Search results for: fuzzy logic and neural networks.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3423

Search results for: fuzzy logic and neural networks.

1683 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1682 Design Histories for Enhanced Concurrent Structural Design

Authors: Adam Sobey, James Blake, Ajit Shenoi

Abstract:

The leisure boatbuilding industry has tight profit margins that demand that boats are created to a high quality but with low cost. This requirement means reduced design times combined with increased use of design for production can lead to large benefits. The evolutionary nature of the boatbuilding industry can lead to a large usage of previous vessels in new designs. With the increase in automated tools for concurrent engineering within structural design it is important that these tools can reuse this information while subsequently feeding this to designers. The ability to accurately gather this materials and parts data is also a key component to these tools. This paper therefore aims to develop an architecture made up of neural networks and databases to feed information effectively to the designers based on previous design experience.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
1681 Web Driving Performance Monitoring System

Authors: Ahmad Aljaafreh

Abstract:

Safer driver behavior promoting is the main goal of this paper. It is a fact that drivers behavior is relatively safer when being monitored. Thus, in this paper, we propose a monitoring system to report specific driving event as well as the potentially aggressive events for estimation of the driving performance. Our driving monitoring system is composed of two parts. The first part is the in-vehicle embedded system which is composed of a GPS receiver, a two-axis accelerometer, radar sensor, OBD interface, and GPRS modem. The design considerations that led to this architecture is described in this paper. The second part is a web server where an adaptive hierarchical fuzzy system is proposed to classify the driving performance based on the data that is sent by the in-vehicle embedded system and the data that is provided by the geographical information system (GIS). Our system is robust, inexpensive and small enough to fit inside a vehicle without distracting the driver.

Keywords: Driving monitoring system, In-vehicle embedded system, Hierarchical fuzzy system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
1680 Fighter Aircraft Selection Using Neutrosophic Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

Fuzzy set and intuitionistic fuzzy set are dealing with the imprecision and uncertainty inherent in a complex decision problem. However, sometimes these theories are not sufficient to model indeterminate and inconsistent information encountered in real-life problems. To overcome this insufficiency, the neutrosophic set, which is useful in practical applications, is proposed, triangular neutrosophic numbers and trapezoidal neutrosophic numbers are examined, their definitions and applications are discussed. In this study, a decision making algorithm is developed using neutrosophic set processes and an application is given in fighter aircraft selection as an example of a decision making problem. The estimation of the fighter aircraft selection with the neutrosophic multiple criteria decision analysis method is examined.  

Keywords: neutrosophic set, multiple criteria decision making analysis, fighter aircraft selection, MCDMA, neutrosophic numbers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1679 Urdu Nastaleeq Optical Character Recognition

Authors: Zaheer Ahmad, Jehanzeb Khan Orakzai, Inam Shamsher, Awais Adnan

Abstract:

This paper discusses the Urdu script characteristics, Urdu Nastaleeq and a simple but a novel and robust technique to recognize the printed Urdu script without a lexicon. Urdu being a family of Arabic script is cursive and complex script in its nature, the main complexity of Urdu compound/connected text is not its connections but the forms/shapes the characters change when it is placed at initial, middle or at the end of a word. The characters recognition technique presented here is using the inherited complexity of Urdu script to solve the problem. A word is scanned and analyzed for the level of its complexity, the point where the level of complexity changes is marked for a character, segmented and feeded to Neural Networks. A prototype of the system has been tested on Urdu text and currently achieves 93.4% accuracy on the average.

