Search results for: linear regression models.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4475

Search results for: linear regression models.

2945 Production Planning for Animal Food Industry under Demand Uncertainty

Authors: Pirom Thangchitpianpol, Suttipong Jumroonrut

Abstract:

This research investigates the distribution of food demand for animal food and the optimum amount of that food production at minimum cost. The data consist of customer purchase orders for the food of laying hens, price of food for laying hens, cost per unit for the food inventory, cost related to food of laying hens in which the food is out of stock, such as fine, overtime, urgent purchase for material. They were collected from January, 1990 to December, 2013 from a factory in Nakhonratchasima province. The collected data are analyzed in order to explore the distribution of the monthly food demand for the laying hens and to see the rate of inventory per unit. The results are used in a stochastic linear programming model for aggregate planning in which the optimum production or minimum cost could be obtained. Programming algorithms in MATLAB and tools in Linprog software are used to get the solution. The distribution of the food demand for laying hens and the random numbers are used in the model. The study shows that the distribution of monthly food demand for laying has a normal distribution, the monthly average amount (unit: 30 kg) of production from January to December. The minimum total cost average for 12 months is Baht 62,329,181.77. Therefore, the production planning can reduce the cost by 14.64% from real cost.

Keywords: Animal food, Stochastic linear programming, Production planning, Demand Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
2944 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: A. Appe, B. Poluparthi, L. Kasivajjula, U. Mv, S. Bagadi, P. Modi, A. Singh, H. Gunupudi, S. Troiano, J. Paul, J. Stovall, J. Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data are considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP (SHapley Additive exPlanations), to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since it is data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for e.g., quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP, a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: Competition, DAGs, hospital, healthcare, machine learning, market share, random forest, SHAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 286
2943 Predicting DHF Incidence in Northern Thailand using Time Series Analysis Technique

Authors: S. Wongkoon, M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

This study aimed at developing a forecasting model on the number of Dengue Haemorrhagic Fever (DHF) incidence in Northern Thailand using time series analysis. We developed Seasonal Autoregressive Integrated Moving Average (SARIMA) models on the data collected between 2003-2006 and then validated the models using the data collected between January-September 2007. The results showed that the regressive forecast curves were consistent with the pattern of actual values. The most suitable model was the SARIMA(2,0,1)(0,2,0)12 model with a Akaike Information Criterion (AIC) of 12.2931 and a Mean Absolute Percent Error (MAPE) of 8.91713. The SARIMA(2,0,1)(0,2,0)12 model fitting was adequate for the data with the Portmanteau statistic Q20 = 8.98644 ( x20,95= 27.5871, P>0.05). This indicated that there was no significant autocorrelation between residuals at different lag times in the SARIMA(2,0,1)(0,2,0)12 model.

Keywords: Dengue, SARIMA, Time Series Analysis, Northern Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
2942 An Optimized Multi-block Method for Turbulent Flows

Authors: M. Goodarzi, P. Lashgari

Abstract:

A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.

Keywords: Computer memory, CPU time, Multi-block method, Turbulence modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
2941 Modelling Export Dynamics in the CSEE Countries Using GVAR Model

Authors: S. Jakšić, B. Žmuk

Abstract:

The paper investigates the key factors of export dynamics for a set of Central and Southeast European (CSEE) countries in the context of current economic and financial crisis. In order to model the export dynamics a Global Vector Auto Regressive (GVAR) model is defined. As opposed to models which model each country separately, the GVAR combines all country models in a global model which enables obtaining important information on spillover effects in the context of globalisation and rising international linkages. The results of the study indicate that for most of the CSEE countries, exports are mainly driven by domestic shocks, both in the short run and in the long run. This study is the first application of the GVAR model to studying the export dynamics in the CSEE countries and therefore the results of the study present an important empirical contribution.

