Search results for: Machine modelling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1795

Search results for: Machine modelling

265 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: Distillation, machine learning, neural networks, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
264 Shear Strength of Reinforced Web Openings in Steel Beams

Authors: K. S. Sivakumaran, Bo Chen

Abstract:

The floor beams of steel buildings, cold-formed steel floor joists in particular, often require large web openings, which may affect their shear capacities. A cost effective way to mitigate the detrimental effects of such openings is to weld/fasten reinforcements. A difficulty associated with an experimental investigation to establish suitable reinforcement schemes for openings in shear zone is that moment always coexists with the shear, and thus, it is impossible to create pure shear state in experiments, resulting in moment influenced results. However, Finite Element Method (FEM) based analysis can be conveniently used to investigate the pure shear behaviour of webs including webs with reinforced openings. This paper presents the details associated with the finite element analysis of thick/thin-plates (representing the web of hot-rolled steel beam, and the web of a cold-formed steel member) having a large reinforced opening. The study considered simply-supported rectangular plates subjected to in-plane shear loadings until failure (including post-buckling behaviour). The plate was modelled using geometrically non-linear quadrilateral shell elements, and non-linear stress-strain relationship based on experiments. Total Langrangian with large displacement/small strain formulation was used for such analyses. The model also considered the initial geometric imperfections. This study considered three reinforcement schemes, namely, flat, lip, and angle reinforcements. This paper discusses the modelling considerations and presents the results associated with the various reinforcement schemes under consideration.

Keywords: Cold-formed steel, finite element analysis, opening, reinforcement, shear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
263 Detection of Ultrasonic Images in the Presence of a Random Number of Scatterers: A Statistical Learning Approach

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool that was initially developed by Vapnik in 1979 and later developed to a more complex concept of structural risk minimization (SRM). SVM is playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM was applied to the detection of medical ultrasound images in the presence of partially developed speckle noise. The simulation was done for single look and multi-look speckle models to give a complete overlook and insight to the new proposed model of the SVM-based detector. The structure of the SVM was derived and applied to clinical ultrasound images and its performance in terms of the mean square error (MSE) metric was calculated. We showed that the SVM-detected ultrasound images have a very low MSE and are of good quality. The quality of the processed speckled images improved for the multi-look model. Furthermore, the contrast of the SVM detected images was higher than that of the original non-noisy images, indicating that the SVM approach increased the distance between the pixel reflectivity levels (detection hypotheses) in the original images.

Keywords: LS-SVM, medical ultrasound imaging, partially developed speckle, multi-look model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
262 Influence of Pressure from Compression Textile Bands: Their Using in the Treatment of Venous Human Leg Ulcers

Authors: Bachir Chemani, Rachid Halfaoui

Abstract:

The aim of study was to evaluate pressure distribution characteristics of the elastic textile bandages using two instrumental techniques: a prototype Instrument and a load Transference. The prototype instrument which simulates shape of real leg has pressure sensors which measure bandage pressure. Using this instrument, the results show that elastic textile bandages presents different pressure distribution characteristics and none produces a uniform distribution around lower limb.

The load transference test procedure is used to determine whether a relationship exists between elastic textile bandage structure and pressure distribution characteristics. The test procedure assesses degree of load, directly transferred through a textile when loads series are applied to bandaging surface. A range of weave fabrics was produced using needle weaving machine and a sewing technique. A textile bandage was developed with optimal characteristics far superior pressure distribution than other bandages. From results, we find that theoretical pressure is not consistent exactly with practical pressure. It is important in this study to make a practical application for specialized nurses in order to verify the results and draw useful conclusions for predicting the use of this type of elastic band.

Keywords: Textile, cotton, pressure, venous ulcers, elastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
261 Control of Grid Connected PMSG-Based Wind Turbine System with Back-To-Back Converter Topology Using Resonant Controller

Authors: Fekkak Bouazza, Menaa Mohamed, Loukriz Abdelhamid, Krim Mohamed L.

Abstract:

This paper presents modeling and control strategy for the grid connected wind turbine system based on Permanent Magnet Synchronous Generator (PMSG). The considered system is based on back-to-back converter topology. The Grid Side Converter (GSC) achieves the DC bus voltage control and unity power factor. The Machine Side Converter (MSC) assures the PMSG speed control. The PMSG is used as a variable speed generator and connected directly to the turbine without gearbox. The pitch angle control is not either considered in this study. Further, Optimal Tip Speed Ratio (OTSR) based MPPT control strategy is used to ensure the most energy efficiency whatever the wind speed variations. A filter (L) is put between the GSC and the grid to reduce current ripple and to improve the injected power quality. The proposed grid connected wind system is built under MATLAB/Simulink environment. The simulation results show the feasibility of the proposed topology and performance of its control strategies.

