Search results for: foreign language learning
1305 Cultural Identity - A (Re)construction?
Authors: Joanne Muscat
Abstract:
The study explored the question of who am I? As a (re)construction of cultural identity by delving into globalization, communication, and social change in Malta during a historical moment when Malta became a European Union Member State. Three objectives guided this qualitative study. Firstly the study reviewed European Union (EU) policies that regulate broadcasting and their implementation in Member States, whilst meeting the challenges of globalization and new media technology. Secondly the research investigated the changes of the media landscape via organizational structures, programs and television (TV) content. Finally the study explored the impact of these transformations taking place in the way Maltese live as they (re)construct their cultural identity. Despite the choices available to the Maltese audience, old local traditions and new foreign customs coexist as informants continue to (re)construct their cultural identity and define who they are.
Keywords: Cultural Identity, Globalization, Transnational Media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19241304 Banking Crisis and Economic Effects of the Banking Crisis in Turkey
Authors: Sevilay Konya, Sadife Güngör, Zeynep Karaçor
Abstract:
Turkish economy is occurred depending on different factors from time to time and the banking crises of different magnitudes. Foremost among the factors which hinder the development of countries and societies- crises in the country's economy. Countries' economic growth rates affect inflation, unemployment and external trade. In this study, effect of November 2000, February 2001 and 2008 banking crisis on Turkey's economy and banking crisis will be examined and announced as conceptual. In this context, this study is investigates Turkey's GDP, inflation, unemployment and foreign trade figures. Turkey's economy affected have been identified from 2000 November 2001 February and 2008 banking crisis.
Keywords: Banking crises, Turkey’s economy, economic effects, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12961303 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture
Authors: Charbel Geryes Aoun, Loic Lagadec
Abstract:
A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g. Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple-views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.
Keywords: Smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2881302 Use of Pesticides and Their Role in Environmental Pollution
Authors: Muhammad Jamil Khan, Muhammad Sharif Zia, Muhammad Qasim
Abstract:
Insect pests are the major source of crop damage, yield and quality reduction in Pakistan and else where in the world. Cotton crop is the most hit crop in Pakistan followed by rice and the second most important foreign exchange earning crop. A wide variety of staple, horticultural and cash crops grown, reflect serious problems of many types of insect pests. To overcome the insect pest problem, pesticide use in Pakistan has increased substantially which has now been further intensified. Pesticides worth more than billions of rupees are imported every year. This paper reviews the over all pesticide use in Pakistan in relation to pesticide prices, support price of cotton and rice, pesticide use in different provinces of Pakistan on different crops and their impact on crop productivity. The environmental pollution caused by the use of pesticides, contamination of soil and water resources and the danger associated with the disposal of their empty containers is also discussed in detail.Keywords: Pesticide use, crop productivity, environmentalpollution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35181301 Resident-Aware Green Home
Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha
Abstract:
The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.
Keywords: Green Home, Resident Aware, Resident Profile, Activity Learning, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21711300 Exploration of Influential Factors on First Year Architecture Students’ Productivity
Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani
Abstract:
The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.
Keywords: Architecture education, basic design studio, educational method, forms creation skill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16291299 AINA: Disney Animation Information as Educational Resources
Authors: Piedad Garrido, Fernando Repulles, Andy Bloor, Julio A. Sanguesa, Jesus Gallardo, Vicente Torres, Jesus Tramullas
Abstract:
With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.Keywords: Information retrieval, animation, educational resources, JiTT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12171298 A Worst Case Estimation of the Inspection Rate by a Berthing Policy in a Container Terminal
Authors: K.H. Yang
Abstract:
After the terrorist attack on September 11, 2001 in U.S., the container security issue got high attention, especially by U.S. government, which deployed a lot of measures to promote or improve security systems. U.S. government not only enhances its national security system, but allies with other countries against the potential terrorist attacks in the future. For example CSI (Container Security Initiative), it encourages foreign ports outside U.S. to become CSI ports as a part of U.S. anti-terrorism network. Although promotion of the security could partly reach the goal of anti-terrorism, that will influence the efficiency of container supply chain, which is the main concern when implementing the inspection measurements. This paper proposes a quick estimation methodology for an inspection service rate by a berth allocation heuristic such that the inspection activities will not affect the original container supply chain. Theoretical and simulation results show this approach is effective.Keywords: Berth allocation, Container, Heuristic, Inspection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171297 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.
Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13001296 Forecasting US Dollar/Euro Exchange Rate with Genetic Fuzzy Predictor
Authors: R. Mechgoug, A. Titaouine
Abstract:
Fuzzy systems have been successfully used for exchange rate forecasting. However, fuzzy system is very confusing and complex to be designed by an expert, as there is a large set of parameters (fuzzy knowledge base) that must be selected, it is not a simple task to select the appropriate fuzzy knowledge base for an exchange rate forecasting. The researchers often look the effect of fuzzy knowledge base on the performances of fuzzy system forecasting. This paper proposes a genetic fuzzy predictor to forecast the future value of daily US Dollar/Euro exchange rate time’s series. A range of methodologies based on a set of fuzzy predictor’s which allow the forecasting of the same time series, but with a different fuzzy partition. Each fuzzy predictor is built from two stages, where each stage is performed by a real genetic algorithm.
Keywords: Foreign exchange rate, time series forecasting, Fuzzy System, and Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20051295 A Methodology for Creating Energy Sustainability in an Enterprise
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
As we enter the new era of Artificial Intelligence (AI) and cloud computing, we mostly rely on the machine and natural language processing capabilities of AI, and energy efficient hardware and software devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and to sustain the depletion of natural resources. The core pillars of sustainability are Economic, Environmental, and Social, which are also informally referred to as 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core sustainability model in the enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand there is also a growing concern in many industries on how to reduce carbon emission and conserve natural resources while adopting sustainability in the corporate business models and policies. In our paper, we would like to discuss the driving forces such as climate changes, natural disasters, pandemic, disruptive technologies, corporate policies, scaled business models and emerging social media and AI platforms that influence the 3 main pillars of sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increase recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (shared IT services, cloud computing and application modernization) with the vision for a sustainable environment.
Keywords: AI, cloud computing, machine learning, social media platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251294 Use of Social Networks and Mobile Technologies in Education
Authors: Václav Maněna, Roman Dostál, Štěpán Hubálovský
Abstract:
Social networks play an important role in the lives of children and young people. Along with the high penetration of mobile technologies such as smartphones and tablets among the younger generation, there is an increasing use of social networks already in elementary school. The paper presents the results of research, which was realized at schools in the Hradec Králové region. In this research, the authors focused on issues related to communications on social networks for children, teenagers and young people in the Czech Republic. This research was conducted at selected elementary, secondary and high schools using anonymous questionnaires. The results are evaluated and compared with the results of the research, which has been realized in 2008. The authors focused on the possibilities of using social networks in education. The paper presents the possibility of using the most popular social networks in education, with emphasis on increasing motivation for learning. The paper presents comparative analysis of social networks, with regard to the possibility of using in education as well.
Keywords: Social networks, motivation, e-learning, mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12831293 Methods of Estimating the Equilibrium Real Effective Exchange Rate (REER)
Authors: Pavla Ruzickova, Petr Teply
Abstract:
There are many debates now regarding undervalued and overvalued currencies currently traded on the world financial market. This paper contributes to these debates from a theoretical point of view. We present the three most commonly used methods of estimating the equilibrium real effective exchange rate (REER): macroeconomic balance approach, external sustainability approach and equilibrium real effective exchange rate approach in the reduced form. Moreover, we discuss key concepts of the calculation of the real exchange rate (RER) based on applied explanatory variables: nominal exchange rates, terms of trade and tradable and non-tradable goods. Last but not least, we discuss the three main driving forces behind real exchange rates movements which include terms of trade, relative productivity growth and the interest rate differential.Keywords: real exchange rate, real effective exchange rate, foreign exchange, terms of trade
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25021292 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification
Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman
Abstract:
In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27041291 On the Factors Influencing the Competitiveness of Chinese Service Trade after Entering WTO
Authors: Ying Wang
Abstract:
Service trade is an important force of influencing economic development. A review on the related literatures is done firstly. Then through the construction of a Diamond Model, the main factors which influence the competitiveness of Chinese service trade are determined. With three competitiveness indexes served as the reference series respectively, the influencing factors served as the comparable series, three grey incidence models are then built up to conduct an empirical analysis on the main factors influencing the competitiveness of service trade after China entering WTO. The result indicates that urbanization level, open degree of service industry and foreign direct investment have larger impacts on Chinese service trade competitiveness, followed in turn by GDP in service industry and human capital, while commodity trade has the minimum impact. Further discussion provides train of thought for the upgrade of Chinese service trade competitiveness.