Keywords: Export, GFEVD, Global VAR, International trade, weak exogeneity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2492
2940 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: Aggregate angularity, asphalt concrete, permanent deformation, rutting prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
2939 Note on the Necessity of the Patch Test

Authors: Rado Flajs, Miran Saje

Abstract:

We present a simple nonconforming approximation of the linear two–point boundary value problem which violates patch test requirements. Nevertheless the solutions, obtained from these type of approximations, converge to the exact solution.

Keywords: Generalized patch test, Irons' patch test, nonconforming finite element, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2938 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: Dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
2937 An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics

Authors: Appanah Rao Appadu, Muhammad Zaid Dauhoo

Abstract:

In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.

Keywords: Optimised time derivative, dissipation, dispersion, cfl number, Nomenclature: k : time step, h : spatial step, β :advection velocity, r: cfl/Courant number, hkrβ= , w =θ, h : exact wave number, n :time level, RPE : Relative phase error per unit time step, AFM :modulus of amplification factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
2936 Further Investigations on Higher Mathematics Scores for Chinese University Students

Authors: Xun Ge

Abstract:

Recently, X. Ge and J. Qian investigated some relations between higher mathematics scores and calculus scores (resp. linear algebra scores, probability statistics scores) for Chinese university students. Based on rough-set theory, they established an information system S = (U,CuD,V, f). In this information system, higher mathematics score was taken as a decision attribute and calculus score, linear algebra score, probability statistics score were taken as condition attributes. They investigated importance of each condition attribute with respective to decision attribute and strength of each condition attribute supporting decision attribute. In this paper, we give further investigations for this issue. Based on the above information system S = (U, CU D, V, f), we analyze the decision rules between condition and decision granules. For each x E U, we obtain support (resp. strength, certainty factor, coverage factor) of the decision rule C —>x D, where C —>x D is the decision rule induced by x in S = (U, CU D, V, f). Results of this paper gives new analysis of on higher mathematics scores for Chinese university students, which can further lead Chinese university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Keywords: Rough set, support, strength, certainty factor, coverage factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
2935 Universities Strategic Evaluation Using Balanced Scorecard

Authors: M. D. Nayeri, M. M. Mashhadi, K. Mohajeri

Abstract:

Defining strategic position of the organizations within the industry environment is one of the basic and most important phases of strategic planning to which extent that one of the fundamental schools of strategic planning is the strategic positioning school. In today-s knowledge-based economy and dynamic environment, it is essential for universities as the centers of education, knowledge creation and knowledge worker evolvement. Till now, variant models with different approaches to strategic positioning are deployed in defining the strategic position within the various industries. Balanced Scorecard as one of the powerful models for strategic positioning, analyzes all aspects of the organization evenly. In this paper with the consideration of BSC strength in strategic evaluation, it is used for analyzing the environmental position of the best-s Iranian Business Schools. The results could be used in developing strategic plans for these schools as well as other Iranian Management and Business Schools.

Keywords: Strategic planning, Strategic position, Balancedscorecard, Higher education institutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4442
2934 Examination of Self and Decision Making Levels of Students Receiving Education in Schools of Physical Education and Sports

Authors: Mustafa Yildiz, Murat Tekin, Hasan Şahan, Ahmet Şahin, Mehmet Şaker, Buket Ulucan, Osman Mutlu

Abstract:

