Search results for: computer networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3096

Search results for: computer networks

1416 Sperm Identification Using Elliptic Model and Tail Detection

Authors: Vahid Reza Nafisi, Mohammad Hasan Moradi, Mohammad Hosain Nasr-Esfahani

Abstract:

The conventional assessment of human semen is a highly subjective assessment, with considerable intra- and interlaboratory variability. Computer-Assisted Sperm Analysis (CASA) systems provide a rapid and automated assessment of the sperm characteristics, together with improved standardization and quality control. However, the outcome of CASA systems is sensitive to the method of experimentation. While conventional CASA systems use digital microscopes with phase-contrast accessories, producing higher contrast images, we have used raw semen samples (no staining materials) and a regular light microscope, with a digital camera directly attached to its eyepiece, to insure cost benefits and simple assembling of the system. However, since the accurate finding of sperms in the semen image is the first step in the examination and analysis of the semen, any error in this step can affect the outcome of the analysis. This article introduces and explains an algorithm for finding sperms in low contrast images: First, an image enhancement algorithm is applied to remove extra particles from the image. Then, the foreground particles (including sperms and round cells) are segmented form the background. Finally, based on certain features and criteria, sperms are separated from other cells.

Keywords: Computer-Assisted Sperm Analysis (CASA), Sperm identification, Tail detection, Elliptic shape model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
1415 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
1414 A New Approach to Polynomial Neural Networks based on Genetic Algorithm

Authors: S. Farzi

Abstract:

Recently, a lot of attention has been devoted to advanced techniques of system modeling. PNN(polynomial neural network) is a GMDH-type algorithm (Group Method of Data Handling) which is one of the useful method for modeling nonlinear systems but PNN performance depends strongly on the number of input variables and the order of polynomial which are determined by trial and error. In this paper, we introduce GPNN (genetic polynomial neural network) to improve the performance of PNN. GPNN determines the number of input variables and the order of all neurons with GA (genetic algorithm). We use GA to search between all possible values for the number of input variables and the order of polynomial. GPNN performance is obtained by two nonlinear systems. the quadratic equation and the time series Dow Jones stock index are two case studies for obtaining the GPNN performance.

Keywords: GMDH, GPNN, GA, PNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
1413 Active Control Improvement of Smart Cantilever Beam by Piezoelectric Materials and On-Line Differential Artificial Neural Networks

Authors: P. Karimi, A. H. Khedmati Bazkiaei

Abstract:

The main goal of this study is to test differential neural network as a controller of smart structure and is to enumerate its advantages and disadvantages in comparison with other controllers. In this study, the smart structure has been considered as a Euler Bernoulli cantilever beam and it has been tried that it be under control with the use of vibration neural network resulting from movement. Also, a linear observer has been considered as a reference controller and has been compared its results. The considered vibration charts and the controlled state have been recounted in the final part of this text. The obtained result show that neural observer has better performance in comparison to the implemented linear observer.

Keywords: Smart material, on-line differential artificial neural network, active control, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
1412 Model of Multi-Criteria Evaluation for Railway Lines

Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek

Abstract:

The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.

Keywords: Railway track, multi-criteria methods, evaluation, transportation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
1411 Application of Artificial Neural Network in the Investigation of Bearing Defects

Authors: S. Sendhil Kumar, M. Senthil Kumar

Abstract:

Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.

Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
1410 Endometrial Cancer Recognition via EEG Dependent upon 14-3-3 Protein Leading to an Ontological Diagnosis

Authors: Marios Poulos, Eirini Maliagani, Minas Paschopoulos, George Bokos

Abstract:

The purpose of my research proposal is to demonstrate that there is a relationship between EEG and endometrial cancer. The above relationship is based on an Aristotelian Syllogism; since it is known that the 14-3-3 protein is related to the electrical activity of the brain via control of the flow of Na+ and K+ ions and since it is also known that many types of cancer are associated with 14-3-3 protein, it is possible that there is a relationship between EEG and cancer. This research will be carried out by well-defined diagnostic indicators, obtained via the EEG, using signal processing procedures and pattern recognition tools such as neural networks in order to recognize the endometrial cancer type. The current research shall compare the findings from EEG and hysteroscopy performed on women of a wide age range. Moreover, this practice could be expanded to other types of cancer. The implementation of this methodology will be completed with the creation of an ontology. This ontology shall define the concepts existing in this research-s domain and the relationships between them. It will represent the types of relationships between hysteroscopy and EEG findings.