Keywords: Service Trade, Competitiveness, Diamond Model, Grey Incidence Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861290 The Phonology and Phonetics of Second Language Intonation in Case of “Downstep”
Authors: Tayebeh Norouzi
Abstract:
This study aims to investigate the acquisition process of intonation. It examines the intonation structure of Tokyo Japanese and its realization by Iranian learners of Japanese. Seven Iranian learners of Japanese, differing in fluency, and two Japanese speakers participated in the experiment. Two sentences were used to test the phonological and phonetic characteristics of lexical pitch-accent as well as the intonation patterns produced by the speakers. Both sentences consisted of similar words with the same number of syllables and lexical pitch-accents but different syntactic structure. Speakers were asked to read each sentence three times at normal speed, and the data were analyzed by Praat. The results show that lexical pitch-accent, Accentual Phrase (AP) and AP boundary tone realization vary depending on sentence type. For sentences of type XdeYwo, the lexical pitch-accent is realized properly. However, there is a rise in AP boundary tone regardless of speakers’ level of fluency. In contrast, in sentences of type XnoYwo, the lexical pitch-accent and AP boundary tone vary depending on the speakers’ fluency level. Advanced speakers are better at grouping words into phrases and produce more native-like intonation patterns, though they are not able to realize downstep properly. The non-native speakers tried to realize proper intonation patterns by making changes in lexical accent and boundary tone.
Keywords: Intonation, Iranian learners, Japanese prosody, lexical accent, second language acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9981289 A Practical Model for Managing Beach Safety Focusing on Tourist Drownings in Koh Samui, Thailand
Authors: Siyathorn Khunon, Thanawit Buafai
Abstract:
This paper aims to investigate management of beach safety with a focus on tourist drownings in Samui. The data collected in this investigation will then lead to the proposal of a practical management model suitable for use in Samui. Qualitative research was conducted in the following manner: nine stakeholders from local government organizations and tourism businesses were interviewed in-depth. Additionally, a best practice case study from Phuket was applied to analyze beach safety. Twelve foreign tourists were also interviewed. Then, a focus group comprised of 32 people was used to determine practical solutions for enhancing tourists’ safety on the beach in Samui. A steering committee to coordinate between public and private organizations was proposed to manage and enhance tourists’ safety. A practical model is proposed to increase the safety level of tourists in Samui
Keywords: Beach safety, drowning, tourists, Samui.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13711288 Attacks Classification in Adaptive Intrusion Detection using Decision Tree
Authors: Dewan Md. Farid, Nouria Harbi, Emna Bahri, Mohammad Zahidur Rahman, Chowdhury Mofizur Rahman
Abstract:
Recently, information security has become a key issue in information technology as the number of computer security breaches are exposed to an increasing number of security threats. A variety of intrusion detection systems (IDS) have been employed for protecting computers and networks from malicious network-based or host-based attacks by using traditional statistical methods to new data mining approaches in last decades. However, today's commercially available intrusion detection systems are signature-based that are not capable of detecting unknown attacks. In this paper, we present a new learning algorithm for anomaly based network intrusion detection system using decision tree algorithm that distinguishes attacks from normal behaviors and identifies different types of intrusions. Experimental results on the KDD99 benchmark network intrusion detection dataset demonstrate that the proposed learning algorithm achieved 98% detection rate (DR) in comparison with other existing methods.Keywords: Detection rate, decision tree, intrusion detectionsystem, network security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36441287 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5511286 Education in Technology for Sustainable Development Applied to School Gardens
Authors: Sara Blanc, José V. Benlloch-Dualde, Laura Grindei, Ana C. Torres, Angélica Monteiro
Abstract:
This paper presents a study that leads an experience by introducing digital learning applied to a case study focused on primary and secondary school garden-based education. The approach represents an example for interaction among different education and research agents at different countries and levels, such as universities, public and private researches and schools, to get involved in the implementation of education for sustainable development that will make students become more sensible to natural environment, more responsible for their consumption, more aware about waste reduction and recycling, more conscious of the sustainable use of natural resources and, at the same time, more ‘digitally competent’. The experience was designed attending to the European digital education context and OECD (Organization for Economic Co-operation and Development) directives in transversal skills education. The paper presents the methodology carried out in the study as well as outcomes obtained from the experience.