The purpose of this study is to examine the self and decision making levels of students receiving education in schools of physical training and sports. The population of the study consisted 258 students, among which 152 were male and 106 were female ( X age=19,3713 + 1,6968), that received education in the schools of physical education and sports of Selcuk University, Inonu University, Gazi University and Karamanoglu Mehmetbey University. In order to achieve the purpose of the study, the Melbourne Decision Making Questionnary developed by Mann et al. (1998) [1] and adapted to Turkish by Deniz (2004) [2] and the Self-Esteem Scale developed by Aricak (1999) [3] was utilized. For analyzing and interpreting data Kolmogorov-Smirnov test, t-test and one way anova test were used, while for determining the difference between the groups Tukey test and Multiple Linear Regression test were employed and significance was accepted at P<0,05. SPSS (Statistical package for social sciences) package software was used for evaluating the data and finding out the calculated values. In conclusion of the present study, while cautious, avoidant and postponing decision making levels of male students were found out to be higher than female students, panic decision making levels of female students were found out to be higher than that of male students. While cautious, avoidant and panicdriven decision making levels of the students attending to the first grade were found out to be higher than these of the fourth grades, for the students attending to the fourth grade influential decision making levels were found out to be higher. While male students were found out to be having relatively higher self value, self confidence and self sufficiency levels, for female students achieving, productivity and depressive affect were found out to be higher in comparison with male students. While self values, achieving and productivity levels of the students attending to the first grade were found out to be higher than those of fourth grade students, fourth grade students were determined to have higher self-confidence, depressive affection and self-sufficiency levels. It was also determined that there is a significant relation between decision making levels and self levels.

Keywords: Physical Education And Sports, Student, Self, Decision Making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
2933 An Algorithm of Finite Capacity Material Requirement Planning System for Multi-stage Assembly Flow Shop

Authors: T. Wuttipornpun, U. Wangrakdiskul, W. Songserm

Abstract:

This paper aims to develop an algorithm of finite capacity material requirement planning (FCMRP) system for a multistage assembly flow shop. The developed FCMRP system has two main stages. The first stage is to allocate operations to the first and second priority work centers and also determine the sequence of the operations on each work center. The second stage is to determine the optimal start time of each operation by using a linear programming model. Real data from a factory is used to analyze and evaluate the effectiveness of the proposed FCMRP system and also to guarantee a practical solution to the user. There are five performance measures, namely, the total tardiness, the number of tardy orders, the total earliness, the number of early orders, and the average flow-time. The proposed FCMRP system offers an adjustable solution which is a compromised solution among the conflicting performance measures. The user can adjust the weight of each performance measure to obtain the desired performance. The result shows that the combination of FCMRP NP3 and EDD outperforms other combinations in term of overall performance index. The calculation time for the proposed FCMRP system is about 10 minutes which is practical for the planners of the factory.

Keywords: Material requirement planning, Finite capacity, Linear programming, Permutation, Application in industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
2932 Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt

Authors: Ahmed Hossam_ ElDin, Ahmed Farag, Ibrahim Madi., Hanaa Karawia

Abstract:

In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements.

Keywords: Distribution substation, magnetic field, measurement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
2931 Review of Trust Models in Wireless Sensor Networks

Authors: V. Uma Rani, K. Soma Sundaram

Abstract:

The major challenge faced by wireless sensor networks is security. Because of dynamic and collaborative nature of sensor networks the connected sensor devices makes the network unusable. To solve this issue, a trust model is required to find malicious, selfish and compromised insiders by evaluating trust worthiness sensors from the network. It supports the decision making processes in wireless sensor networks such as pre key-distribution, cluster head selection, data aggregation, routing and self reconfiguration of sensor nodes. This paper discussed the kinds of trust model, trust metrics used to address attacks by monitoring certain behavior of network. It describes the major design issues and their countermeasures of building trust model. It also discusses existing trust models used in various decision making process of wireless sensor networks.

Keywords: Attacks, Security, Trust, Trust model, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4566
2930 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: Agricultural object detection, Deep learning, machine vision, YOLO family.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
2929 An Enhanced Slicing Algorithm Using Nearest Distance Analysis for Layer Manufacturing

Authors: M. Vatani, A. R. Rahimi, F. Brazandeh, A. Sanati nezhad

Abstract:

Although the STL (stereo lithography) file format is widely used as a de facto industry standard in the rapid prototyping industry due to its simplicity and ability to tessellation of almost all surfaces, but there are always some defects and shortcoming in their usage, which many of them are difficult to correct manually. In processing the complex models, size of the file and its defects grow extremely, therefore, correcting STL files become difficult. In this paper through optimizing the exiting algorithms, size of the files and memory usage of computers to process them will be reduced. In spite of type and extent of the errors in STL files, the tail-to-head searching method and analysis of the nearest distance between tails and heads techniques were used. As a result STL models sliced rapidly, and fully closed contours produced effectively and errorless.