Keywords: Wind, grid, PMSG, MPPT, OTSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
260 Artificial Intelligence Techniques applied to Biomedical Patterns

Authors: Giovanni Luca Masala

Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
259 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries

Authors: Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone

Abstract:

Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation.  Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions.  Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.

Keywords: Design, emissions, fluid catalytic cracking, petroleum refineries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
258 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
257 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: Machine learning, user interface, user experience, Internet of things, health promotion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
256 A Combined Practical Approach to Condition Monitoring of Reciprocating Compressors using IAS and Dynamic Pressure

Authors: M. Elhaj, M. Almrabet, M. Rgeai, I. Ehtiwesh

Abstract:

A Comparison and evaluation of the different condition monitoring (CM) techniques was applied experimentally on RC e.g. Dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS), for the detection and diagnosis of valve faults in a two - stage reciprocating compressor for a programme of condition monitoring which can successfully detect and diagnose a fault in machine. Leakage in the valve plate was introduced experimentally into a two-stage reciprocating compressor. The effect of the faults on compressor performance was monitored and the differences with the normal, healthy performance noted as a fault signature been used for the detection and diagnosis of faults. The paper concludes with what is considered to be a unique approach to condition monitoring. First, each of the two most useful techniques is used to produce a Truth Table which details the circumstances in which each method can be used to detect and diagnose a fault. The two Truth Tables are then combined into a single Decision Table to provide a unique and reliable method of detection and diagnosis of each of the individual faults introduced into the compressor. This gives accurate diagnosis of compressor faults.

Keywords: Condition Monitoring, Dynamic Pressure, Instantaneous Angular Speed, Reciprocating Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3303
255 Parameters Identification of Mathematical Model of the Fission Yeast Cell Cycle Control Using Evolutionary Strategy

Authors: A. Ghaffari, A. S. Mostafavi

Abstract:

Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell, such as metabolism, DNA synthesis, mitosis and cell division. These physiological properties play out as a subtle molecular dance, choreographed by underlying regulatory networks that control the activities of cyclin-dependent kinases (CDK). The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. In this paper, an innovative approach has been proposed that uses genetic algorithms to mine a set of behavior data output by a biological system in order to determine the kinetic parameters of the system. In our approach, the machine learning method is integrated with the framework of existent biological information in a wiring diagram so that its findings are expressed in a form of system dynamic behavior. By numerical simulations it has been illustrated that the model is consistent with experiments and successfully shown that such application of genetic algorithms will highly improve the performance of mathematical model of the cell division cycle to simulate such a complicated bio-system.

Keywords: Cell cycle, Cyclin-dependent kinase, Fission yeast, Genetic algorithms, Mathematical modeling, Wiring diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
254 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
253 Thermal Analysis of a Transport Refrigeration Power Pack Unit Using a Coupled 1D/3D Simulation Approach

Authors: A. Kospach, A. Mladek, M. Waltenberger, F. Schilling

Abstract:

In this work, a coupled 1D/3D simulation approach for thermal protection and optimization of a trailer refrigeration power pack unit was developed. With the developed 1D/3D simulation approach thermal critical scenarios, such as summer, high-load scenarios are investigated. The 1D thermal model was built up consisting of the thermal network, which includes different point masses and associated heat transfers, the coolant and oil circuits, as well as the fan unit. The 3D computational fluid dynamics (CFD) model was developed to model the air flow through the power pack unit considering convective heat transfer effects. In the 1D thermal model the temperatures of the individual point masses were calculated, which served as input variables for the 3D CFD model. For the calculation of the point mass temperatures in the 1D thermal model, the convective heat transfer rates from the 3D CFD model were required as input variables. These two variables (point mass temperatures and convective heat transfer rates) were the main couple variables for the coupled 1D/3D simulation model. The coupled 1D/3D model was validated with measurements under normal operating conditions. Coupled simulations for summer high-load case were than performed and compared with a reference case under normal operation conditions. Hot temperature regions and components could be identified. Due to the detailed information about the flow field, temperatures and heat fluxes, it was possible to directly derive improvement suggestions for the cooling design of the transport refrigeration power pack unit.

Keywords: Coupled thermal simulation, thermal analysis, transport refrigeration unit, 3D computational fluid dynamics, 1D thermal modelling, thermal management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206
252 Time Organization for Urban Mobility Decongestion: A Methodology for People’s Profile Identification

Authors: Yassamina Berkane, Leïla Kloul, Yoann Demoli

Abstract:

Quality of life, environmental impact, congestion of mobility means, and infrastructures remain significant challenges for urban mobility. Solutions like car sharing, spatial redesign, eCommerce, and autonomous vehicles will likely increase the unit veh-km and the density of cars in urban traffic, thus reducing congestion. However, the impact of such solutions is not clear for researchers. Congestion arises from growing populations that must travel greater distances to arrive at similar locations (e.g., workplaces, schools) during the same time frame (e.g., rush hours). This paper first reviews the research and application cases of urban congestion methods through recent years. Rethinking the question of time, it then investigates people’s willingness and flexibility to adapt their arrival and departure times from workplaces. We use neural networks and methods of supervised learning to apply a methodology for predicting peoples’ intentions from their responses in a questionnaire. We created and distributed a questionnaire to more than 50 companies in the Paris suburb. Obtained results illustrate that our methodology can predict peoples’ intentions to reschedule their activities (work, study, commerce, etc.).