Keywords: Bioinformatics, Protein 14-3-3, EEG, Endometrial cancer, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1409 Neutral to Earth Voltage Analysis in Harmonic Polluted Distribution Networks with Multi- Grounded Neutrals

Authors: G. Ahmadi, S.M. Shahrtash

Abstract:

A multiphase harmonic load flow algorithm is developed based on backward/forward sweep to examine the effects of various factors on the neutral to earth voltage (NEV), including unsymmetrical system configuration, load unbalance and harmonic injection. The proposed algorithm composes fundamental frequency and harmonic frequencies power flows. The algorithm and the associated models are tested on IEEE 13 bus system. The magnitude of NEV is investigated under various conditions of the number of grounding rods per feeder lengths, the grounding rods resistance and the grounding resistance of the in feeding source. Additionally, the harmonic injection of nonlinear loads has been considered and its influences on NEV under different conditions are shown.

Keywords: NEV, Distribution System, Multi-grounded, Backward/Forward Sweep, Harmonic Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
1408 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
1407 The Perception on 21st Century Skills of Nursing Instructors and Nursing Students at Boromarajonani College of Nursing, Chonburi

Authors: Kamolrat Turner, Somporn Rakkwamsuk, Ladda Leungratanamart

Abstract:

The aim of this descriptive study was to determine the perception of 21st century skills among nursing professors and nursing students at Boromarajonani College of Nursing, Chonburi. A total of 38 nursing professors and 75 second year nursing students took part in the study. Data were collected by 21st century skills questionnaires comprised of 63 items. Descriptive statistics were used to describe the findings. The results have shown that the overall mean scores of the perception of nursing professors on 21st century skills were at a high level. The highest mean scores were recorded for computing and ICT literacy, and career and leaning skills. The lowest mean scores were recorded for reading and writing and mathematics. The overall mean scores on perception of nursing students on 21st century skills were at a high level. The highest mean scores were recorded for computer and ICT literacy, for which the highest item mean scores were recorded for competency on computer programs. The lowest mean scores were recorded for the reading, writing, and mathematics components, in which the highest item mean score was reading Thai correctly, and the lowest item mean score was English reading and translate to other correctly. The findings from this study have shown that the perceptions of nursing professors were consistent with those of nursing students. Moreover, any activities aiming to raise capacity on English reading and translate information to others should be taken into the consideration.

Keywords: 21st century skills, perception, nursing instructor, nursing student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
1406 Knowledge Acquisition as Determinant of Outputs of Innovative Business in Regions of the Czech Republic

Authors: P. Hajek, J. Stejskal

Abstract:

The aim of this paper is to analyze the ability to identify and acquire knowledge from external sources at the regional level in the Czech Republic. The results show that the most important sources of knowledge for innovative activities are sources within the businesses themselves, followed by customers and suppliers. Furthermore, the analysis of relationships between the objective of the innovative activity and the ability to identify and acquire knowledge implies that knowledge obtained from (1) customers aims at replacing outdated products and increasing product quality; (2) suppliers aims at increasing capacity and flexibility of production; and (3) competing businesses aims at growing market share and increasing the flexibility of production and services. Regions should therefore direct their support especially into development and strengthening of networks within the value chain.