Keywords: School gardens, primary education, secondary education, science technology and innovation in education, digital learning, sustainable development goals, university, knowledge transference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961285 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.Keywords: Politics, personality traits, LIWC, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21781284 Managing an Acute Pain Unit Based on the Balanced Scorecard
Authors: Helena Costa Oliveira, Carmem Oliveira, Rita Moutinho
Abstract:
The Balanced Scorecard (BSC) is a continuous strategic monitoring model focused not only on financial issues but also on internal processes, patients/users, and learning and growth. Initially dedicated to business management, it currently serves organizations of other natures - such as hospitals. This paper presents a BSC designed for a Portuguese Acute Pain Unit (APU). This study is qualitative and based on the experience of collaborators at the APU. The management of APU is based on four perspectives – users, internal processes, learning and growth, and financial and legal. For each perspective, there were identified strategic objectives, critical factors, lead indicators and initiatives. The strategic map of the APU outlining sustained strategic relations among strategic objectives. This study contributes to the development of research in the health management area as it explores how organizational insufficiencies and inconsistencies in this particular case can be addressed, through the identification of critical factors, to clearly establish core outcomes and initiatives to set up.
Keywords: Acute pain unit, balanced scorecard, hospital management, organizational performance, Portugal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5141283 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning
Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile
Abstract:
This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.
Keywords: Higher education, mentoring, professional development, university teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8501282 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.
Keywords: Classification, falls, health risk factors, machine learning, older adults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10651281 SEM Image Classification Using CNN Architectures
Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.
Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191280 The Strategy for Increasing the Competitiveness of Georgia
Authors: G. Erkomaishvili
Abstract:
The paper discusses economic policy of Georgia aiming to increase national competitiveness as well as the tools and means which will help to improve the competitiveness of the country. The sectors of the economy, in which the country can achieve the competitive advantage, are studied. It is noted that the country’s economic policy plays an important role in obtaining and maintaining the competitive advantage - authority should take measures to ensure high level of education; scientific and research activities should be funded by the state; foreign direct investments should be attracted mainly in science-intensive industries; adaptation with the latest scientific achievements of the modern world and deepening of scientific and technical cooperation. Stable business environment and export oriented strategy is the basis for the country’s economic growth. As the outcome of the research, the paper suggests the strategy for improving competitiveness in Georgia; recommendations are provided based on relevant conclusions.
Keywords: Competitive advantage, competitiveness, competitiveness improvement strategy, competitiveness of Georgia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001279 Feature-Based Summarizing and Ranking from Customer Reviews
Authors: Dim En Nyaung, Thin Lai Lai Thein
Abstract:
Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.
Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29401278 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks
Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier
Abstract:
For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.
Keywords: Authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6281277 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment
Authors: Zhao Jing, Bai Yongqing, Shi Qiaofang, Zang Yang, Zhang Huaihao
Abstract:
Advances in software technology enable the computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.
Keywords: Upper-division undergraduate, computer-based learning, laboratory instruction, amides, molecular modeling, spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841276 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions
Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*
Abstract:
Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899