Keywords: Urban mobility, decongestion, machine learning, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 481
251 Evaluation of Model-Based Code Generation for Embedded Systems–Mature Approach for Development in Evolution

Authors: Nikolay P. Brayanov, Anna V. Stoynova

Abstract:

Model-based development approach is gaining more support and acceptance. Its higher abstraction level brings simplification of systems’ description that allows domain experts to do their best without particular knowledge in programming. The different levels of simulation support the rapid prototyping, verifying and validating the product even before it exists physically. Nowadays model-based approach is beneficial for modelling of complex embedded systems as well as a generation of code for many different hardware platforms. Moreover, it is possible to be applied in safety-relevant industries like automotive, which brings extra automation of the expensive device certification process and especially in the software qualification. Using it, some companies report about cost savings and quality improvements, but there are others claiming no major changes or even about cost increases. This publication demonstrates the level of maturity and autonomy of model-based approach for code generation. It is based on a real live automotive seat heater (ASH) module, developed using The Mathworks, Inc. tools. The model, created with Simulink, Stateflow and Matlab is used for automatic generation of C code with Embedded Coder. To prove the maturity of the process, Code generation advisor is used for automatic configuration. All additional configuration parameters are set to auto, when applicable, leaving the generation process to function autonomously. As a result of the investigation, the publication compares the quality of generated embedded code and a manually developed one. The measurements show that generally, the code generated by automatic approach is not worse than the manual one. A deeper analysis of the technical parameters enumerates the disadvantages, part of them identified as topics for our future work.

Keywords: Embedded code generation, embedded C code quality, embedded systems, model-based development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
250 Distributional Semantics Approach to Thai Word Sense Disambiguation

Authors: Sunee Pongpinigpinyo, Wanchai Rivepiboon

Abstract:

Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy that employs an unsupervised learning method for disambiguation. We report our investigation of Latent Semantic Indexing (LSI), an information retrieval technique and unsupervised learning, to the task of Thai noun and verbal word sense disambiguation. The Latent Semantic Indexing has been shown to be efficient and effective for Information Retrieval. For the purposes of this research, we report experiments on two Thai polysemous words, namely  /hua4/ and /kep1/ that are used as a representative of Thai nouns and verbs respectively. The results of these experiments demonstrate the effectiveness and indicate the potential of applying vector-based distributional information measures to semantic disambiguation.

Keywords: Distributional semantics, Latent Semantic Indexing, natural language processing, Polysemous words, unsupervisedlearning, Word Sense Disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
249 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach

Authors: R. Unnikrishnan, K. Shankar

Abstract:

In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.

Keywords: Biomechanical model, lumped mass, seat ejection, vibrational response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
248 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)

Authors: Deniz T. Sodiri, Venkat V S S Sastry

Abstract:

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
247 Determination and Comparison of Fabric Pills Distribution Using Image Processing and Spatial Data Analysis Tools

Authors: Lenka Techniková, Maroš Tunák, Jiří Janáček

Abstract:

This work deals with the determination and comparison of pill patterns in 2 sets of fabric samples which differ in way of pill creation. The first set contains fabric samples with the pills created by simulation on a Martindale abrasion machine, while pills in the second set originated during normal wearing and maintenance. The goal of the study is to determine whether the pattern of the fabric pills created by simulation is the same as the pattern of naturally occurring pills. The system of determination and comparison of the pills is based on image processing and spatial data analysis tools. Firstly, 3D reconstruction of the fabric surfaces with the pills is realized with using a gradient fields method. The gradient fields method creates a 3D fabric surface from a set of 4 images. Thereafter, the pills are detected in 3D fabric surfaces using image-processing tools in the MATLAB software. Determination and comparison of the pills patterns of two sets of fabric samples is based on spatial data analysis using tools in R software.

Keywords: 3D reconstruction of the surface, image analysis tools, distribution of the pills, spatial data analysis tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
246 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud

Authors: Yoji Yamato

Abstract:

In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.

Keywords: OpenStack, Cloud Computing, Automatic verification, Jenkins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
245 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland

Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli

Abstract:

This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.

