Peter Folkesson, Ted Strandberg

Abstract:

As more parts of the power grid become connected to the internet, the risk of cyberattacks increases. To identify the cybersecurity threats and subsequently reduce vulnerabilities, the common practice is to carry out a cybersecurity risk assessment. For safety classified systems and products, there is also a need for safety risk assessments in addition to the cybersecurity risk assessment to identify and reduce safety risks. These two risk assessments are usually done separately, but since cybersecurity and functional safety are often related, a more comprehensive method covering both aspects is needed. Some work addressing this has been done for specific domains like the automotive domain, but more general methods suitable for, e.g., Intelligent Distributed Grids, are still missing. One such method from the automotive domain is the Security-Aware Hazard Analysis and Risk Assessment (SAHARA) method that combines safety and cybersecurity risk assessments. This paper presents an approach where the SAHARA method has been modified to be more suitable for larger distributed systems. The adapted SAHARA method has a more general risk assessment approach than the original SAHARA. The proposed method has been successfully applied on two use cases of an intelligent distributed grid.

Keywords: Intelligent distribution grids, threat analysis, risk assessment, safety, cybersecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
3714 Fuzzy Mathematical Morphology approach in Image Processing

Authors: Yee Yee Htun, Dr. Khaing Khaing Aye

Abstract:

Morphological operators transform the original image into another image through the interaction with the other image of certain shape and size which is known as the structure element. Mathematical morphology provides a systematic approach to analyze the geometric characteristics of signals or images, and has been applied widely too many applications such as edge detection, objection segmentation, noise suppression and so on. Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations such as fuzzy erosion, dilation, opening and closing, a general method based upon fuzzy implication and inclusion grade operators is introduced. The fuzzy morphological operations extend the ordinary morphological operations by using fuzzy sets where for fuzzy sets, the union operation is replaced by a maximum operation, and the intersection operation is replaced by a minimum operation. In this work, it consists of two articles. In the first one, fuzzy set theory, fuzzy Mathematical morphology which is based on fuzzy logic and fuzzy set theory; fuzzy Mathematical operations and their properties will be studied in details. As a second part, the application of fuzziness in Mathematical morphology in practical work such as image processing will be discussed with the illustration problems.

Keywords: Binary Morphological, Fuzzy sets, Grayscalemorphology, Image processing, Mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
3713 Genetic Algorithm Based Design of Fuzzy Logic Power System Stabilizers in Multimachine Power System

Authors: Manisha Dubey, Aalok Dubey

Abstract:

This paper presents an approach for the design of fuzzy logic power system stabilizers using genetic algorithms. In the proposed fuzzy expert system, speed deviation and its derivative have been selected as fuzzy inputs. In this approach the parameters of the fuzzy logic controllers have been tuned using genetic algorithm. Incorporation of GA in the design of fuzzy logic power system stabilizer will add an intelligent dimension to the stabilizer and significantly reduces computational time in the design process. It is shown in this paper that the system dynamic performance can be improved significantly by incorporating a genetic-based searching mechanism. To demonstrate the robustness of the genetic based fuzzy logic power system stabilizer (GFLPSS), simulation studies on multimachine system subjected to small perturbation and three-phase fault have been carried out. Simulation results show the superiority and robustness of GA based power system stabilizer as compare to conventionally tuned controller to enhance system dynamic performance over a wide range of operating conditions.

Keywords: Dynamic stability, Fuzzy logic power systemstabilizer, Genetic Algorithms, Genetic based power systemstabilizer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
3712 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services

Authors: G. Feletti, D. Tedesco, P. Trucco

Abstract:

The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of a first phase of revision of the technical-scientific literature concerning the indicators currently in use for the performance measurement of EMS. It emerges that current studies focus on two distinct areas and independent objectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). Conversely, the perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal covers the end-to-end healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid even to EMS aspects that in current literature tend to be neglected or underestimated. In particular, the integration of the two processes enables to evaluate the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering, besides the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating firstly the ones not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draw us to exclude additional indicators due to unavailability of data required for their computation. The final dashboard, that was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness on EDs accessibility in real time. The association of each KPI to the EMS phase it refers to enabled the design of a well-balanced dashboard, covering both efficiency and effectiveness performance objectives of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient care are covered by traditional KPIs. Future developments could be directed to building a hierarchical dashboard, composed by a high-level minimal set of KPIs for measuring the basic performance of the EMS system, at an aggregate level, and lower levels of KPIs that bring additional and more detailed information on specific performance dimensions or EMS phases.

