Search results for: ensemble learning
476 Dynamic Visualization on Student's Performance, Retention and Transfer of Procedural Learning
Authors: Fauzy M. Wan, Reem S.A. Baragash
Abstract:
This study examined the effects of two dynamic visualizations on 60 Malaysian primary school student-s performance (time on task), retention and transference. The independent variables in this study were the two dynamic visualizations, the video and the animated instructions. The dependent variables were the gain score of performance, retention and transference. The results showed that the students in the animation group significantly outperformed the students in the video group in retention. There were no significant differences in terms of gain scores in the performance and transference among the animation and the video groups, although the scores were slightly higher in the animation group compared to the video group. The conclusion of this study is that the animation visualization is superior compared to the video in the retention for a procedural task.Keywords: Dynamic visualization, Procedural Task, Retention, Transference
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438475 Web-Based Instructional Program to Improve Professional Development: Recommendations and Standards for Radioactive Facilities in Brazil
Authors: Denise Levy, Gian M. A. A. Sordi
Abstract:
This web based project focuses on continuing corporate education and improving workers' skills in Brazilian radioactive facilities throughout the country. The potential of Information and Communication Technologies (ICTs) shall contribute to improve the global communication in this very large country, where it is a strong challenge to ensure high quality professional information to as many people as possible. The main objective of this system is to provide Brazilian radioactive facilities a complete web-based repository - in Portuguese - for research, consultation and information, offering conditions for learning and improving professional and personal skills. UNIPRORAD is a web based system to offer unified programs and inter-related information about radiological protection programs. The content includes the best practices for radioactive facilities in order to meet both national standards and international recommendations published by different organizations over the past decades: International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA) and National Nuclear Energy Commission (CNEN). The website counts on concepts, definitions and theory about optimization and ionizing radiation monitoring procedures. Moreover, the content presents further discussions related to some national and international recommendations, such as potential exposure, which is currently one of the most important research fields in radiological protection. Only two publications of ICRP develop expressively the issue and there is still a lack of knowledge of fail probabilities, for there are still uncertainties to find effective paths to quantify probabilistically the occurrence of potential exposures and the probabilities to reach a certain level of dose. To respond to this challenge, this project discusses and introduces potential exposures in a more quantitative way than national and international recommendations. Articulating ICRP and AIEA valid recommendations and official reports, in addition to scientific papers published in major international congresses, the website discusses and suggests a number of effective actions towards safety which can be incorporated into labor practice. The WEB platform was created according to corporate public needs, taking into account the development of a robust but flexible system, which can be easily adapted to future demands. ICTs provide a vast array of new communication capabilities and allow to spread information to as many people as possible at low costs and high quality communication. This initiative shall provide opportunities for employees to increase professional skills, stimulating development in this large country where it is an enormous challenge to ensure effective and updated information to geographically distant facilities, minimizing costs and optimizing results.
Keywords: Distance learning, information and communication technology, nuclear science, radioactive facilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282474 New Approach for Load Modeling
Authors: S. Chokri
Abstract:
Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.
Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203473 Information Technology Application for Knowledge Management in Medium-Size Businesses
Authors: S. Thongchai
Abstract:
Result of the study on knowledge management systems in businesses was shown that the most of these businesses provide internet accessibility for their employees in order to study new knowledge via internet, corporate website, electronic mail, and electronic learning system. These business organizations use information technology application for knowledge management because of convenience, time saving, ease of use, accuracy of information and knowledge usefulness. The result indicated prominent improvements for corporate knowledge management systems as the following; 1) administrations must support corporate knowledge management system 2) the goal of corporate knowledge management must be clear 3) corporate culture should facilitate the exchange and sharing of knowledge within the organization 4) cooperation of personnel of all levels must be obtained 5) information technology infrastructure must be provided 6) they must develop the system regularly and constantly.