Keywords: Cursive Script, OCR, Urdu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
1678 An Optimization Model for Natural Gas Supply Chain through a Cost Approach under Uncertainty

Authors: A. Azadeh, Z. Raoofi

Abstract:

Natural gas, as one of the most important sources of energy for many of the industrial and domestic users all over the world, has a complex, huge supply chain which is in need of heavy investments in all the phases of exploration, extraction, production, transportation, storage and distribution. The main purpose of supply chain is to meet customers’ need efficiently and with minimum cost. In this study, with the aim of minimizing economic costs, different levels of natural gas supply chain in the form of a multi-echelon, multi-period fuzzy linear programming have been modeled. In this model, different constraints including constraints on demand satisfaction, capacity, input/output balance and presence/absence of a path have been defined. The obtained results suggest efficiency of the recommended model in optimal allocation and reduction of supply chain costs.

Keywords: Cost Approach, Fuzzy Theory, Linear Programming, Natural Gas Supply Chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
1677 A Product Development for Green Logistics Model by Integrated Evaluation of Design and Manufacturing and Green Supply Chain

Authors: Yuan-Jye Tseng, Yen-Jung Wang

Abstract:

A product development for green logistics model using the fuzzy analytic network process method is presented for evaluating the relationships among the product design, the manufacturing activities, and the green supply chain. In the product development stage, there can be alternative ways to design the detailed components to satisfy the design concept and product requirement. In different design alternative cases, the manufacturing activities can be different. In addition, the manufacturing activities can affect the green supply chain of the components and product. In this research, a fuzzy analytic network process evaluation model is presented for evaluating the criteria in product design, manufacturing activities, and green supply chain. The comparison matrices for evaluating the criteria among the three groups are established. The total relational values between the three groups represent the relationships and effects. In application, the total relational values can be used to evaluate the design alternative cases for decision-making to select a suitable design case and the green supply chain. In this presentation, an example product is illustrated. It shows that the model is useful for integrated evaluation of design and manufacturing and green supply chain for the purpose of product development for green logistics.

Keywords: Supply chain management, green supply chain, product development for logistics, fuzzy analytic network process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
1676 A Competitive Replica Placement Methodology for Ad Hoc Networks

Authors: Samee Ullah Khan, C. Ardil

Abstract:

In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution quality

Keywords: Data replication, auctions, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
1675 A Quality Optimization Approach: An Application on Next Generation Networks

Authors: Gülfem I. Alptekin, S. Emre Alptekin

Abstract:

The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.

Keywords: cognitive radio networks, game theory, nextgeneration wireless networks, spectrum management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
1674 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Authors: A.Muthuramalingam, S.Himavathi

Abstract:

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
1673 An Agent-based Model for Analyzing Interaction of Two Stable Social Networks

Authors: Masatora Daito, Hisashi Kojima

Abstract:

In this research, the authors analyze network stability using agent-based simulation. Firstly, the authors focus on analyzing large networks (eight agents) by connecting different two stable small social networks (A small stable network is consisted on four agents.). Secondly, the authors analyze the network (eight agents) shape which is added one agent to a stable network (seven agents). Thirdly, the authors analyze interpersonal comparison of utility. The “star-network "was not found on the result of interaction among stable two small networks. On the other hand, “decentralized network" was formed from several combination. In case of added one agent to a stable network (seven agents), if the value of “c"(maintenance cost of per a link) was larger, the number of patterns of stable network was also larger. In this case, the authors identified the characteristics of a large stable network. The authors discovered the cases of decreasing personal utility under condition increasing total utility.

Keywords: Social Network, Symmetric Situation, Network Stability, Agent-Based Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
1672 Social Networks and Absorptive Capacity

Authors: Rachelle Bosua, Nina Evans

Abstract:

The resource-based view of the firm regards knowledge as one of the most important organizational assets and a key strategic resource that contributes unique value to organizations. The acquisition, absorption and internalization of external knowledge are central to an organization-s innovative capabilities. This ability to evaluate, acquire and integrate new knowledge from its environment is referred to as a firm-s absorptive capacity (AC). This research in progress paper explores the link between interorganizational Social Networks (SNs) and a firm-s Absorptive Capacity (AC). Based on an in-depth literature survey of both concepts, four propositions are proposed that explain the link between AC and SNs. These propositions suggest that SNs are key to a firm-s AC. A qualitative research method is proposed to test the set of propositions in the next stage of this research.