Keywords: Emergency Medical Services, Key Performance Indicators, Dashboard, Decision Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
3711 Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection

Authors: C. Ardil

Abstract:

Unmanned combat aircraft (UCA) are expanding significantly in several defense industries, along with artificial intelligence improvements in highly precise technology. UCA is crucial in military settings for targeting enemy elements, and objects. UCA is also utilized for highly precise reconnaissance and surveillance tasks. To select the best alternative for critical missions, a methodical and effective strategy for UCA selection is required. Multiple criteria decision-making (MCDM) methodologies are ideally equipped to handle the complexity of alternative aircraft selection. To analyze UCA alternatives for the selection process, an integrated methodology built on the objective criteria weights and preference analysis for reference ideal solution (PARIS). First, the weights of essential elements are determined using the average weight (AW), standard deviation (SW) and entropy weight (EW) approach. The weights of the evaluation criteria affect the decision-making process. The aircraft choices in the decision problem are then ranked using objective criteria weights along with the PARIS technique. The validation and sensitivity analysis of the proposed MCDM approach are discussed.

Keywords: unmanned combat aircraft (UCA), multiple criteria decision making, MCDM, PARIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475
3710 A Combined Practical Approach to Condition Monitoring of Reciprocating Compressors using IAS and Dynamic Pressure

Authors: M. Elhaj, M. Almrabet, M. Rgeai, I. Ehtiwesh

Abstract:

A Comparison and evaluation of the different condition monitoring (CM) techniques was applied experimentally on RC e.g. Dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS), for the detection and diagnosis of valve faults in a two - stage reciprocating compressor for a programme of condition monitoring which can successfully detect and diagnose a fault in machine. Leakage in the valve plate was introduced experimentally into a two-stage reciprocating compressor. The effect of the faults on compressor performance was monitored and the differences with the normal, healthy performance noted as a fault signature been used for the detection and diagnosis of faults. The paper concludes with what is considered to be a unique approach to condition monitoring. First, each of the two most useful techniques is used to produce a Truth Table which details the circumstances in which each method can be used to detect and diagnose a fault. The two Truth Tables are then combined into a single Decision Table to provide a unique and reliable method of detection and diagnosis of each of the individual faults introduced into the compressor. This gives accurate diagnosis of compressor faults.

Keywords: Condition Monitoring, Dynamic Pressure, Instantaneous Angular Speed, Reciprocating Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303
3709 Effect of Combined Carbimazole and Curcuma longa Powder in Human Thyroid-Stimulating Hormone and Thyroperoxidase Antibody in Hyperthyroidism

Authors: Ahmed Abdi Hassan, Mustapha Muhammad Aliyu

Abstract:

Turmeric (Curcuma longa) belongs to the ginger family and is used for food coloring mostly in Asian countries. It has long traditional medicinal value for the treatment of inflammations with excellent antioxidant properties. The purpose of this study is to investigate the efficiency of turmeric powder in the treatment of hyperthyroidism when combined with carbimazole antithyroid drug. The trial was conducted on 20 hyperthyroid patients but only 16 of them were successfully enrolled for the study. The 16 patients were divided into two equal groups where one group was treated with the only carbimazole while the other group was treated with a combined approach of carbimazole plus turmeric for 6 months consecutively. The result obtained is promising showing an average improvement of 99% in Thyroid-stimulating hormone (TSH) and 88%Thyroid Autoantibodies (TPOAb) in patients treated with the combined approach compared to those treated with the only carbimazole with an average of 3% and 18% of TSH and TPOAb improvement respectively. However, no major difference has been observed in both T4 and T3. Therefore, turmeric powder is a promising treatment if carefully and consistently combined with carbimazole antithyroid drug at very low amounts of 1.5 to 2 grams for at least 2 to 3 times a week.

Keywords: Thyroid, curcuminoids, turmeric, thyroxine, triiodothyronine, thyroid stimulating hormone, TPOAb.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
3708 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
3707 An Analysis of Uncoupled Designs in Chicken Egg

Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi

Abstract:

Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.