Keywords: Knowledge, acquisition, innovative business, Czech republic, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
1405 Memorabilia of Suan Sunandha through Interactive User Interface

Authors: Nalinee Sophatsathit

Abstract:

The objectives of memorabilia of Suan Sunandha are to develop a general knowledge presentation about the historical royal garden through interactive graphic simulation technique and to employ high-functionality context in enhancing interactive user navigation. The approach infers non-intrusive display of relevant history in response to situational context. User’s navigation runs through the virtual reality campus, consisting of new and restored buildings. A flash back presentation of information pertaining to the history in the form of photos, paintings, and textual descriptions are displayed along each passing-by building. To keep the presentation lively, graphical simulation is created in a serendipity game play so that the user can both learn and enjoy the educational tour. The benefits of this human-computer interaction development are two folds. First, lively presentation technique and situational context modeling are developed that entail a usable paradigm of knowledge and information presentation combinations. Second, cost effective training and promotion for both internal personnel and public visitors to learn and keep informed of this historical royal garden can be furnished without the need for a dedicated public relations service. Future improvement on graphic simulation and ability based display can extend this work to be more realistic, user-friendly, and informative for all.

Keywords: Interactive user navigation, high-functionality context, situational context, human-computer interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
1404 Parameter Estimation for Viewing Rank Distribution of Video-on-Demand

Authors: Hyoup-Sang Yoon

Abstract:

Video-on-demand (VOD) is designed by using content delivery networks (CDN) to minimize the overall operational cost and to maximize scalability. Estimation of the viewing pattern (i.e., the relationship between the number of viewings and the ranking of VOD contents) plays an important role in minimizing the total operational cost and maximizing the performance of the VOD systems. In this paper, we have analyzed a large body of commercial VOD viewing data and found that the viewing rank distribution fits well with the parabolic fractal distribution. The weighted linear model fitting function is used to estimate the parameters (coefficients) of the parabolic fractal distribution. This paper presents an analytical basis for designing an optimal hierarchical VOD contents distribution system in terms of its cost and performance.

Keywords: VOD, CDN, parabolic fractal distribution, viewing rank, weighted linear model fitting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1403 Valuing Patents on Market Reaction to Patent Infringement Litigations

Authors: Yu J. Chiu, Chia H. Yeh

Abstract:

Innovation is more important in any companies. However, it is not easy to measure the innovation performance correctly. Patent is one of measuring index nowadays. This paper wants to purpose an approach for valuing patents based on market reaction to patent infringement litigations. The interesting phenomenon is found from collection of patent infringement litigation events. That is if any patent litigation event occurs the stock value will follow changing. The plaintiffs- stock value raises some percentage. According to this interesting phenomenon, the relationship between patent litigation and stock value is tested and verified. And then, the stock value variation is used to deduce the infringed patents- value. The purpose of this study is providing another concept model to evaluate the infringed patents. This study can provide a decision assist system to help drafting patent litigation strategy and determine the technology value

Keywords: Patent valuation, infringement litigations, stock value, artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
1402 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System

Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam

Abstract:

Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against GAAs is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improve the classification accuracy of a DL model from around 57% to 96%.

Keywords: Generative Adversarial Attack, Deep Reinforcement Learning, deep learning, IIoT, Generative Adversarial Networks, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 0
1401 Neural Network Based Approach for Face Detection cum Face Recognition

Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh

Abstract:

Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.

Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
1400 Identification of Nonlinear Systems Using Radial Basis Function Neural Network

Authors: C. Pislaru, A. Shebani

Abstract:

This paper uses the radial basis function neural network (RBFNN) for system identification of nonlinear systems. Five nonlinear systems are used to examine the activity of RBFNN in system modeling of nonlinear systems; the five nonlinear systems are dual tank system, single tank system, DC motor system, and two academic models. The feed forward method is considered in this work for modelling the non-linear dynamic models, where the KMeans clustering algorithm used in this paper to select the centers of radial basis function network, because it is reliable, offers fast convergence and can handle large data sets. The least mean square method is used to adjust the weights to the output layer, and Euclidean distance method used to measure the width of the Gaussian function.

Keywords: System identification, Nonlinear system, Neural networks, RBF neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2869
1399 Link Availability Estimation for Modified AOMDV Protocol

Authors: R. Prabha, N. Ramaraj

Abstract:

Routing in adhoc networks is a challenge as nodes are mobile, and links are constantly created and broken. Present ondemand adhoc routing algorithms initiate route discovery after a path breaks, incurring significant cost to detect disconnection and establish a new route. Specifically, when a path is about to be broken, the source is warned of the likelihood of a disconnection. The source then initiates path discovery early, avoiding disconnection totally. A path is considered about to break when link availability decreases. This study modifies Adhoc On-demand Multipath Distance Vector routing (AOMDV) so that route handoff occurs through link availability estimation.