Keywords: Analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
244 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
243 Optimizing Dialogue Strategy Learning Using Learning Automata

Authors: G. Kumaravelan, R. Sivakumar

Abstract:

Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlying probabilistic structure has a Markov Chain. Researchers have mostly focused on model-free algorithms for automating the design of dialogue management using machine learning techniques such as reinforcement learning. But in model-free algorithms there exist a dilemma in engaging the type of exploration versus exploitation. Hence we present a model-based online policy learning algorithm using interconnected learning automata for optimizing dialogue strategy. The proposed algorithm is capable of deriving an optimal policy that prescribes what action should be taken in various states of conversation so as to maximize the expected total reward to attain the goal and incorporates good exploration and exploitation in its updates to improve the naturalness of humancomputer interaction. We test the proposed approach using the most sophisticated evaluation framework PARADISE for accessing to the railway information system.

Keywords: Dialogue management, Learning automata, Reinforcement learning, Spoken dialogue system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
242 Robust FACTS Controller Design Employing Modern Heuristic Optimization Techniques

Authors: A.K.Balirsingh, S.C.Swain, S. Panda

Abstract:

Recently, Genetic Algorithms (GA) and Differential Evolution (DE) algorithm technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of DE and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques has been compared. Further, the optimized controllers are tested on a weekly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability.

Keywords: Differential Evolution, Flexible AC TransmissionSystems (FACTS), Genetic Algorithm, Low Frequency Oscillations, Single-machine Infinite Bus Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
241 Design a Fractional Order Controller for Power Control of Doubly Fed Induction Generator Based Wind Generation System

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

During the recent years, much interest has been devoted to fractional order control that has appeared as a very eligible control approach for the systems experiencing parametric uncertainty and outer disturbances. The main purpose of this paper is to design and evaluate the performance of a fractional order proportional integral (FOPI) controller applied to control prototype variable speed wind generation system (WGS) that uses a doubly fed induction generator (DFIG). In this paper, the DFIG-machine is controlled according to the stator field-oriented control (FOC) strategy, which makes it possible to regulate separately the reactive and active powers exchanged between the WGS and the grid. The considered system is modeled and simulated using MATLAB-Simulink, and the performance of FOPI controller applied to the back-to-back power converter control of DFIG based grid connected variable speed wind turbine are evaluated and compared to the ones obtained with a conventional PI controller.

Keywords: Design, fractional order PI controller, wind generation system, doubly fed induction generator, wind turbine, field-oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
240 Design and Implementation a Fully Autonomous Soccer Player Robot

Authors: S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, M. Saeidinezhad

Abstract:

Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robot

Keywords: Mobile robot, Machine vision, Omni directional movement, Autonomous Systems, Robot path planning, Object Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
239 Detection of Cyberattacks on the Metaverse Based on First-Order Logic

Authors: Sulaiman Al Amro

Abstract:

There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.

Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
238 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques

Authors: Surinder Deswal

Abstract:

The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.

Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
237 Implementation of A Photo-Curable 3D Additive Manufacturing Technology with Coloring Gray Capability by Using Piezo Ink-Jet

Authors: Ming-Jong Tsai, Y. L. Cheng, Y. L. Kuo, S. Y. Hsiao, J .W. Chen, P. H. Liu, D. H. Chen

Abstract:

The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi. 

Keywords: 3d printing, additive manufacturing, color, photo-curable, Piezo type ink-jet, UV Resin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
236 Modelling and Dimension Analysis of a Multipurpose Convertible Laptop Table Using Autodesk Fusion 360

Authors: Nitesh Pandey, Manish Kumar, Pankaj Gupta, Amit Kumar Srivastava

Abstract:

The convertible table is a versatile and adaptable item designed to provide numerous solutions in one. The design incorporates numerous features that offer both ease and functionality. The description of the versatile convertible table in this overview encompasses a range of features that can be tailored to accommodate various user requirements. With its changeable functionality, this piece can easily transform into a workstation, dining table, or coffee table to suit various needs. Significantly, this multipurpose convertible laptop table includes a specific section for electronic devices such as computers and tablets, offering convenience for remote workers and online learners. In addition, providing storage space for essential equipment promotes a tidy workspace by facilitating the organization of many items. The integrated flash system offers supplementary illumination for dimly lit surroundings, while the cooling fans prevent the table's surface from overheating in hot weather or during prolonged laptop usage, making it an optimal and superior choice for laptop users. In order to cater to the needs of students, painters, and other individuals who require writing tools on a regular basis, a pencil and pen stand is included, hence enhancing the versatility of the table. The scissor lift mechanism allows for easy modifications in height, making it convenient to customize usage and providing the option of using it as a standing desk. Overall, this convertible table exemplifies its ability to adapt, its user-friendly nature, and its usefulness in a wide range of situations and settings.

Keywords: Furniture design, laptop stand, study table, learning tool, furniture manufacturing, contemporary design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155