Search results for: Algorithms decision tree
1487 Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays
Authors: I. Davies, O. L. C. Haas
Abstract:
In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods.Keywords: Infinite delays, Lyapunov method, linear matrix inequality, neutral systems, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27641486 Morphological Description of Cervical Cell Images for the Pathological Recognition
Authors: N. Lassouaoui, L. Hamami, N. Nouali
Abstract:
The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.
Keywords: Cervical cell, morphological analysis, recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19421485 Data Placement in Heterogeneous Storage of Short Videos
Authors: W. Jaipahkdee, C. Srinilta
Abstract:
The overall service performance of I/O intensive system depends mainly on workload on its storage system. In heterogeneous storage environment where storage elements from different vendors with different capacity and performance are put together, workload should be distributed according to storage capability. This paper addresses data placement issue in short video sharing website. Workload contributed by a video is estimated by the number of views and life time span of existing videos in same category. Experiment was conducted on 42,000 video titles in six weeks. Result showed that the proposed algorithm distributed workload and maintained balance better than round robin and random algorithms.Keywords: data placement, heterogeneous storage system, YouTube, short videos
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14901484 Impulsive Noise-Resilient Subband Adaptive Filter
Authors: Young-Seok Choi
Abstract:
We present a new subband adaptive filter (R-SAF) which is robust against impulsive noise in system identification. To address the vulnerability of adaptive filters based on the L2-norm optimization criterion against impulsive noise, the R-SAF comes from the L1-norm optimization criterion with a constraint on the energy of the weight update. Minimizing L1-norm of the a posteriori error in each subband with a constraint on minimum disturbance gives rise to the robustness against the impulsive noise and the capable convergence performance. Experimental results clearly demonstrate that the proposed R-SAF outperforms the classical adaptive filtering algorithms when impulsive noise as well as background noise exist.Keywords: Subband adaptive filter, L1-norm, system identification, robustness, impulsive interference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14731483 Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm
Authors: Alawode Kehinde O., Jubril Abimbola M. Komolafe Olusola A.
Abstract:
This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.Keywords: optimal power flow, multiobjective power dispatch, evolutionary algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22701482 Impact of Fair Share and its Configurations on Parallel Job Scheduling Algorithms
Authors: Sangsuree Vasupongayya
Abstract:
To provide a better understanding of fair share policies supported by current production schedulers and their impact on scheduling performance, A relative fair share policy supported in four well-known production job schedulers is evaluated in this study. The experimental results show that fair share indeed reduces heavy-demand users from dominating the system resources. However, the detailed per-user performance analysis show that some types of users may suffer unfairness under fair share, possibly due to priority mechanisms used by the current production schedulers. These users typically are not heavy-demands users but they have mixture of jobs that do not spread out.
Keywords: Fair share, Parallel job scheduler, Backfill, Measures
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20911481 Harmony Search-based K-Coverage Enhancement in Wireless Sensor Networks
Authors: Shaimaa M. Mohamed, Haitham S. Hamza, Imane A. Saroit
Abstract:
Many wireless sensor network applications require K-coverage of the monitored area. In this paper, we propose a scalable harmony search based algorithm in terms of execution time, K-Coverage Enhancement Algorithm (KCEA), it attempts to enhance initial coverage, and achieve the required K-coverage degree for a specific application efficiently. Simulation results show that the proposed algorithm achieves coverage improvement of 5.34% compared to K-Coverage Rate Deployment (K-CRD), which achieves 1.31% when deploying one additional sensor. Moreover, the proposed algorithm is more time efficient.
Keywords: Wireless Sensor Networks (WSN), Harmony Search Algorithms, K-Coverage, Mobile WSN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21661480 Stabilization of a New Configurable Two- Wheeled Machine Using a PD-PID and a Hybrid FL Control Strategies: A Comparative Study
Authors: M. Almeshal, M. O. Tokhi, K. M. Goher
Abstract:
A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.
