Search results for: RC5 encryption /decryption algorithm and TCP/IP protocol.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3893

Search results for: RC5 encryption /decryption algorithm and TCP/IP protocol.

2333 Binary Programming for Manufacturing Material and Manufacturing Process Selection Using Genetic Algorithms

Authors: Saleem Z. Ramadan

Abstract:

The material selection problem is concerned with the determination of the right material for a certain product to optimize certain performance indices in that product such as mass, energy density, and power-to-weight ratio. This paper is concerned about optimizing the selection of the manufacturing process along with the material used in the product under performance indices and availability constraints. In this paper, the material selection problem is formulated using binary programming and solved by genetic algorithm. The objective function of the model is to minimize the total manufacturing cost under performance indices and material and manufacturing process availability constraints.

Keywords: Optimization, Material selection, Process selection, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
2332 Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment

Authors: John T. Tsiligaridis

Abstract:

The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.

Keywords: Broadcast, broadcast plan, mobile computing, wireless networks, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
2331 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms

Authors: J. Prakash, K. Rajesh

Abstract:

In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.

Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
2330 The Economic Lot Scheduling Problem in Flow Lines with Sequence-Dependent Setups

Authors: M. Heydari, S. A. Torabi

Abstract:

The problem of lot sizing, sequencing and scheduling multiple products in flow line production systems has been studied by several authors. Almost all of the researches in this area assumed that setup times and costs are sequence –independent even though sequence dependent setups are common in practice. In this paper we present a new mixed integer non linear program (MINLP) and a heuristic method to solve the problem in sequence dependent case. Furthermore, a genetic algorithm has been developed which applies this constructive heuristic to generate initial population. These two proposed solution methods are compared on randomly generated problems. Computational results show a clear superiority of our proposed GA for majority of the test problems.

Keywords: Economic lot scheduling problem, finite horizon, genetic algorithm, mixed zero-one nonlinear programming, sequence-dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
2329 Greedy Geographical Void Routing for Wireless Sensor Networks

Authors: Chiang Tzu-Chiang, Chang Jia-Lin, Tsai Yue-Fu, Li Sha-Pai

Abstract:

With the advantage of wireless network technology, there are a variety of mobile applications which make the issue of wireless sensor networks as a popular research area in recent years. As the wireless sensor network nodes move arbitrarily with the topology fast change feature, mobile nodes are often confronted with the void issue which will initiate packet losing, retransmitting, rerouting, additional transmission cost and power consumption. When transmitting packets, we would not predict void problem occurring in advance. Thus, how to improve geographic routing with void avoidance in wireless networks becomes an important issue. In this paper, we proposed a greedy geographical void routing algorithm to solve the void problem for wireless sensor networks. We use the information of source node and void area to draw two tangents to form a fan range of the existence void which can announce voidavoiding message. Then we use source and destination nodes to draw a line with an angle of the fan range to select the next forwarding neighbor node for routing. In a dynamic wireless sensor network environment, the proposed greedy void avoiding algorithm can be more time-saving and more efficient to forward packets, and improve current geographical void problem of wireless sensor networks.

Keywords: Wireless sensor network, internet routing, wireless network, greedy void avoiding algorithm, bypassing void.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3575
2328 Computer Proven Correctness of the Rabin Public-Key Scheme

Authors: Johannes Buchmann, Markus Kaiser

Abstract:

We decribe a formal specification and verification of the Rabin public-key scheme in the formal proof system Is-abelle/HOL. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. The analysis presented uses a given database to prove formal properties of our implemented functions with computer support. Thema in task in designing a practical formalization of correctness as well as security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as eficient formal proofs. This yields the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Consequently, we get reliable proofs with a minimal error rate augmenting the used database. This provides a formal basis for more computer proof constructions in this area.

Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2327 Mobile Robot Control by Von Neumann Computer

Authors: E. V. Larkin, T. A. Akimenko, A. V. Bogomolov, A. N. Privalov

Abstract:

The digital control system of mobile robots (MR) control is considered. It is shown that sequential interpretation of control algorithm operators, unfolding in physical time, suggests the occurrence of time delays between inputting data from sensors and outputting data to actuators. Another destabilizing control factor is presence of backlash in the joints of an actuator with an executive unit. Complex model of control system, which takes into account the dynamics of the MR, the dynamics of the digital controller and backlash in actuators, is worked out. The digital controller model is divided into two parts: the first part describes the control law embedded in the controller in the form of a control program that realizes a polling procedure when organizing transactions to sensors and actuators. The second part of the model describes the time delays that occur in the Von Neumann-type controller when processing data. To estimate time intervals, the algorithm is represented in the form of an ergodic semi-Markov process. For an ergodic semi-Markov process of common form, a method is proposed for estimation a wandering time from one arbitrary state to another arbitrary state. Example shows how the backlash and time delays affect the quality characteristics of the MR control system functioning.

Keywords: Mobile robot, backlash, control algorithm, Von Neumann controller, semi-Markov process, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374
2326 Application of Ant Colony Optimization for Multi-objective Production Problems

Authors: Teerapun Saeheaw, Nivit Charoenchai, Wichai Chattinnawat

Abstract:

This paper proposes a meta-heuristic called Ant Colony Optimization to solve multi-objective production problems. The multi-objective function is to minimize lead time and work in process. The problem is related to the decision variables, i.e.; distance and process time. According to decision criteria, the mathematical model is formulated. In order to solve the model an ant colony optimization approach has been developed. The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. One example is given to illustrate the effectiveness of the proposed model. The proposed formulations; Max-Min Ant system are then used to solve the problem and the results evaluate the performance and efficiency of the proposed algorithm using simulation.

Keywords: Ant colony optimization, multi-objective problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
2325 Genetic Combined with a Simplex Algorithm as an Efficient Method for the Detection of a Depressed Ellipsoidal Flaw using the Boundary Element Method

Authors: Clio G. Vossou, Ioannis N. Koukoulis, Christopher G. Provatidis

Abstract:

The present work encounters the solution of the defect identification problem with the use of an evolutionary algorithm combined with a simplex method. In more details, a Matlab implementation of Genetic Algorithms is combined with a Simplex method in order to lead to the successful identification of the defect. The influence of the location and the orientation of the depressed ellipsoidal flaw was investigated as well as the use of different amount of static data in the cost function. The results were evaluated according to the ability of the simplex method to locate the global optimum in each test case. In this way, a clear impression regarding the performance of the novel combination of the optimization algorithms, and the influence of the geometrical parameters of the flaw in defect identification problems was obtained.

Keywords: Defect identification, genetic algorithms, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
2324 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 950
2323 Parallel Explicit Group Domain Decomposition Methods for the Telegraph Equation

Authors: Kew Lee Ming, Norhashidah Hj. Mohd. Ali

Abstract:

In a previous work, we presented the numerical solution of the two dimensional second order telegraph partial differential equation discretized by the centred and rotated five-point finite difference discretizations, namely the explicit group (EG) and explicit decoupled group (EDG) iterative methods, respectively. In this paper, we utilize a domain decomposition algorithm on these group schemes to divide the tasks involved in solving the same equation. The objective of this study is to describe the development of the parallel group iterative schemes under OpenMP programming environment as a way to reduce the computational costs of the solution processes using multicore technologies. A detailed performance analysis of the parallel implementations of points and group iterative schemes will be reported and discussed.

Keywords: Telegraph equation, explicit group iterative scheme, domain decomposition algorithm, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
2322 Automatic Voice Classification System Based on Traditional Korean Medicine

Authors: Jaehwan Kang, Haejung Lee

Abstract:

This paper introduces an automatic voice classification system for the diagnosis of individual constitution based on Sasang Constitutional Medicine (SCM) in Traditional Korean Medicine (TKM). For the developing of this algorithm, we used the voices of 309 female speakers and extracted a total of 134 speech features from the voice data consisting of 5 sustained vowels and one sentence. The classification system, based on a rule-based algorithm that is derived from a non parametric statistical method, presents 3 types of decisions: reserved, positive and negative decisions. In conclusion, 71.5% of the voice data were diagnosed by this system, of which 47.7% were correct positive decisions and 69.7% were correct negative decisions.