Keywords: Knowledge, Innovation, Absorptive Capacity, Social Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
1671 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Authors: Ashanie Guanathillake, Kithsiri Samarasinghe

Abstract:

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
1670 Distance Transmission Line Protection Based on Radial Basis Function Neural Network

Authors: Anant Oonsivilai, Sanom Saichoomdee

Abstract:

To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.

Keywords: radial basis function neural network, transmission lines protection, relaying, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
1669 Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management System

Authors: Seyed Hossein Iranmanesh, Mansoureh Zarezadeh

Abstract:

This paper presents an application of Artificial Neural Network (ANN) to forecast actual cost of a project based on the earned value management system (EVMS). For this purpose, some projects randomly selected based on the standard data set , and it is produced necessary progress data such as actual cost ,actual percent complete , baseline cost and percent complete for five periods of project. Then an ANN with five inputs and five outputs and one hidden layer is trained to produce forecasted actual costs. The comparison between real and forecasted data show better performance based on the Mean Absolute Percentage Error (MAPE) criterion. This approach could be applicable to better forecasting the project cost and result in decreasing the risk of project cost overrun, and therefore it is beneficial for planning preventive actions.

Keywords: Earned Value Management System (EVMS), Artificial Neural Network (ANN), Estimate At Completion, Forecasting Methods, Project Performance Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2775
1668 Service Business Model Canvas: A Boundary Object Operating as a Business Development Tool

Authors: Taru Hakanen, Mervi Murtonen

Abstract:

This study aims to increase understanding of the transition of business models in servitization. The significance of service in all business has increased dramatically during the past decades. Service-dominant logic (SDL) describes this change in the economy and questions the goods-dominant logic on which business has primarily been based in the past. A business model canvas is one of the most cited and used tools in defining end developing business models. The starting point of this paper lies in the notion that the traditional business model canvas is inherently goods-oriented and best suits for product-based business. However, the basic differences between goods and services necessitate changes in business model representations when proceeding in servitization. Therefore, new knowledge is needed on how the conception of business model and the business model canvas as its representation should be altered in servitized firms in order to better serve business developers and interfirm co-creation. That is to say, compared to products, services are intangible and they are co-produced between the supplier and the customer. Value is always co-created in interaction between a supplier and a customer, and customer experience primarily depends on how well the interaction succeeds between the actors. The role of service experience is even stronger in service business compared to product business, as services are co-produced with the customer. This paper provides business model developers with a service business model canvas, which takes into account the intangible, interactive, and relational nature of service. The study employs a design science approach that contributes to theory development via design artifacts. This study utilizes qualitative data gathered in workshops with ten companies from various industries. In particular, key differences between Goods-dominant logic (GDL) and SDLbased business models are identified when an industrial firm proceeds in servitization. As the result of the study, an updated version of the business model canvas is provided based on service-dominant logic. The service business model canvas ensures a stronger customer focus and includes aspects salient for services, such as interaction between companies, service co-production, and customer experience. It can be used for the analysis and development of a current service business model of a company or for designing a new business model. It facilitates customer-focused new service design and service development. It aids in the identification of development needs, and facilitates the creation of a common view of the business model. Therefore, the service business model canvas can be regarded as a boundary object, which facilitates the creation of a common understanding of the business model between several actors involved. The study contributes to the business model and service business development disciplines by providing a managerial tool for practitioners in service development. It also provides research insight into how servitization challenges companies’ business models.