Keywords: Business organizations, information technology application, knowledge management systems, and prominent improvements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988472 Impact of Behavioral Aspects of Autism on Cognitive Abilities in Children with Autism Spectrum Disorder
Authors: Rana M. Zeina, Laila AL-Ayadhi, Shahid Bashir
Abstract:
Cognitive symptoms and behavioral symptoms may, in fact, overlap and be related to the level of the general cognitive function. We have measured the behavioral aspects of autism and its correlation to the cognitive ability in 30 children with ASD. We used a neuropsychological Battery CANTAB eclipse to evaluate the ASD children's cognitive ability. Individuals with ASD and challenging behaviors showed significant correlation between some cognitive abilities and Motor aspects. Based on these findings, we can conclude that the motor behavioral problems in autism affect specific cognitive abilities in ASDs such as comprehension, learning, reversal, acquisition, attention set shifting, and speed of reaction to one stimulus. Future researches should also focus on the relationship between motor stereotypes and other subtypes of repetitive behaviors, such as verbal stereotypes, ritual routine adherence, and the use of different types of CANTAB tests.
Keywords: Autism, Cognitive ability, Motor Behavior, and Neuropsychological battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143471 Students´ Knowledge, or Random Choice in ESP?
Authors: Ivana Šimonová
Abstract:
As widely accepted, didactic multiple-choice tests are referred as a tool providing feedback easily and quickly. Despite the final test scores are corrected by a special formula and number of high plausibility distractors is taken into consideration, the results may be influenced by the random choice. The survey was held in three academic years at the Faculty of Informatics and Management, University of Hradec Kralove, Czech Republic, where the multiple-choice test scores were compared to the open-answer ones. The research sample included 567 respondents. The collected data were processed by the NCSS2007 statistic software by the method of frequency and multiple regression analysis and presented in the form of figures and tables. The results proved statistically significant differences in test scores in academic years 2 and 3, and were discussed from the point of the credit system and conditions for teaching/learning English in the Czech education system.
Keywords: ESP, higher education, multiple-choice test, open-answer test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632470 The Impact of Web Based Education on Cancer Patients’ Clinical Outcomes
Authors: F. Arıkan, Z. Karakus
Abstract:
Cancer is a widespread disease in the world and is the third reason of deaths among the chronic diseases. Educating patients and caregivers has a vital role for empowering them in managing disease and treatment's symptoms. Informing of the patients about their disease and treatment process decreases patient's distress and decisional conflicts, improves wellbeing of them, increase success of the treatment and survival. In this era, technological education methods are used for patients that have different chronic disease. Many studies indicated that especially web based patient education such as chronic obstructive lung disease; heart failure is more effective than printed materials. Web based education provide easiness to patients while they are reaching health services. It also has more advantages because of it decreases health cost and requirement of staff. It is thought that web based education may be beneficial method for cancer patient's empowerment in coping with the disease's symptoms. The aim of the study is evaluate the effectiveness of web based education for cancer patients' clinical outcomes.
Keywords: Cancer Patients, E-Learning, Nursing, Web Based Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430469 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents
Authors: Chothmal, Basant Agarwal
Abstract:
Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.Keywords: Feature selection methods, Machine learning, NB, One-class SVM, Sentiment Analysis, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3312468 The Relation between Proactive Coping and Well-Being: An Example of Middle-Aged and Older Learners from Taiwan
Authors: Ya-Hui Lee, Ching-Yi Lu, Hui-Chuan Wei
Abstract:
The purpose of this research was to explore the relation between proactive coping and well-being of middle-aged adults. We conducted survey research that with t-test, one way ANOVA, Pearson correlation and stepwise multiple regression to analyze. This research drew on a sample of 395 participants from the senior learning centers of Taiwan. The results provided the following findings: 1.The participants from different residence areas associated significant difference with proactive coping, but not with well-being. 2. The participants’ perceived of financial level associated significant difference with both proactive coping and well-being. 3. There was significant difference between participants’ income and well-being. 4. The proactive coping was positively correlated with well-being. 5. From stepwise multiple regression analysis showed that two dimensions of proactive coping had positive predictability. Finally, these results of this study can be provided as references for designing older adult educational programs in Taiwan.