Keywords: double inverted pendulum, modelling, robust control, simulation,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411479 Classification of Fuzzy Petri Nets, and Their Applications
Authors: M.H.Aziz, Erik L.J.Bohez, Manukid Parnichkun, Chanchal Saha
Abstract:
Petri Net (PN) has proven to be effective graphical, mathematical, simulation, and control tool for Discrete Event Systems (DES). But, with the growth in the complexity of modern industrial, and communication systems, PN found themselves inadequate to address the problems of uncertainty, and imprecision in data. This gave rise to amalgamation of Fuzzy logic with Petri nets and a new tool emerged with the name of Fuzzy Petri Nets (FPN). Although there had been a lot of research done on FPN and a number of their applications have been anticipated, but their basic types and structure are still ambiguous. Therefore, in this research, an effort is made to categorize FPN according to their structure and algorithms Further, literature review of the applications of FPN in the light of their classifications has been done.
Keywords: Discrete event systems, Fuzzy logic, Fuzzy Petri nets, and Petri nets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331478 Universal Method for Timetable Construction based on Evolutionary Approach
Authors: Maciej Norberciak
Abstract:
Timetabling problems are often hard and timeconsuming to solve. Most of the methods of solving them concern only one problem instance or class. This paper describes a universal method for solving large, highly constrained timetabling problems from different domains. The solution is based on evolutionary algorithm-s framework and operates on two levels – first-level evolutionary algorithm tries to find a solution basing on given set of operating parameters, second-level algorithm is used to establish those parameters. Tabu search is employed to speed up the solution finding process on first level. The method has been used to solve three different timetabling problems with promising results.Keywords: Evolutionary algorithms, tabu search, timetabling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431477 RB-Matcher: String Matching Technique
Authors: Rajender Singh Chillar, Barjesh Kochar
Abstract:
All Text processing systems allow their users to search a pattern of string from a given text. String matching is fundamental to database and text processing applications. Every text editor must contain a mechanism to search the current document for arbitrary strings. Spelling checkers scan an input text for words in the dictionary and reject any strings that do not match. We store our information in data bases so that later on we can retrieve the same and this retrieval can be done by using various string matching algorithms. This paper is describing a new string matching algorithm for various applications. A new algorithm has been designed with the help of Rabin Karp Matcher, to improve string matching process.Keywords: Algorithm, Complexity, Matching-patterns, Pattern, Rabin-Karp, String, text-processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17711476 GPU-Based Volume Rendering for Medical Imagery
Authors: Hadjira Bentoumi, Pascal Gautron, Kadi Bouatouch
Abstract:
We present a method for fast volume rendering using graphics hardware (GPU). To our knowledge, it is the first implementation on the GPU. Based on the Shear-Warp algorithm, our GPU-based method provides real-time frame rates and outperforms the CPU-based implementation. When the number of slices is not sufficient, we add in-between slices computed by interpolation. This improves then the quality of the rendered images. We have also implemented the ray marching algorithm on the GPU. The results generated by the three algorithms (CPU-based and GPU-based Shear- Warp, GPU-based Ray Marching) for two test models has proved that the ray marching algorithm outperforms the shear-warp methods in terms of speed up and image quality.Keywords: Volume rendering, graphics processors
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18551475 Delay-Dependent Stability Criteria for Linear Time-Delay System of Neutral Type
Authors: Myeongjin Park, Ohmin Kwon, Juhyun Park, Sangmoon Lee
Abstract:
This paper proposes improved delay-dependent stability conditions of the linear time-delay systems of neutral type. The proposed methods employ a suitable Lyapunov-Krasovskii’s functional and a new form of the augmented system. New delay-dependent stability criteria for the systems are established in terms of Linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical examples showed that the proposed method is effective and can provide less conservative results.
Keywords: Neutral systems, Time-delay, Stability, Lyapunovmethod, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18841474 Voltage Stability Proximity Index Determined by LES Algorithm
Authors: Benalia Nadia, Bensiali Nadia, Mekki Mounira
Abstract:
In this paper, we propose an easily computable proximity index for predicting voltage collapse of a load bus using only measured values of the bus voltage and power; Using these measurements a polynomial of fourth order is obtained by using LES estimation algorithms. The sum of the absolute values of the polynomial coefficient gives an idea of the critical bus. We demonstrate the applicability of our proposed method on 6 bus test system. The results obtained verify its applicability, as well as its accuracy and the simplicity. From this indicator, it is allowed to predict the voltage instability or the proximity of a collapse. Results obtained by the PV curve are compared with corresponding values by QV curves and are observed to be in close agreement.