Keywords: Boundary object, business model canvas, managerial tool, service-dominant logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3359
1667 Distributed Denial of Service Attacks in Mobile Adhoc Networks

Authors: Gurjinder Kaur, Yogesh Chaba, V. K. Jain

Abstract:

The aim of this paper is to explore the security issues that significantly affect the performance of Mobile Adhoc Networks (MANET)and limit the services provided to their intended users. The MANETs are more vulnerable to Distributed Denial of Service attacks (DDoS) because of their properties like shared medium, dynamic topologies etc. A DDoS attack is a coordinated attempt made by malicious users to flood the victim network with the large amount of data such that the resources of the victim network are exhausted resulting in the deterioration of the network performance. This paper highlights the effects of different types of DDoS attacks in MANETs and categorizes them according to their behavior.

Keywords: Distributed Denial, Mobile Adhoc Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
1666 Multi-Label Hierarchical Classification for Protein Function Prediction

Authors: Helyane B. Borges, Julio Cesar Nievola

Abstract:

Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.

Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
1665 Probabilistic Wavelet Neural Network Based Vibration Analysis of Induction Motor Drive

Authors: K. Jayakumar, S. Thangavel

Abstract:

In this paper proposed the effective fault detection of industrial drives by using Biorthogonal Posterior Vibration Signal-Data Probabilistic Wavelet Neural Network (BPPVS-WNN) system. This system was focused to reducing the current flow and to identify faults with lesser execution time with harmonic values obtained through fifth derivative. Initially, the construction of Biorthogonal vibration signal-data based wavelet transform in BPPVS-WNN system localizes the time and frequency domain. The Biorthogonal wavelet approximates the broken bearing using double scaling and factor, identifies the transient disturbance due to fault on induction motor through approximate coefficients and detailed coefficient. Posterior Probabilistic Neural Network detects the final level of faults using the detailed coefficient till fifth derivative and the results obtained through it at a faster rate at constant frequency signal on the industrial drive. Experiment through the Simulink tool detects the healthy and unhealthy motor on measuring parametric factors such as fault detection rate based on time, current flow rate, and execution time.

Keywords: Biorthogonal Wavelet Transform, Posterior Probabilistic Neural Network, Induction Motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023
1664 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options

Authors: Zeynep İltüzer Samur, Gül Tekin Temur

Abstract:

Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.

Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
1663 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)

Authors: Wafa' S.Al-Sharafat, Reyadh Naoum

Abstract:

Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.

Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1662 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: Central ML, embedded machine learning, energy consumption, local ML, Wireless Sensor Networks, WSN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
1661 The Existence of Field Corn Networks on the Thailand-Burma Border under the Patron-Client Contract Farming System

Authors: Kettawa Boonprakarn, Jedsarid Sangkaphan, Bejapornd Deekhuntod, Nuntharat Suriyo

Abstract:

This study aimed to investigate the existence of field corn networks on the Thailand-Burma border under the patron-client contract farming system. The data of this qualitative study were collected through in-depth interviews with nine key informants.

The results of the study revealed that the existence of the field corn networks was associated with the relationship where farmers had to share their crops with protectors in the areas under the influence of the KNU (Karen National Union) and the DKBA (Democratic Karen Buddhist Army) or Burmese soldiers. A Mae Liang, the person who starts a network has a connection with a Thaokae, Luk Rai Hua Chai or the head of a group of farmers, and farmers. They are under the patron-client system with trust and loyalty that enable the head of the group and the farmers in the Burma border side to remain under the same Mae Liang even though the business has been passed down to later generations.

Keywords: Existence, field-corn networks, patron-client system, contract farming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
1660 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
1659 Emerging Technology for 6G Networks

Authors: Yaseein S. Hussein, Victor P. Gil Jiménez, Abdulmajeed Al-Jumaily

Abstract:

Due to the rapid advancement of technology, there is an increasing demand for wireless connections that are both fast and reliable, with minimal latency. New wireless communication standards are developed every decade, and 2030 is expected to see the introduction of 6G. The primary objectives of 6G network and terminal designs are focused on sustainability and environmental friendliness. The International Telecommunication Union-Recommendation division (ITU-R) has established the minimum requirements for 6G, with peak and user data rates of 1 Tbps and 10-100 Gbps, respectively. In this context, Light Fidelity (Li-Fi) technology is the most promising candidate to meet these requirements. This article will explore the various advantages, features, and potential applications of Li-Fi technology, and compare it with 5G networking, to showcase its potential impact among other emerging technologies that aim to enable 6G networks.