Keywords: Mobile Adhoc Network (MANET), Routing, Adhoc On-demand Multipath Distance Vector routing (AOMDV), Link Availability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1398 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Marque Adrien, Delahaye Daniel, Marechal Pierre, Berry Isabelle

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: Wind direction, uncertainty level, Unmanned Aerial Vehicle, convolution neural network, SPD matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54
1397 Exploring Anti-Western Sentiment Among Arabs and Its Influence on Support for Russia in the Ukraine Conflict

Authors: Soran Tarkhani

Abstract:

The phenomenon of significant Arab support for Russia's invasion of Ukraine, despite widespread condemnation from Arab leaders, poses a puzzling scenario. This paper delves into the paradox by employing multiple regression analysis on the online reactions of Arab audiences to the conflict as reported by seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. It hypothesizes that this support stems from prevalent anti-Western sentiment within the Arab world. The empirical findings corroborate the hypothesis, providing insight into the underlying motivations for Arab backing of Russia against Ukraine, despite their historical familiarity with the harsh realities of war.

Keywords: Anti-Western Sentiment, Arab World, Russia-Ukraine Conflict, social media analysis, political sentiment, international relations, regional influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189
1396 Investigation of Interference Conditions in BFWA System Applying Adaptive TDD

Authors: Gábor Szládek, Balázs Héder, János Bitó

Abstract:

In a BFWA (Broadband Fixed Wireless Access Network) the evolved SINR (Signal to Interference plus Noise Ratio) is relevant influenced by the applied duplex method. The TDD (Time Division Duplex), especially adaptive TDD method has some advantage contrary to FDD (Frequency Division Duplex), for example the spectrum efficiency and flexibility. However these methods are suffering several new interference situations that can-t occur in a FDD system. This leads to reduced SINR in the covered area what could cause some connection outages. Therefore, countermeasure techniques against interference are necessary to apply in TDD systems. Synchronization is one way to handling the interference. In this paper the TDD systems – applying different system synchronization degree - will be compared by the evolved SINR at different locations of the BFWA service area and the percentage of the covered area by the system.

Keywords: Adaptive TDD, BFWA networks, duplex methods, intra system interferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
1395 Trust Building Mechanisms for Electronic Business Networks and Their Relation to eSkills

Authors: Radoslav Delina, Michal Tkáč

Abstract:

Globalization, supported by information and communication technologies, changes the rules of competitiveness and increases the significance of information, knowledge and network cooperation. In line with this trend, the need for efficient trust-building tools has emerged. The absence of trust building mechanisms and strategies was identified within several studies. Through trust development, participation on e-business network and usage of network services will increase and provide to SMEs new economic benefits. This work is focused on effective trust building strategies development for electronic business network platforms. Based on trust building mechanism identification, the questionnairebased analysis of its significance and minimum level of requirements was conducted. In the paper, we are confirming the trust dependency on e-Skills which play crucial role in higher level of trust into the more sophisticated and complex trust building ICT solutions.

Keywords: Correlation analysis, decision trees, e-marketplace, trust building

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
1394 Quantum Enhanced Correlation Matrix Memories via States Orthogonalisation

Authors: Mario Mastriani, Marcelo Naiouf

Abstract:

This paper introduces a Quantum Correlation Matrix Memory (QCMM) and Enhanced QCMM (EQCMM), which are useful to work with quantum memories. A version of classical Gram-Schmidt orthogonalisation process in Dirac notation (called Quantum Orthogonalisation Process: QOP) is presented to convert a non-orthonormal quantum basis, i.e., a set of non-orthonormal quantum vectors (called qudits) to an orthonormal quantum basis, i.e., a set of orthonormal quantum qudits. This work shows that it is possible to improve the performance of QCMM thanks QOP algorithm. Besides, the EQCMM algorithm has a lot of additional fields of applications, e.g.: Steganography, as a replacement Hopfield Networks, Bilevel image processing, etc. Finally, it is important to mention that the EQCMM is an extremely easy to implement in any firmware.