Keywords: Voice Classifier, Sasang Constitution Medicine, Traditional Korean Medicine, SCM, TKM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
2321 Context-aware Recommender Systems using Data Mining Techniques

Authors: Kyoung-jae Kim, Hyunchul Ahn, Sangwon Jeong

Abstract:

This study proposes a novel recommender system to provide the advertisements of context-aware services. Our proposed model is designed to apply a modified collaborative filtering (CF) algorithm with regard to the several dimensions for the personalization of mobile devices – location, time and the user-s needs type. In particular, we employ a classification rule to understand user-s needs type using a decision tree algorithm. In addition, we collect primary data from the mobile phone users and apply them to the proposed model to validate its effectiveness. Experimental results show that the proposed system makes more accurate and satisfactory advertisements than comparative systems.

Keywords: Location-based advertisement, Recommender system, Collaborative filtering, User needs type, Mobile user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
2320 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network

Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi

Abstract:

In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859
2319 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
2318 An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles

Authors: Yi Chao Huang, Yu Ling Liao, Chiu Shuang Lin

Abstract:

A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.

Keywords: Data mining, Data cutting and sorting method, Apriori algorithm, Metabolic syndrome

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
2317 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344
2316 On the Sphere Method of Linear Programming Using Multiple Interior Points Approach

Authors: Job H. Domingo, Carolina Bancayrin-Baguio

Abstract:

The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.

Keywords: Interior point, linear programming, sphere method, initial feasible solution, feasible region, centering and descent steps, optimal solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
2315 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: Blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392
2314 Downlink Scheduling and Radio Resource Allocation in Adaptive OFDMA Wireless Communication Systems for User-Individual QoS

Authors: Lu Yanhui, Wang Chunming, Yin Changchuan, Yue Guangxin

Abstract:

In this paper, we address the problem of adaptive radio resource allocation (RRA) and packet scheduling in the downlink of a cellular OFDMA system, and propose a downlink multi-carrier proportional fair (MPF) scheduler and its joint with adaptive RRA algorithm to distribute radio resources among multiple users according to their individual QoS requirements. The allocation and scheduling objective is to maximize the total throughput, while at the same time maintaining the fairness among users. The simulation results demonstrate that the methods presented provide for user more explicit fairness relative to RRA algorithm, but the joint scheme achieves the higher sum-rate capacity with flexible parameters setting compared with MPF scheduler.

Keywords: OFDMA, adaptive radio resource allocation, scheduling, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2313 Design of a Permanent Magnet Synchronous Machine for the Hybrid Electric Vehicle

Authors: Arash Hassanpour Isfahani, Siavash Sadeghi

Abstract:

Permanent magnet synchronous machines are known as a good candidate for hybrid electric vehicles due to their unique merits. However they have two major drawbacks i.e. high cost and small speed range. In this paper an optimal design of a permanent magnet machine is presented. A reduction of permanent magnet material for a constant torque and an extension in speed and torque ranges are chosen as the optimization aims. For this purpose the analytical model of the permanent magnet synchronous machine is derived and the appropriate design algorithm is devised. The genetic algorithm is then employed to optimize some machine specifications. Finally the finite element method is used to validate the designed machine.

Keywords: Design, Finite Element, Hybrid electric vehicle, Optimization, Permanent magnet synchronous machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4124
2312 Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Henrik Skov Midtiby, Anders Krogh Mortensen, Sanmohan Baby

Abstract:

This work contributes a statistical model and simulation framework yielding the best estimate possible for the potential herbicide reduction when using the MoDiCoVi algorithm all the while requiring a efficacy comparable to conventional spraying. In June 2013 a maize field located in Denmark were seeded. The field was divided into parcels which was assigned to one of two main groups: 1) Control, consisting of subgroups of no spray and full dose spraty; 2) MoDiCoVi algorithm subdivided into five different leaf cover thresholds for spray activation. In addition approximately 25% of the parcels were seeded with additional weeds perpendicular to the maize rows. In total 299 parcels were randomly assigned with the 28 different treatment combinations. In the statistical analysis, bootstrapping was used for balancing the number of replicates. The achieved potential herbicide savings was found to be 70% to 95% depending on the initial weed coverage. However additional field trials covering more seasons and locations are needed to verify the generalisation of these results. There is a potential for further herbicide savings as the time interval between the first and second spraying session was not long enough for the weeds to turn yellow, instead they only stagnated in growth.