Keywords: least square method, Voltage Collapse, Voltage Stability, PV curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22881473 Adaptive Sampling Algorithm for ANN-based Performance Modeling of Nano-scale CMOS Inverter
Authors: Dipankar Dhabak, Soumya Pandit
Abstract:
This paper presents an adaptive technique for generation of data required for construction of artificial neural network-based performance model of nano-scale CMOS inverter circuit. The training data are generated from the samples through SPICE simulation. The proposed algorithm has been compared to standard progressive sampling algorithms like arithmetic sampling and geometric sampling. The advantages of the present approach over the others have been demonstrated. The ANN predicted results have been compared with actual SPICE results. A very good accuracy has been obtained.Keywords: CMOS Inverter, Nano-scale, Adaptive Sampling, ArtificialNeural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16101472 Development of Heterogeneous Parallel Genetic Simulated Annealing Using Multi-Niche Crowding
Authors: Z. G. Wang, M. Rahman, Y. S. Wong, K. S. Neo
Abstract:
In this paper, a new hybrid of genetic algorithm (GA) and simulated annealing (SA), referred to as GSA, is presented. In this algorithm, SA is incorporated into GA to escape from local optima. The concept of hierarchical parallel GA is employed to parallelize GSA for the optimization of multimodal functions. In addition, multi-niche crowding is used to maintain the diversity in the population of the parallel GSA (PGSA). The performance of the proposed algorithms is evaluated against a standard set of multimodal benchmark functions. The multi-niche crowding PGSA and normal PGSA show some remarkable improvement in comparison with the conventional parallel genetic algorithm and the breeder genetic algorithm (BGA).Keywords: Crowding, genetic algorithm, parallel geneticalgorithm, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15881471 Cloud Forest Characteristics of Khao Nan, Thailand
Authors: P. Sangarun, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
A better understanding of cloud forest characteristic in a tropical montane cloud forest at Khao Nan, Nakhon Si Thammarat on climatic, vegetation, soil and hydrology were studied during 18-21 April 2007. The results showed that as air temperature at Sanyen cloud forest increased, the percent relative humidity decreased. The amount of solar radiation at Sanyen cloud forest had a positive association with the amount of solar radiation at Parah forest. The amount of solar radiation at Sanyen cloud forest was very low with a range of 0-19 W/m2. On the other hand, the amount of solar radiation at Parah forest was high with a range of 0-1000 W/m2. There was no difference between leaf width, leaf length, leaf thickness and leaf area with increasing in elevations. As the elevations increased, bush height and tree height decreased. There was no association between bush width and bush ratio with elevation. As the elevations increased, the percent epiphyte cover and the percent soil moisture increased but water temperature, conductivity, and dissolved oxygen decreased. The percent soil moistures and organic contents were higher at elevations above 900 m than elevations below.
Keywords: Cloud forest, climate, vegetation, soil, hydrology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18751470 Eclectic Rule-Extraction from Support Vector Machines
Authors: Nahla Barakat, Joachim Diederich
Abstract:
Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity.Keywords: Data mining, hybrid rule-extraction algorithms, medical diagnosis, SVMs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17141469 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique
Authors: Masoud Sadeghian, Alireza Fatehi
Abstract:
One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271468 A New Model for Production Forecasting in ERP
Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang
Abstract:
ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.