Keywords: Layer manufacturing, STL files, slicing algorithm, nearest distance analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4158
2928 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
2927 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber

Abstract:

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

Keywords: Classification, High dimensional data, Machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
2926 Client Importance and Audit Quality under Civil Law versus Common Law Societies

Authors: Kelly Grani Yuen

Abstract:

Accounting scandals and auditing frauds are perceived to be driven by aggressive companies and misrepresentation of audit reports. However, local legal systems and law enforcements may affect the services auditors provide to their ‘important’ clients. Under the civil law and common law jurisdictions, the standard setters, the government, and the regulatory bodies treat cases differently. As such, whether or not different forms of legal systems and extent of law enforcement plays an important role in auditor’s Audit Quality is a question this paper attempts to explore. The paper focuses on the investigation in Asia, where Hong Kong represents the common-law jurisdiction, while Taiwan and China represent the civil law jurisdiction. Only the ten reputable accounting firms are used in this study due to the differences in rankings and establishments of some of the small local audit firms. This will also contribute to the data collected between the years 2007-2013. By focusing on the use of multiple regression based on the dependent (Audit Quality) and independent variables (Client Importance, Law Enforcement, and Press Freedom), six different models are established. Results demonstrate that since different jurisdictions have different legal systems and market regulations, auditor’s treatment on ‘important’ clients will vary. However, with the moderators in place (law enforcement and press freedom), the relationship between client importance and audit quality may be smoothed out. With that in mind, this study contributes to local governments and standard setters’ consideration on legal reform and proper law enforcement in the market. Perhaps, with such modifications on the economic systems, collusion between companies and auditors can finally be put to a halt.

Keywords: Audit quality, client importance, jurisdiction, modified audit opinions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
2925 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
2924 Automatic Generation of OWL Ontologies from UML Class Diagrams Based on Meta- Modelling and Graph Grammars

Authors: Aissam Belghiat, Mustapha Bourahla

Abstract:

Models are placed by modeling paradigm at the center of development process. These models are represented by languages, like UML the language standardized by the OMG which became necessary for development. Moreover the ontology engineering paradigm places ontologies at the center of development process; in this paradigm we find OWL the principal language for knowledge representation. Building ontologies from scratch is generally a difficult task. The bridging between UML and OWL appeared on several regards such as the classes and associations. In this paper, we have to profit from convergence between UML and OWL to propose an approach based on Meta-Modelling and Graph Grammars and registered in the MDA architecture for the automatic generation of OWL ontologies from UML class diagrams. The transformation is based on transformation rules; the level of abstraction in these rules is close to the application in order to have usable ontologies. We illustrate this approach by an example.

Keywords: ATOM3, MDA, Ontology, OWL, UML

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24905
2923 Effect of Concrete Nonlinear Parameters on the Seismic Response of Concrete Gravity Dams

Authors: Z. Heirany, M. Ghaemian

Abstract:

Behavior of dams against the seismic loads has been studied by many researchers. Most of them proposed new numerical methods to investigate the dam safety. In this paper, to study the effect of nonlinear parameters of concrete in gravity dams, a twodimensional approach was used including the finite element method, staggered method and smeared crack approach. Effective parameters in the models are physical properties of concrete such as modulus of elasticity, tensile strength and specific fracture energy. Two different models were used in foundation (mass-less and massed) in order to determine the seismic response of concrete gravity dams. Results show that when the nonlinear analysis includes the dam- foundation interaction, the foundation-s mass, flexibility and radiation damping are important in gravity dam-s response.