Keywords: Middle-age adults, learners, proactive coping, well-being.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967467 Struggles for Integration of the Technologies into Learning Environment in Turkey
Authors: Hasan Karal, Yasemin Aydin, Ömer Faruk Ursavas
Abstract:
Primary studies are being carried out in Turkey for expanding information and communication technologies (ICT) aided instruction activities. Subject of the present study is to identify whether those studies achieved their goals in the application. Information technologies (IT) formative teachers in the primary schools, and academicians in the faculties of education were interviewed to investigate the process and results of implementing computer-aided instruction methods whose basis is strengthened in theory. Analysis of the results gained from two separate surveys demonstrated that capability of the teachers in elementary education institutions for carrying into effect computer-aided instruction and technical infrastructure has not been established for computer-aided instruction practices yet. Prospective teachers must be well-equipped in ICT to duly fulfill requirements of modern education and also must be self-confident. Finally, scope and intensity of the courses given in connection with teaching of the ICT in faculties of education needs to be revised.Keywords: Information and Communication Technologies, Teacher, Education
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647466 Development of Cross Curricular Competences in University Classrooms - Public Speaking
Authors: M. T. Becerra, F. Martín, P. Gutiérrez, S. Cubo, E. Iglesias, A. A. Sáenz del Castillo, P. Cañamero
Abstract:
The consolidation of the European Higher Education Area (EHEA) in universities has led to significant changes in student training. This paper, part of a Teaching Innovation Project, starts from new training requirements that are fit within Undergraduate Thesis Project, a subject that culminate student learning. Undergraduate Thesis Project is current assessment system that weigh the student acquired training in university education. Students should develop a range of cross curricular competences such as public presentation of ideas, problems and solutions both orally and writing in Undergraduate Thesis Project. Specifically, we intend with our innovation proposal to provide resources that enable university students from Teacher Degree in Education Faculty of University of Extremadura (Spain) to develop the cross curricular competence of public speaking.
Keywords: Interaction, Public Speaking, Student, University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906465 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks
Authors: Salvatore Marra, Francesco C. Morabito
Abstract:
In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.
Keywords: Elman neural networks, sunspot, solar activity, time series prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862464 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk
Authors: Margaret F. Shipley
Abstract:
Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864463 Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series
Authors: Frank Emmert Streib, Matthias Dehmer, Gökhan H. Bakır, Max Mühlhauser
Abstract:
In this paper we investigate the influence of external noise on the inference of network structures. The purpose of our simulations is to gain insights in the experimental design of microarray experiments to infer, e.g., transcription regulatory networks from microarray experiments. Here external noise means, that the dynamics of the system under investigation, e.g., temporal changes of mRNA concentration, is affected by measurement errors. Additionally to external noise another problem occurs in the context of microarray experiments. Practically, it is not possible to monitor the mRNA concentration over an arbitrary long time period as demanded by the statistical methods used to learn the underlying network structure. For this reason, we use only short time series to make our simulations more biologically plausible.Keywords: Dynamic Bayesian networks, structure learning, gene networks, Markov chain Monte Carlo, microarray data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619462 EFL Learners- Perceptions of Computer-Mediated Communication (CMC) to Facilitate Communication in a Foreign Language
Authors: Lin, Huifen, Fang, Yueh-chiu
Abstract:
This study explores perceptions of English as a Foreign Language (EFL) learners on using computer mediated communication technology in their learner of English. The data consists of observations of both synchronous and asynchronous communication participants engaged in for over a period of 4 months, which included online, and offline communication protocols, open-ended interviews and reflection papers composed by participants. Content analysis of interview data and the written documents listed above, as well as, member check and triangulation techniques are the major data analysis strategies. The findings suggest that participants generally do not benefit from computer-mediated communication in terms of its effect in learning a foreign language. Participants regarded the nature of CMC as artificial, or pseudo communication that did not aid their authentic communicational skills in English. The results of this study sheds lights on insufficient and inconclusive findings, which most quantitative CMC studies previously generated.Keywords: computer-mediated communication, EFL, writing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2587461 ANN Models for Microstrip Line Synthesis and Analysis
Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy
Abstract:
Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160460 Software Maintenance Severity Prediction with Soft Computing Approach
Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592459 Analysis of Initial Entry-Level Technology Course Impacts on STEM Major Selection
Authors: Ethan Shafer, Timothy Graziano, Jay Fisher
Abstract:
This research seeks to answer whether first-year courses at institutions of higher learning can impact STEM major selection. Unlike many universities, an entry-level technology course (often referred to as CS0) is required for all United States Military Academy (USMA) students–regardless of major–in their first year of attendance. Students at the Academy choose their major at the end of their first year of studies. Through student responses to a multi-semester survey, this paper identifies a number of factors that potentially influence STEM major selection. Student demographic data, pre-existing exposure and access to technology, perceptions of STEM subjects, and initial desire for a STEM major are captured before and after taking a CS0 course. An analysis of factors that contribute to student perception of STEM and major selection are presented. This work provides recommendations and suggestions for institutions currently providing or looking to provide CS0-like courses to their students.