Keywords: ERP, Grey System, LSSVM, production forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931467 A Logic Approach to Database Dynamic Updating
Authors: Daniel Stamate
Abstract:
We introduce a logic-based framework for database updating under constraints. In our framework, the constraints are represented as an instantiated extended logic program. When performing an update, database consistency may be violated. We provide an approach of maintaining database consistency, and study the conditions under which the maintenance process is deterministic. We show that the complexity of the computations and decision problems presented in our framework is in each case polynomial time.Keywords: Databases, knowledge bases, constraints, updates, minimal change, consistency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13611466 Steganalysis of Data Hiding via Halftoning and Coordinate Projection
Authors: Woong Hee Kim, Ilhwan Park
Abstract:
Steganography is the art of hiding and transmitting data through apparently innocuous carriers in an effort to conceal the existence of the data. A lot of steganography algorithms have been proposed recently. Many of them use the digital image data as a carrier. In data hiding scheme of halftoning and coordinate projection, still image data is used as a carrier, and the data of carrier image are modified for data embedding. In this paper, we present three features for analysis of data hiding via halftoning and coordinate projection. Also, we present a classifier using the proposed three features.Keywords: Steganography, steganalysis, digital halftoning, data hiding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16011465 Finding More Non-Supersingular Elliptic Curves for Pairing-Based Cryptosystems
Authors: Pu Duan, Shi Cui, Choong Wah Chan
Abstract:
Finding suitable non-supersingular elliptic curves for pairing-based cryptosystems becomes an important issue for the modern public-key cryptography after the proposition of id-based encryption scheme and short signature scheme. In previous work different algorithms have been proposed for finding such elliptic curves when embedding degree k ∈ {3, 4, 6} and cofactor h ∈ {1, 2, 3, 4, 5}. In this paper a new method is presented to find more non-supersingular elliptic curves for pairing-based cryptosystems with general embedding degree k and large values of cofactor h. In addition, some effective parameters of these non-supersingular elliptic curves are provided in this paper.Keywords: Family of group order, kth root of unity, non-supersingular elliptic curves polynomial field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351464 Cognitive SATP for Airborne Radar Based on Slow-Time Coding
Authors: Fanqiang Kong, Jindong Zhang, Daiyin Zhu
Abstract:
Space-time adaptive processing (STAP) techniques have been motivated as a key enabling technology for advanced airborne radar applications. In this paper, the notion of cognitive radar is extended to STAP technique, and cognitive STAP is discussed. The principle for improving signal-to-clutter ratio (SCNR) based on slow-time coding is given, and the corresponding optimization algorithm based on cyclic and power-like algorithms is presented. Numerical examples show the effectiveness of the proposed method.Keywords: Space-time adaptive processing (STAP), signal-to-clutter ratio, slow-time coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8531463 Constructing of Classifier for Face Recognition on the Basis of the Conjugation Indexes
Authors: Vladimir A. Fursov, Nikita E. Kozin
Abstract:
In this work the opportunity of construction of the qualifiers for face-recognition systems based on conjugation criteria is investigated. The linkage between the bipartite conjugation, the conjugation with a subspace and the conjugation with the null-space is shown. The unified solving rule is investigated. It makes the decision on the rating of face to a class considering the linkage between conjugation values. The described recognition method can be successfully applied to the distributed systems of video control and video observation.Keywords: Conjugation, Eigenfaces, Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14671462 Kinematic Modelling and Maneuvering of A 5-Axes Articulated Robot Arm
Authors: T.C. Manjunath
Abstract:
This paper features the kinematic modelling of a 5-axis stationary articulated robot arm which is used for doing successful robotic manipulation task in its workspace. To start with, a 5-axes articulated robot was designed entirely from scratch and from indigenous components and a brief kinematic modelling was performed and using this kinematic model, the pick and place task was performed successfully in the work space of the robot. A user friendly GUI was developed in C++ language which was used to perform the successful robotic manipulation task using the developed mathematical kinematic model. This developed kinematic model also incorporates the obstacle avoiding algorithms also during the pick and place operation.
Keywords: Robot, Sensors, Kinematics, Computer, Control, PNP, LCD, Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44671461 Ordinary Differential Equations with Inverted Functions
Authors: Thomas Kampke
Abstract:
Equations with differentials relating to the inverse of an unknown function rather than to the unknown function itself are solved exactly for some special cases and numerically for the general case. Invertibility combined with differentiability over connected domains forces solutions always to be monotone. Numerical function inversion is key to all solution algorithms which either are of a forward type or a fixed point type considering whole approximate solution functions in each iteration. The given considerations are restricted to ordinary differential equations with inverted functions (ODEIs) of first order. Forward type computations, if applicable, admit consistency of order one and, under an additional accuracy condition, convergence of order one.
Keywords: Euler method, fixed points, golden section, multi-step procedures, Runge Kutta methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14521460 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning
Authors: Jean Berger, Mohamed Barkaoui
Abstract:
Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.
Keywords: Search path planning, false alarm, search-and-delivery, entropy, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19691459 Crude Oil Price Prediction Using LSTM Networks
Authors: Varun Gupta, Ankit Pandey
Abstract:
Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.
Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37151458 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinié
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. In this context, the automation of this task is urgent. In this work, we compare classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN and Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches.
Keywords: Image segmentation, stuck particles separation, Sobel operator, thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204