Keywords: Numerical methods; concrete gravity dams; finiteelement method; boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
2922 Problem Solving Techniques with Extensive Computational Network and Applying in an Educational Software

Authors: Nhon Do, Tam Pham

Abstract:

Knowledge bases are basic components of expert systems or intelligent computational programs. Knowledge bases provide knowledge, events that serve deduction activity, computation and control. Therefore, researching and developing of models for knowledge representation play an important role in computer science, especially in Artificial Intelligence Science and intelligent educational software. In this paper, the extensive deduction computational model is proposed to design knowledge bases whose attributes are able to be real values or functional values. The system can also solve problems based on knowledge bases. Moreover, the models and algorithms are applied to produce the educational software for solving alternating current problems or solving set of equations automatically.

Keywords: Educational software, artificial intelligence, knowledge base systems, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
2921 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2920 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage

Authors: L. Ramirez, E. Guillén, J. Sánchez

Abstract:

Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.

Keywords: Analytics, telemedicine, internet of things, cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
2919 Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems

Authors: Kai Häussermann, Christoph Hubig, Paul Levi, Frank Leymann, Oliver Siemoneit, Matthias Wieland, Oliver Zweigle

Abstract:

Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.

Keywords: context-awareness, ethics, facilitation of system use through workflows, situation recognition and learning based on situation templates and situation ontology's, theory of situationaware systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
2918 Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification

Authors: María-Dolores Cubiles-de-la-Vega, Rafael Pino-Mejías, Esther-Lydia Silva-Ramírez

Abstract:

A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.

Keywords: Cluster Analysis, Empiric Characteristic Function, Multi-class SVM, R.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2917 Predictor Factors for Treatment Failure among Patients on Second Line Antiretroviral Therapy

Authors: Mohd. A. M. Rahim, Yahaya Hassan, Mathumalar L. Fahrni

Abstract:

Second line antiretroviral therapy (ART) regimen is used when patients fail their first line regimen. There are many factors such as non-adherence, drug resistance as well as virological and immunological failure that lead to second line highly active antiretroviral therapy (HAART) regimen treatment failure. This study was aimed at determining predictor factors to treatment failure with second line HAART and analyzing median survival time. An observational, retrospective study was conducted in Sungai Buloh Hospital (HSB) to assess current status of HIV patients treated with second line HAART regimen. Convenience sampling was used and 104 patients were included based on the study’s inclusion and exclusion criteria. Data was collected for six months i.e. from July until December 2013. Data was then analysed using SPSS version 18. Kaplan-Meier and Cox regression analyses were used to measure median survival times and predictor factors for treatment failure. The study population consisted mainly of male subjects, aged 30- 45 years, who were heterosexual, and had HIV infection for less than 6 years. The most common second line HAART regimen given was lopinavir/ritonavir (LPV/r)-based combination. Kaplan-Meier analysis showed that patients on LPV/r demonstrated longer median survival times than patients on indinavir/ritonavir (IDV/r) based combination (p<0.001). The commonest reason for a treatment to fail with second line HAART was non-adherence. Based on Cox regression analysis, other predictor factors for treatment failure with second line HAART regimen were age and mode of HIV transmission.

Keywords: Adherence, antiretroviral therapy, second line, treatment failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
2916 A Method to Enhance the Accuracy of Digital Forensic in the Absence of Sufficient Evidence in Saudi Arabia

Authors: Fahad Alanazi, Andrew Jones

Abstract:

Digital forensics seeks to achieve the successful investigation of digital crimes through obtaining acceptable evidence from digital devices that can be presented in a court of law. Thus, the digital forensics investigation is normally performed through a number of phases in order to achieve the required level of accuracy in the investigation processes. Since 1984 there have been a number of models and frameworks developed to support the digital investigation processes. In this paper, we review a number of the investigation processes that have been produced throughout the years and introduce a proposed digital forensic model which is based on the scope of the Saudi Arabia investigation process. The proposed model has been integrated with existing models for the investigation processes and produced a new phase to deal with a situation where there is initially insufficient evidence.

Keywords: Digital forensics, Process, Metadata, Traceback, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000