Keywords: 6G Networks, artificial intelligence, AI, Li-Fi technology, terahertz communication, visible light communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255
1658 Client Server System for e-Services Access Using Mobile Communications Networks

Authors: Eugen Pop, Mihai Barbos, Razvan Lupu

Abstract:

The client server systems using mobile communications networks for data transmission became very attractive for many economic agents, in the purpose of promoting and offering electronic services to their clients. E-services are suitable for business developing and financial benefits increasing. The products or services can be efficiently delivered to a large number of clients, using mobile Internet access technologies. The clients can have access to e-services, anywhere and anytime, with the support of 3G, GPRS, WLAN, etc., channels bandwidth, data services and protocols. Based on the mobile communications networks evolution and development, a convergence of technological and financial interests of mobile operators, software developers, mobile terminals producers and e-content providers is established. These will lead to a high level of integration of IT&C resources and will facilitate the value added services delivery through the mobile communications networks. In this paper it is presented a client server system, for e-services access, with Smartphones and PDA-s mobile software applications, installed on Symbian and Windows Mobile operating systems.

Keywords: Client server system, e-services access, mobile communications, PDA, Smartphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
1657 Multi-Objective Analysis of Cost and Social Benefits in Rural Road Networks

Authors: J. K. Shrestha, A. Benta, R. B. Lopes, N. Lopes

Abstract:

This paper presents a multi-objective model for addressing two main objectives in designing rural roads networks: minimization of user operation costs and maximization of population covered. As limited budgets often exist, a reasonable trade-off must be obtained in order to account for both cost and social benefits in this type of networks. For a real-world rural road network, the model is solved, where all non-dominated solutions were obtained. Afterwards, an analysis is made on the (possibly) most interesting solutions (the ones providing better trade-offs). This analysis, coupled with the knowledge of the real world scenario (typically provided by decision makers) provides a suitable method for the evaluation of road networks in rural areas of developing countries.

Keywords: Multi-objective, user operation cost, population covered, rural road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1656 Authentication Protocol for Wireless Sensor Networks

Authors: Sunil Gupta, Harsh Kumar Verma, AL Sangal

Abstract:

Wireless sensor networks can be used to measure and monitor many challenging problems and typically involve in monitoring, tracking and controlling areas such as battlefield monitoring, object tracking, habitat monitoring and home sentry systems. However, wireless sensor networks pose unique security challenges including forgery of sensor data, eavesdropping, denial of service attacks, and the physical compromise of sensor nodes. Node in a sensor networks may be vanished due to power exhaustion or malicious attacks. To expand the life span of the sensor network, a new node deployment is needed. In military scenarios, intruder may directly organize malicious nodes or manipulate existing nodes to set up malicious new nodes through many kinds of attacks. To avoid malicious nodes from joining the sensor network, a security is required in the design of sensor network protocols. In this paper, we proposed a security framework to provide a complete security solution against the known attacks in wireless sensor networks. Our framework accomplishes node authentication for new nodes with recognition of a malicious node. When deployed as a framework, a high degree of security is reachable compared with the conventional sensor network security solutions. A proposed framework can protect against most of the notorious attacks in sensor networks, and attain better computation and communication performance. This is different from conventional authentication methods based on the node identity. It includes identity of nodes and the node security time stamp into the authentication procedure. Hence security protocols not only see the identity of each node but also distinguish between new nodes and old nodes.

Keywords: Authentication, Key management, Wireless Sensornetwork, Elliptic curve cryptography (ECC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3829
1655 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1654 Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft

Authors: F. Caliskan

Abstract:

This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.

Keywords: Aircraft Icing, Stability Derivatives, Neural NetworkIdentification, Reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709