Keywords: Quantum Algebra, correlation matrix memory, Dirac notation, orthogonalisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
1393 Frequent and Systematic Timing Enhancement of Congestion Window in Typical Transmission Control Protocol

Authors: Ghassan A. Abed, Akbal O. Salman, Bayan M. Sabbar

Abstract:

Transmission Control Protocol (TCP) among the wired and wireless networks, it still has a practical problem; where the congestion control mechanism does not permit the data stream to get complete bandwidth over the existing network links. To solve this problem, many TCP protocols have been introduced with high speed performance. Therefore, an enhanced congestion window (cwnd) for the congestion control mechanism is proposed in this article to improve the performance of TCP by increasing the number of cycles of the new window to improve the transmitted packet number. The proposed algorithm used a new mechanism based on the available bandwidth of the connection to detect the capacity of network path in order to improve the regular clocking of congestion avoidance mechanism. The work in this paper based on using Network Simulator 2 (NS-2) to simulate the proposed algorithm.

Keywords: TCP, cwnd, Congestion Control, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
1392 Quality and Quantity in the Strategic Network of Higher Education Institutions

Authors: Juha Kettunen

Abstract:

This study analyzes the quality and the size of the strategic network of higher education institutions. The study analyses the concept of fitness for purpose in quality assurance. It also analyses the transaction costs of networking that have consequences on the number of members in the network. Empirical evidence is presented of the Consortium on Applied Research and Professional Education, which is a European strategic network of six higher education institutions. The results of the study support the argument that the number of members in the strategic network should be relatively small to provide high quality results. The practical importance is that networking has been able to promote international research and development projects. The results of this study are important for those who want to design and improve international networks in higher education.

Keywords: Higher education, network, research and development, strategic management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1391 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
1390 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: Cellular automata, neural cellular automata, deep learning, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
1389 Real-Time Hand Tracking and Gesture Recognition System Using Neural Networks

Authors: Tin Hninn Hninn Maung

Abstract:

This paper introduces a hand gesture recognition system to recognize real time gesture in unstrained environments. Efforts should be made to adapt computers to our natural means of communication: Speech and body language. A simple and fast algorithm using orientation histograms will be developed. It will recognize a subset of MAL static hand gestures. A pattern recognition system will be using a transforrn that converts an image into a feature vector, which will be compared with the feature vectors of a training set of gestures. The final system will be Perceptron implementation in MATLAB. This paper includes experiments of 33 hand postures and discusses the results. Experiments shows that the system can achieve a 90% recognition average rate and is suitable for real time applications.

Keywords: Hand gesture recognition, Orientation Histogram, Myanmar Alphabet Language, Perceptronnetwork, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4707
1388 Design and Implementation of Active Radio Frequency Identification on Wireless Sensor Network-Based System

Authors: Che Z. Zulkifli, Nursyahida M. Noor, Siti N. Semunab, Shafawati A. Malek

Abstract:

Wireless sensors, also known as wireless sensor nodes, have been making a significant impact on human daily life. The Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two complementary technologies; hence, an integrated implementation of these technologies expands the overall functionality in obtaining long-range and real-time information on the location and properties of objects and people. An approach for integrating ZigBee and RFID networks is proposed in this paper, to create an energy-efficient network improved by the benefits of combining ZigBee and RFID architecture. Furthermore, the compatibility and requirements of the ZigBee device and communication links in the typical RFID system which is presented with the real world experiment on the capabilities of the proposed RFID system.

Keywords: Mesh network, RFID, wireless sensor network, zigbee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
1387 Protein Residue Contact Prediction using Support Vector Machine

Authors: Chan Weng Howe, Mohd Saberi Mohamad

Abstract:

Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.

Keywords: contact map, protein residue contact, support vector machine, protein structure prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902