Keywords: STEM major, STEM, pedagogy, digital literacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225458 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3745457 Comparison of the Effectiveness of Communication between the Traditional Lecture and IELS
Authors: A. Althobaiti, M. Munro
Abstract:
Communication and effective information exchange within technology has become a crucial part of delivering knowledge to students during the learning process. It enables better understanding, builds trust and respect, and increases the sharing of knowledge between students. This paper examines the communication between undergraduate students and their lecturers during the traditional lecture and when using the Interactive Electronic Lecture System (IELS). The IELS is an application that offers a set of components which support the effective communication between students and their peers and between students and their lecturers. Moreover, this paper highlights communication skills such as sender, receiver, channel and feedback. It will show how the IELS creates a rich communication environment between its users and how they communicate effectively. To examine and assess the effectiveness of communication, an experiment was conducted on groups of users; students and lecturers. The first group communicated in the traditional lecture while the second group communicated by means of the IELS application. The results show that there was more effective communication between the second group than the first.
Keywords: Communication, effective information exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615456 The Code-Mixing of Japanese, English and Thai in Line Chat
Authors: Premvadee Na Nakornpanom
Abstract:
Code- mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study is an attempt to explore the linguistic characteristics of the mixing of Japanese, English and Thai in a mobile Line chat room by students with their background of English as L2, Japanese as L3 and Thai as mother tongue. The result found that insertion of Thai content words is a very common linguistic phenomenon embedded with the other two languages in the sentences. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotionally-related. A personal pronoun in Japanese is often mixed into the sentences. The Japanese sentence-final question particle か “ka” was added to the end of the sentence based on Thai grammar rules. Some unique characteristics were created while chatting.
Keywords: Code-mixing, Japanese, English, Thai, Line chat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3453455 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076454 Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series
Authors: Chokri Slim
Abstract:
The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.
Keywords: Neuro-fuzzy, Extended Kalman filter, nonlinear systems, financial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017453 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745452 Probabilistic Bayesian Framework for Infrared Face Recognition
Authors: Moulay A. Akhloufi, Abdelhakim Bendada
Abstract:
Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.
Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890451 Employment Promotion and Its Role in Counteracting Unemployment during the Financial Crisis in the USA
Authors: Beata Wentura-Dudek
Abstract:
In the United States in 2007-2010 before the crisis, the US labour market policy focused mainly on providing residents with unemployment insurance, after the recession this policy changed. The aim of the article was to present quantitative research presenting the most effective labor market instruments contributing to reducing unemployment during the crisis in the USA. The article presents research based on the analysis of available documents and statistical data. The results of the conducted research show that the most effective forms of counteracting unemployment at that time were: direct job creation, job search assistance, subsidized employment, training and employment promotion using new technologies, including social media.
Keywords: United States, financial crisis, unemployment, employment promotion, social media, job creation, training, labour market, employment agencies, lifelong learning, job search assistance, subsidized employment, companies, tax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770450 Power Distance and Knowledge Management from a Post-Taylorist Perspective
Authors: John Walton, Vishal Parikh
Abstract:
Contact centres have been exemplars of scientific management in the discipline of operations management for more than a decade now. With the movement of industries from a resource based economy to knowledge based economy businesses have started to realize the customer eccentricity being the key to sustainability amidst high velocity of the market. However, as technologies have converged and advanced, so have the contact centres. Contact Centres have redirected the supply chains and the concept of retailing is highly diminished due to over exaggeration of cost reduction strategies. In conditions of high environmental velocity together with services featuring considerable information intensity contact centres will require up to date and enlightened agents to satisfy the demands placed upon them by those requesting their services. In this paper we examine salient factors such as Power Distance, Knowledge structures and the dynamics of job specialisation and enlargement to suggest critical success factors in the domain of contact centres.
Keywords: Post Taylorism, Knowledge Management, Power Distance, Organisational Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872449 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5436448 Recognition of Noisy Words Using the Time Delay Neural Networks Approach
Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha
Abstract:
This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.
Keywords: Neural networks, Noise, Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945447 A New Method for Image Classification Based on Multi-level Neural Networks
Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed
Abstract:
In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658