Keywords: Weed crop discrimination, macrosprayer, herbicide reduction, site-specific, sprayer-boom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
2311 Skin Detection using Histogram depend on the Mean Shift Algorithm

Authors: Soo- Young Ye, Ki-Gon Nam, Ki-Won Byun

Abstract:

In this paper, we were introduces a skin detection method using a histogram approximation based on the mean shift algorithm. The proposed method applies the mean shift procedure to a histogram of a skin map of the input image, generated by comparison with standard skin colors in the CbCr color space, and divides the background from the skin region by selecting the maximum value according to brightness level. The proposed method detects the skin region using the mean shift procedure to determine a maximum value that becomes the dividing point, rather than using a manually selected threshold value, as in existing techniques. Even when skin color is contaminated by illumination, the procedure can accurately segment the skin region and the background region. The proposed method may be useful in detecting facial regions as a pretreatment for face recognition in various types of illumination.

Keywords: Skin region detection, mean shift, histogram approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
2310 Fast Painting with Different Colors Using Cross Correlation in the Frequency Domain

Authors: Hazem M. El-Bakry

Abstract:

In this paper, a new technique for fast painting with different colors is presented. The idea of painting relies on applying masks with different colors to the background. Fast painting is achieved by applying these masks in the frequency domain instead of spatial (time) domain. New colors can be generated automatically as a result from the cross correlation operation. This idea was applied successfully for faster specific data (face, object, pattern, and code) detection using neural algorithms. Here, instead of performing cross correlation between the input input data (e.g., image, or a stream of sequential data) and the weights of neural networks, the cross correlation is performed between the colored masks and the background. Furthermore, this approach is developed to reduce the computation steps required by the painting operation. The principle of divide and conquer strategy is applied through background decomposition. Each background is divided into small in size subbackgrounds and then each sub-background is processed separately by using a single faster painting algorithm. Moreover, the fastest painting is achieved by using parallel processing techniques to paint the resulting sub-backgrounds using the same number of faster painting algorithms. In contrast to using only faster painting algorithm, the speed up ratio is increased with the size of the background when using faster painting algorithm and background decomposition. Simulation results show that painting in the frequency domain is faster than that in the spatial domain.

Keywords: Fast Painting, Cross Correlation, Frequency Domain, Parallel Processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
2309 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: Access algorithm, channels division, collisions avoidance, wavelength division multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1021
2308 Neural Network Controller for Mobile Robot Motion Control

Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic

Abstract:

In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.

Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3339
2307 A New Edit Distance Method for Finding Similarity in Dna Sequence

Authors: Patsaraporn Somboonsak, Mud-Armeen Munlin

Abstract:

The P-Bigram method is a string comparison methods base on an internal two characters-based similarity measure. The edit distance between two strings is the minimal number of elementary editing operations required to transform one string into the other. The elementary editing operations include deletion, insertion, substitution two characters. In this paper, we address the P-Bigram method to sole the similarity problem in DNA sequence. This method provided an efficient algorithm that locates all minimum operation in a string. We have been implemented algorithm and found that our program calculated that smaller distance than one string. We develop PBigram edit distance and show that edit distance or the similarity and implementation using dynamic programming. The performance of the proposed approach is evaluated using number edit and percentage similarity measures.

Keywords: Edit distance, String Matching, String Similarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3327
2306 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

Authors: Suresh S. Salankar, Balasaheb M. Patre

Abstract:

Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
2305 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
2304 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: Simulation data, data summarization, spatial histograms, exploration and visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758