Keywords: Uncoupled design, axiomatic design, nature design, design evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
3706 Centralized Monitoring and Self-protected against Fiber Fault in FTTH Access Network

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a new approach for centralized monitoring and self-protected against fiber fault in fiber-to-the-home (FTTH) access network by using Smart Access Network Testing, Analyzing and Database (SANTAD). SANTAD will be installed with optical line terminal (OLT) at central office (CO) for in-service transmission surveillance and fiber fault localization within FTTH with point-to-multipoint (P2MP) configuration downwardly from CO towards customer residential locations based on the graphical user interface (GUI) processing capabilities of MATLAB software. SANTAD is able to detect any fiber fault as well as identify the failure location in the network system. SANTAD enable the status of each optical network unit (ONU) connected line is displayed onto one screen with capability to configure the attenuation and detect the failure simultaneously. The analysis results and information will be delivered to the field engineer for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: Fiber fault, FTTH, SANTAD, transmission surveillance, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
3705 An Integrative Bayesian Approach to Supporting the Prediction of Protein-Protein Interactions: A Case Study in Human Heart Failure

Authors: Fiona Browne, Huiru Zheng, Haiying Wang, Francisco Azuaje

Abstract:

Recent years have seen a growing trend towards the integration of multiple information sources to support large-scale prediction of protein-protein interaction (PPI) networks in model organisms. Despite advances in computational approaches, the combination of multiple “omic" datasets representing the same type of data, e.g. different gene expression datasets, has not been rigorously studied. Furthermore, there is a need to further investigate the inference capability of powerful approaches, such as fullyconnected Bayesian networks, in the context of the prediction of PPI networks. This paper addresses these limitations by proposing a Bayesian approach to integrate multiple datasets, some of which encode the same type of “omic" data to support the identification of PPI networks. The case study reported involved the combination of three gene expression datasets relevant to human heart failure (HF). In comparison with two traditional methods, Naive Bayesian and maximum likelihood ratio approaches, the proposed technique can accurately identify known PPI and can be applied to infer potentially novel interactions.

Keywords: Bayesian network, Classification, Data integration, Protein interaction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
3704 Energy Deposited by Secondary Electrons Generated by Swift Proton Beams through Polymethylmethacrylate

Authors: Maurizio Dapor, Isabel Abril, Pablo de Vera, Rafael Garcia-Molina

Abstract:

The ionization yield of ion tracks in polymers and bio-molecular systems reaches a maximum, known as the Bragg peak, close to the end of the ion trajectories. Along the path of the ions through the materials, many electrons are generated, which produce a cascade of further ionizations and, consequently, a shower of secondary electrons. Among these, very low energy secondary electrons can produce damage in the biomolecules by dissociative electron attachment. This work deals with the calculation of the energy distribution of electrons produced by protons in a sample of polymethylmethacrylate (PMMA), a material that is used as a phantom for living tissues in hadron therapy. PMMA is also of relevance for microelectronics in CMOS technologies and as a photoresist mask in electron beam lithography. We present a Monte Carlo code that, starting from a realistic description of the energy distribution of the electrons ejected by protons moving through PMMA, simulates the entire cascade of generated secondary electrons. By following in detail the motion of all these electrons, we find the radial distribution of the energy that they deposit in PMMA for several initial proton energies characteristic of the Bragg peak.

Keywords: Monte Carlo method, secondary electrons, energetic ions, ion-beam cancer therapy, ionization cross section, polymethylmethacrylate, proton beams, secondary electrons, radial energy distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
3703 Measuring Process Component Design on Achieving Managerial Goals

Authors: Eakong Atiptamvaree, Twittie Senivongse

Abstract:

Process-oriented software development is a new software development paradigm in which software design is modeled by a business process which is in turn translated into a process execution language for execution. The building blocks of this paradigm are software units that are composed together to work according to the flow of the business process. This new paradigm still exhibits the characteristic of the applications built with the traditional software component technology. This paper discusses an approach to apply a traditional technique for software component fabrication to the design of process-oriented software units, called process components. These process components result from decomposing a business process of a particular application domain into subprocesses, and these process components can be reused to design the business processes of other application domains. The decomposition considers five managerial goals, namely cost effectiveness, ease of assembly, customization, reusability, and maintainability. The paper presents how to design or decompose process components from a business process model and measure some technical features of the design that would affect the managerial goals. A comparison between the measurement values from different designs can tell which process component design is more appropriate for the managerial goals that have been set. The proposed approach can be applied in Web Services environment which accommodates process-oriented software development.

Keywords: Business Process Model, Managerial Goals, ProcessComponent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
3702 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
3701 Handover for Dense Small Cells Heterogeneous Networks: A Power-Efficient Game Theoretical Approach

Authors: Mohanad Alhabo, Li Zhang, Naveed Nawaz

Abstract:

In this paper, a non-cooperative game method is formulated where all players compete to transmit at higher power. Every base station represents a player in the game. The game is solved by obtaining the Nash equilibrium (NE) where the game converges to optimality. The proposed method, named Power Efficient Handover Game Theoretic (PEHO-GT) approach, aims to control the handover in dense small cell networks. Players optimize their payoff by adjusting the transmission power to improve the performance in terms of throughput, handover, power consumption and load balancing. To select the desired transmission power for a player, the payoff function considers the gain of increasing the transmission power. Then, the cell selection takes place by deploying Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A game theoretical method is implemented for heterogeneous networks to validate the improvement obtained. Results reveal that the proposed method gives a throughput improvement while reducing the power consumption and minimizing the frequent handover.

Keywords: Energy efficiency, game theory, handover, HetNets, small cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 469
3700 Software Tools for System Identification and Control using Neural Networks in Process Engineering

Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco

Abstract:

Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.

Keywords: Distillation, neural networks, software tools, identification, control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
3699 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes

Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari

Abstract:

The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.

Keywords: Arabic Language acquisition and learning, natural language processing, morphological analyzer, part-of-speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
3698 A Systems Modeling Approach to Support Environmentally Sustainable Business Development in Manufacturing SMEs

Authors: Manuel Seidel, Rainer Seidel, Des Tedford, Richard Cross, Logan Wait

Abstract:

Small and Medium Sized Enterprises (SMEs) play an important role in many economies. In New Zealand, for example, 97% of all manufacturing companies employ less than 100 staff, and generate the predominant part of this industry sector-s economic output. Manufacturing SMEs as a group also have a significant impact on the environment. This situation is similar in many developed economies, including the European Union. Sustainable economic development therefore needs to strongly consider the role of manufacturing SMEs, who generally find it challenging to move towards more environmentally friendly business practices. This paper presents a systems thinking approach to modelling and understanding the factors which have an influence on the successful uptake of environmental practices in small and medium sized manufacturing companies. It presents a number of causal loop diagrams which have been developed based on primary action research, and a thorough understanding of the literature in this area. The systems thinking model provides the basis for further development of a strategic framework for the successful uptake of environmental innovation in manufacturing SMEs.

Keywords: Environmentally benign manufacturing, SMEs, Systems modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
3697 Using Suffix Tree Document Representation in Hierarchical Agglomerative Clustering

Authors: Daniel I. Morariu, Radu G. Cretulescu, Lucian N. Vintan

Abstract:

In text categorization problem the most used method for documents representation is based on words frequency vectors called VSM (Vector Space Model). This representation is based only on words from documents and in this case loses any “word context" information found in the document. In this article we make a comparison between the classical method of document representation and a method called Suffix Tree Document Model (STDM) that is based on representing documents in the Suffix Tree format. For the STDM model we proposed a new approach for documents representation and a new formula for computing the similarity between two documents. Thus we propose to build the suffix tree only for any two documents at a time. This approach is faster, it has lower memory consumption and use entire document representation without using methods for disposing nodes. Also for this method is proposed a formula for computing the similarity between documents, which improves substantially the clustering quality. This representation method was validated using HAC - Hierarchical Agglomerative Clustering. In this context we experiment also the stemming influence in the document preprocessing step and highlight the difference between similarity or dissimilarity measures to find “closer" documents.

Keywords: Text Clustering, Suffix tree documentrepresentation, Hierarchical Agglomerative Clustering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
3696 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.

Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3545
3695 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: Identification, Hammerstein-Wiener, optimization, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799